Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos

Size: px
Start display at page:

Download "Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos"

Transcription

1 Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Jue Wu and Brian Avants Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, USA Abstract. We implemented an automatic open-source processing pipeline for neonatal brain tissue segmentation. The framework makes use of N4 to correct bias field, the deformable registration SyN to warp a public neonatal template to the test image, and multivariate MRF-based segmentation Atropos to perform segmentation. The pipeline does not need training and runs efficiently. It can achieve satisfactory results for most classes of a neonatal brain MR image. 1 A Prior-Based Segmentation Algorithm We contribute a template-based method for the challenging problem of tissue segmentation in the neonatal brain. The task is difficult because of intensity inversion of unmyelinated white matter and low resolution (or large slice thickness) in standard neonatal T1 or T2-weighted MRI. Our framework employs SyN diffeomorphic registration and Atropos prior-based multivariate segmentation methods available within the open-source, multi-platform Advanced Normalization Tools (ANTs). SyN and Atropos are general-purpose tools, which were not designed specifically for neonatal brain processing. However, with the assistance of a neonatal brain template, the general purpose methods are adapted for a task-specific algorithm. There are four components in the proposed framework: registration, bias correction, segmentation and post-processing (see Fig. 1). 1.1 Registration Assuming there is a proper template available for each test image to be segmented, we aim to align the template with the test image and thus transform the priors associated with the template to the subject space. The registration is performed via the diffeomorphic mapping methods available within ANTs software [1], which rank among top performers in terms of registration accuracy [2]. ANTs is freely available at We use the neighborhood cross correlation as similarity measure for the mono-modal registration and mutual information for intra-subject affine registration between T1 and T2 weighted MR images. Registration between T1 and T2 weighted modalities enables us to employ a multivariate data-term in the segmentation

2 2 Jue Wu and Brian Avants Fig. 1. Overview of the proposed algorithm formulation. The brain mask from the template was transformed to subject space and helped remove non-brain tissues. The line of code for registration between template and test image is: ANTS 3 -m CC[t2template-GA.nii.gz, test_image.nii.gz, 1, 2] -r Gauss[3,0] -t SyN[0.25] -i 90x100x80 -o output.nii.gz 1.2 Template Used To a large extent, the success of prior-based segmentation hinges on the quality of the chosen template and the similarity between template and test image. We chose a set of premature neonatal T2 templates from Imperial College London, which have high definition and good tissue contrast with various post-menstrual ages. These atlases are based on 204 preterm babies with no observed obvious pathology and freely available at We picked two templates, one 30 and the other 40 week old, for the current processing. The original templates have no label for myelinated WM and no separated labels for ventricular CSF and extra-cerebral CSF so we created the labels manually according to the Challenge s protocol. 1.3 Pre-processing Pre-processing before segmentation only involved MR field inhomogeneity correction. We employed the N4 method [3] to correct bias field and used the probabilistic map of white matter as a reference. Bias field correction was done for independently for both T1 and T2 images.

3 Title Suppressed Due to Excessive Length Segmentation Tissue classification is accomplished by Atropos which uses expectation maximization to optimize a probabilistic formulation that links a data term with both spatial and Markov Random Field (MRF) priors. The posterior probability in the MRF model is composed of the likelihood probability for voxel intensity, prior probability for smoothness constraint and template priors. Optimization is achieved by expectation maximization with an iterated conditional modes parameter update schema. For technical details about Atropos, readers are referred to the work of Avants et al. [3] The Atropos method takes prior probability maps of all tissue classes and the T2 image (plus the T1 for the final iteration) as input. It outputs the segmentation of all classes as well as probability maps for all classes. We restarted this process three times by setting the output probability maps of the previous iteration as input probability maps of the next iteration. Due to close intensity profiles between several tissues (such as cortex and deep gray matter, white matter and cerebellum, ventricular CSF and extra-cerebral CSF), the tissue priors were recombined with output probability maps between two iterations to reinforce spatial constraint. Further details are available in the scripts used for this study which are available from the authors. The line of code for one iteration of prior-based segmentation: Atropos -d 3 -x mask.nii -c [2,1.e-9] -m [0.10,1x1x1] -u 0 --icm [1,1] -a test_t1.nii -a test_t2.nii -o [seg.nii.gz,segprob%02d.nii.gz] -i PriorProbabilityImages[8,prior%02d.nii.gz,0.5] -p Socrates[0] 1.5 Post-processing The purpose of post-processing is to decrease the number of misclassified voxels due to unusual intensity of these voxels. The MRF smoothness constraint may not be able to remove them because they can appear in a cluster. These clusters can be reduced by reimposing the template-based priors, which are likely to show low probability of the tissue at this location. Therefore the misclassification was replaced with higher probability tissue class. 1.6 Strengths and Limitations The proposed algorithm has several advantages. No training is needed. The algorithm only needs a labeled template, where prior knowledge of tissue distribution is incorporated, and thus training examples are not necessary. Relatively fast to run. For each subject, the registration unit takes 40 to 60 minutes depending on the size of the brain. The segmentation part takes about 20 minutes. Bias correction is about 20 minutes and post-processing lasts lest than 1 minute. The computation was done on a Linux platform with Intel Xeon 3.2GHz CPU and 2GB memory.

4 4 Jue Wu and Brian Avants Open source and public templates. The implementation is based on opensource softwares and we used templates freely available to the public. Therefore the proposed method should have good reproducibility and can be made available to the public in the future. One significant limitation of the proposed method is that the extra-cerebral CSF segmentation is suboptimal due to the fact that the template did not have features outside of the cerebrum (skull, dura, etc) whereas the test images cover the whole head. While our registration methodology is fairly robust, in some cases, this difference may be significant enough to impair registration performance. In such cases, the segmentation will also suffer. It is also possible that neither smoothness prior and template prior can eliminate all misclassification. Additional anatomical constraints may be helpful, for example, WM and extracerebral CSF voxels cannot be neighbors. 2 Evaluation Results The snapshots for some example segmentation are shown in Fig. 2. The quantitative evaluation results from the Challenge are shown in Fig. 3, 4 and 5. Fig. 2. First row is one slice of the first subject from each set (40wk axial, 30wk coronal, 40 wk coronal. Second row is the corresponding segmentation.

5 Title Suppressed Due to Excessive Length 5 Fig. 3. Quantitative results for set1

6 6 Jue Wu and Brian Avants Fig. 4. Quantitative results for set2

7 Title Suppressed Due to Excessive Length 7 Fig. 5. Quantitative results for set3

8 8 Jue Wu and Brian Avants References 1. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12 (2008) Klein, A., Andersson, J., Ardekani, B., Ashburner, J., Avants, B., Chiang, M., Christensen, G., Collins, D., Gee, J., Hellier, P., Hyun, S., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R., Mann, J., Parsey, R.: Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration. NeuroImage 46 (2009) Avants, B., Tustison, N., Wu, J., Cook, P., Gee, J.: An open source multivariate framework for n-tissue segmentation evaluation on public data. Neuroinformatics 9 (2011)

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

Where are we now? Structural MRI processing and analysis

Where are we now? Structural MRI processing and analysis Where are we now? Structural MRI processing and analysis Pierre-Louis Bazin bazin@cbs.mpg.de Leipzig, Germany Structural MRI processing: why bother? Just use the standards? SPM FreeSurfer FSL However:

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Ming-Ching Chang Xiaodong Tao GE Global Research Center {changm, taox} @ research.ge.com SPIE

More information

Segmentation of the neonatal brain for MR images A REVIEW

Segmentation of the neonatal brain for MR images A REVIEW Segmentation of the neonatal brain for MR images A REVIEW Tineke Hoppinga 19-5-2010 Inhoud Abbreviations... 4 Abstract... 5 Introduction... 6 Method... 8 Basic explanations of the methods... 8 Weisenfeld...

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

GLIRT: Groupwise and Longitudinal Image Registration Toolbox

GLIRT: Groupwise and Longitudinal Image Registration Toolbox Software Release (1.0.1) Last updated: March. 30, 2011. GLIRT: Groupwise and Longitudinal Image Registration Toolbox Guorong Wu 1, Qian Wang 1,2, Hongjun Jia 1, and Dinggang Shen 1 1 Image Display, Enhancement,

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

Automated MR Image Analysis Pipelines

Automated MR Image Analysis Pipelines Automated MR Image Analysis Pipelines Andy Simmons Centre for Neuroimaging Sciences, Kings College London Institute of Psychiatry. NIHR Biomedical Research Centre for Mental Health at IoP & SLAM. Neuroimaging

More information

Non-Rigid Registration of Medical Images: Theory, Methods and Applications

Non-Rigid Registration of Medical Images: Theory, Methods and Applications Non-Rigid Registration of Medical Images: Theory, Methods and Applications Daniel Rueckert Paul Aljabar Medical mage registration [1] plays an increasingly important role in many clinical applications

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Christian Wasserthal 1, Karin Engel 1, Karsten Rink 1 und André Brechmann

More information

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation Ting Song 1, Elsa D. Angelini 2, Brett D. Mensh 3, Andrew Laine 1 1 Heffner Biomedical Imaging Laboratory Department of Biomedical Engineering,

More information

Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options

Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options Junghoon Kim, PhD, Brian Avants, PhD, Sunil Patel, MS, and John Whyte, MD, PhD 1 Recent

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

Non-rigid Image Registration using Electric Current Flow

Non-rigid Image Registration using Electric Current Flow Non-rigid Image Registration using Electric Current Flow Shu Liao, Max W. K. Law and Albert C. S. Chung Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering,

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

Asymmetric Image-Template Registration

Asymmetric Image-Template Registration Asymmetric Image-Template Registration Mert R. Sabuncu 1,B.T.ThomasYeo 1, Koen Van Leemput 1,2,3, Tom Vercauteren 4, and Polina Golland 1 1 Computer Science and Artificial Intelligence Lab, MIT 2 Department

More information

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age Version 1.0 UNC 4D infant cortical surface atlases from neonate to 6 years of age contain 11 time points, including 1, 3, 6, 9, 12,

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Non-Rigid Registration of Medical Images: Theory, Methods and Applications

Non-Rigid Registration of Medical Images: Theory, Methods and Applications Non-Rigid Registration of Medical Images: Theory, Methods and Applications Daniel Rueckert Paul Aljabar Medical image registration [1] plays an increasingly important role in many clinical applications

More information

Automatic Segmentation of Neonatal Brain MRI

Automatic Segmentation of Neonatal Brain MRI Automatic Segmentation of Neonatal Brain MRI 1 Marcel Prastawa, 2 John Gilmore, 3 Weili Lin, and 1,2 Guido Gerig Department of 1 Computer Science, 2 Psychiatry, and 3 Radiology University of North Carolina,

More information

Automatic Optimization of Segmentation Algorithms Through Simultaneous Truth and Performance Level Estimation (STAPLE)

Automatic Optimization of Segmentation Algorithms Through Simultaneous Truth and Performance Level Estimation (STAPLE) Automatic Optimization of Segmentation Algorithms Through Simultaneous Truth and Performance Level Estimation (STAPLE) Mahnaz Maddah, Kelly H. Zou, William M. Wells, Ron Kikinis, and Simon K. Warfield

More information

Efficient population registration of 3D data

Efficient population registration of 3D data Efficient population registration of 3D data Lilla Zöllei 1, Erik Learned-Miller 2, Eric Grimson 1, William Wells 1,3 1 Computer Science and Artificial Intelligence Lab, MIT; 2 Dept. of Computer Science,

More information

EMSegmenter Tutorial (Advanced Mode)

EMSegmenter Tutorial (Advanced Mode) EMSegmenter Tutorial (Advanced Mode) Dominique Belhachemi Section of Biomedical Image Analysis Department of Radiology University of Pennsylvania 1/65 Overview The goal of this tutorial is to apply the

More information

Ischemic Stroke Lesion Segmentation Proceedings 5th October 2015 Munich, Germany

Ischemic Stroke Lesion Segmentation   Proceedings 5th October 2015 Munich, Germany 0111010001110001101000100101010111100111011100100011011101110101101012 Ischemic Stroke Lesion Segmentation www.isles-challenge.org Proceedings 5th October 2015 Munich, Germany Preface Stroke is the second

More information

Multi-Atlas Brain MRI Segmentation with Multiway Cut

Multi-Atlas Brain MRI Segmentation with Multiway Cut Multi-Atlas Brain MRI Segmentation with Multiway Cut Duygu Sarikaya, Liang Zhao, and Jason J. Corso SUNY Buffalo, Computer Science and Engineering Department, 338 Davis Hall- Buffalo, New York, USA 14260-2500

More information

Registration of Developmental Image Sequences with Missing Data

Registration of Developmental Image Sequences with Missing Data Registration of Developmental Image Sequences with Missing Data Istvan Csapo 1 Yundi Shi 1 Mar Sanchez 2 Martin Styner 1 Marc Niethammer 1 1 UNC Chapel Hill 2 Emory University Abstract Longitudinal image

More information

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos Measuring longitudinal brain changes in humans and small animal models Christos Davatzikos Section of Biomedical Image Analysis University of Pennsylvania (Radiology) http://www.rad.upenn.edu/sbia Computational

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

Ensemble registration: Combining groupwise registration and segmentation

Ensemble registration: Combining groupwise registration and segmentation PURWANI, COOTES, TWINING: ENSEMBLE REGISTRATION 1 Ensemble registration: Combining groupwise registration and segmentation Sri Purwani 1,2 sri.purwani@postgrad.manchester.ac.uk Tim Cootes 1 t.cootes@manchester.ac.uk

More information

Modified Expectation Maximization Method for Automatic Segmentation of MR Brain Images

Modified Expectation Maximization Method for Automatic Segmentation of MR Brain Images Modified Expectation Maximization Method for Automatic Segmentation of MR Brain Images R.Meena Prakash, R.Shantha Selva Kumari 1 P.S.R.Engineering College, Sivakasi, Tamil Nadu, India 2 Mepco Schlenk Engineering

More information

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency weighting Yangming Ou, Christos Davatzikos Section of Biomedical Image Analysis (SBIA) University of Pennsylvania Outline 1. Background

More information

EMSegment Tutorial. How to Define and Fine-Tune Automatic Brain Compartment Segmentation and the Detection of White Matter Hyperintensities

EMSegment Tutorial. How to Define and Fine-Tune Automatic Brain Compartment Segmentation and the Detection of White Matter Hyperintensities EMSegment Tutorial How to Define and Fine-Tune Automatic Brain Compartment Segmentation and the Detection of White Matter Hyperintensities This documentation serves as a tutorial to learn to customize

More information

Demons Methods for Digital Mammography Registration

Demons Methods for Digital Mammography Registration Demons Methods for Digital Mammography Registration Yago Díez 1, Meritxell Tortajada 1,SergiGanau 2, Lidia Tortajada 2, Melcior Sentís 2, and Robert Martí 1 1 Computer Vision and Robotics Group, University

More information

for Images A Bayesian Deformation Model

for Images A Bayesian Deformation Model Statistics in Imaging Workshop July 8, 2004 A Bayesian Deformation Model for Images Sining Chen Postdoctoral Fellow Biostatistics Division, Dept. of Oncology, School of Medicine Outline 1. Introducing

More information

Regional Manifold Learning for Deformable Registration of Brain MR Images

Regional Manifold Learning for Deformable Registration of Brain MR Images Regional Manifold Learning for Deformable Registration of Brain MR Images Dong Hye Ye, Jihun Hamm, Dongjin Kwon, Christos Davatzikos, and Kilian M. Pohl Department of Radiology, University of Pennsylvania,

More information

Automatic Generation of Training Data for Brain Tissue Classification from MRI

Automatic Generation of Training Data for Brain Tissue Classification from MRI MICCAI-2002 1 Automatic Generation of Training Data for Brain Tissue Classification from MRI Chris A. Cocosco, Alex P. Zijdenbos, and Alan C. Evans McConnell Brain Imaging Centre, Montreal Neurological

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA Lilla Zöllei lzollei@nmr.mgh.harvard.edu A.A. Martinos Center, MGH; Boston, MA Bruce Fischl Gheorghe Postelnicu Jean Augustinack Anastasia Yendiki Allison Stevens Kristen Huber Sita Kakonoori + the FreeSurfer

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde MRI Segmentation MRI Bootcamp, 14 th of January 2019 Segmentation Segmentation Information Segmentation Algorithms Approach Types of Information Local 4 45 100 110 80 50 76 42 27 186 177 120 167 111 56

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification

Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification Annegreet van Opbroek 1, Fedde van der Lijn 1 and Marleen de Bruijne 1,2 1 Biomedical Imaging Group Rotterdam, Departments of Medical

More information

Normalization for clinical data

Normalization for clinical data Normalization for clinical data Christopher Rorden, Leonardo Bonilha, Julius Fridriksson, Benjamin Bender, Hans-Otto Karnath (2012) Agespecific CT and MRI templates for spatial normalization. NeuroImage

More information

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral PBSI: A symmetric probabilistic extension of the Boundary Shift Integral Christian Ledig 1, Robin Wolz 1, Paul Aljabar 1,2, Jyrki Lötjönen 3, Daniel Rueckert 1 1 Department of Computing, Imperial College

More information

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP was developed as part of the COST Action "Arterial Spin Labelling Initiative in Dementia (AID)" by: Department of Neuroimaging, Institute

More information

White Matter Lesion Segmentation (WMLS) Manual

White Matter Lesion Segmentation (WMLS) Manual White Matter Lesion Segmentation (WMLS) Manual 1. Introduction White matter lesions (WMLs) are brain abnormalities that appear in different brain diseases, such as multiple sclerosis (MS), head injury,

More information

averaged) 2. This makes it necessary to employ higher level knowledge about distribution of grey/white matter in the brain and lesion features.

averaged) 2. This makes it necessary to employ higher level knowledge about distribution of grey/white matter in the brain and lesion features. Fusing Markov Random Fields with Anatomical Knowledge and Shape Based Analysis to Segment Multiple Sclerosis White Matter Lesions in Magnetic Resonance Images of the Brain Stephan Al-Zubi a, c, Klaus Toennies

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2-3. General Linear Models (GLM) Voxel-based Morphometry (VBM) September 11, 2009 What is GLM The general linear model (GLM) is a

More information

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2012 Voxel-Based Morphometry & DARTEL Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Aims of computational neuroanatomy * Many interesting and clinically

More information

Longitudinal Brain MRI Analysis with Uncertain Registration

Longitudinal Brain MRI Analysis with Uncertain Registration Longitudinal Brain MRI Analysis with Uncertain Registration Ivor J.A. Simpson 1,2,,MarkW.Woolrich 2,3,AdrianR.Groves 2, and Julia A. Schnabel 1 1 Institute of Biomedical Engineering, University of Oxford,

More information

Structural MRI analysis

Structural MRI analysis Structural MRI analysis volumetry and voxel-based morphometry cortical thickness measurements structural covariance network mapping Boris Bernhardt, PhD Department of Social Neuroscience, MPI-CBS bernhardt@cbs.mpg.de

More information

Anomaly Detection through Registration

Anomaly Detection through Registration Anomaly Detection through Registration Mei Chen Takeo Kanade Henry A. Rowley Dean Pomerleau meichen@cs.cmu.edu tk@cs.cmu.edu har@cs.cmu.edu pomerlea@cs.cmu.edu School of Computer Science, Carnegie Mellon

More information

A Binary Entropy Measure to Assess Nonrigid Registration Algorithms

A Binary Entropy Measure to Assess Nonrigid Registration Algorithms A Binary Entropy Measure to Assess Nonrigid Registration Algorithms Simon K. Warfield 1, Jan Rexilius 1, Petra S. Huppi 2, Terrie E. Inder 3, Erik G. Miller 1, William M. Wells III 1, Gary P. Zientara

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

MRI Segmentation MIDAS, 2007, 2010

MRI Segmentation MIDAS, 2007, 2010 MRI Segmentation MIDAS, 2007, 2010 Lawrence O. Hall, Dmitry Goldgof, Yuhua Gu, Prodip Hore Dept. of Computer Science & Engineering University of South Florida CONTENTS: 1. Introduction... 1 2. Installing

More information

Automatic Generation of Training Data for Brain Tissue Classification from MRI

Automatic Generation of Training Data for Brain Tissue Classification from MRI Automatic Generation of Training Data for Brain Tissue Classification from MRI Chris A. COCOSCO, Alex P. ZIJDENBOS, and Alan C. EVANS http://www.bic.mni.mcgill.ca/users/crisco/ McConnell Brain Imaging

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu 2010, N.Schuff Slide 1/67 Overview Definitions Role of Segmentation Segmentation methods Intensity based Shape based

More information

Image Registration Driven by Combined Probabilistic and Geometric Descriptors

Image Registration Driven by Combined Probabilistic and Geometric Descriptors Image Registration Driven by Combined Probabilistic and Geometric Descriptors Linh Ha 1, Marcel Prastawa 1, Guido Gerig 1, John H. Gilmore 2, Cláudio T. Silva 1, Sarang Joshi 1 1 Scientific Computing and

More information

Data mining for neuroimaging data. John Ashburner

Data mining for neuroimaging data. John Ashburner Data mining for neuroimaging data John Ashburner MODELLING The Scientific Process MacKay, David JC. Bayesian interpolation. Neural computation 4, no. 3 (1992): 415-447. Model Selection Search for the best

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Wei Liu 1, Peihong Zhu 1, Jeffrey S. Anderson 2, Deborah Yurgelun-Todd 3, and P. Thomas Fletcher 1 1 Scientific

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Doan, H., Slabaugh, G.G., Unal, G.B. & Fang, T. (2006). Semi-Automatic 3-D Segmentation of Anatomical Structures of Brain

More information

Topology Correction for Brain Atlas Segmentation using a Multiscale Algorithm

Topology Correction for Brain Atlas Segmentation using a Multiscale Algorithm Topology Correction for Brain Atlas Segmentation using a Multiscale Algorithm Lin Chen and Gudrun Wagenknecht Central Institute for Electronics, Research Center Jülich, Jülich, Germany Email: l.chen@fz-juelich.de

More information

mritc: A Package for MRI Tissue Classification

mritc: A Package for MRI Tissue Classification mritc: A Package for MRI Tissue Classification Dai Feng 1 Luke Tierney 2 1 Merck Research Labratories 2 University of Iowa July 2010 Feng & Tierney (Merck & U of Iowa) MRI Tissue Classification July 2010

More information

Whole Body MRI Intensity Standardization

Whole Body MRI Intensity Standardization Whole Body MRI Intensity Standardization Florian Jäger 1, László Nyúl 1, Bernd Frericks 2, Frank Wacker 2 and Joachim Hornegger 1 1 Institute of Pattern Recognition, University of Erlangen, {jaeger,nyul,hornegger}@informatik.uni-erlangen.de

More information

Isointense infant brain MRI segmentation with a dilated convolutional neural network Moeskops, P.; Pluim, J.P.W.

Isointense infant brain MRI segmentation with a dilated convolutional neural network Moeskops, P.; Pluim, J.P.W. Isointense infant brain MRI segmentation with a dilated convolutional neural network Moeskops, P.; Pluim, J.P.W. Published: 09/08/2017 Document Version Author s version before peer-review Please check

More information

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2015 Voxel-Based Morphometry Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Examples applications of VBM Many scientifically or clinically interesting

More information

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images Tina Memo No. 2008-003 Internal Memo Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images P. A. Bromiley Last updated 20 / 12 / 2007 Imaging Science and

More information

VBM Tutorial. 1 Getting Started. John Ashburner. March 12, 2015

VBM Tutorial. 1 Getting Started. John Ashburner. March 12, 2015 VBM Tutorial John Ashburner March 12, 2015 1 Getting Started The data provided are a selection of T1-weighted scans from the freely available IXI dataset 1. The overall plan will be to Start up SPM. Check

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation

Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation Bjoern H. Menze 1,2, Koen Van Leemput 3, Danial Lashkari 4 Marc-André Weber 5, Nicholas Ayache 2, and Polina

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Brain Portion Peeling from T2 Axial MRI Head Scans using Clustering and Morphological Operation

Brain Portion Peeling from T2 Axial MRI Head Scans using Clustering and Morphological Operation 159 Brain Portion Peeling from T2 Axial MRI Head Scans using Clustering and Morphological Operation K. Somasundaram Image Processing Lab Dept. of Computer Science and Applications Gandhigram Rural Institute

More information

A Review on Label Image Constrained Multiatlas Selection

A Review on Label Image Constrained Multiatlas Selection A Review on Label Image Constrained Multiatlas Selection Ms. VAIBHAVI NANDKUMAR JAGTAP 1, Mr. SANTOSH D. KALE 2 1PG Scholar, Department of Electronics and Telecommunication, SVPM College of Engineering,

More information

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00 Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00 Marcel Prastawa 1 and Guido Gerig 1 Abstract July 17, 2008 1 Scientific Computing and Imaging

More information

Probabilistic Registration of 3-D Medical Images

Probabilistic Registration of 3-D Medical Images Probabilistic Registration of 3-D Medical Images Mei Chen, Takeo Kanade, Dean Pomerleau, Jeff Schneider CMU-RI-TR-99-16 The Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 1513 July,

More information

Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit

Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit John Melonakos 1, Ramsey Al-Hakim 1, James Fallon 2 and Allen Tannenbaum 1 1 Georgia Institute of Technology, Atlanta GA 30332,

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

GPU-Based Implementation of a Computational Model of Cerebral Cortex Folding

GPU-Based Implementation of a Computational Model of Cerebral Cortex Folding GPU-Based Implementation of a Computational Model of Cerebral Cortex Folding Jingxin Nie 1, Kaiming 1,2, Gang Li 1, Lei Guo 1, Tianming Liu 2 1 School of Automation, Northwestern Polytechnical University,

More information

Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit

Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit John Melonakos 1, Ramsey Al-Hakim 1, James Fallon 2 and Allen Tannenbaum 1 1 Georgia Institute of Technology, Atlanta GA 30332,

More information

1 Abstract. 2 Background. Medical Image Analysis Report Project 2 Fabian Prada Team 7. Teammate: Rob Grupp

1 Abstract. 2 Background. Medical Image Analysis Report Project 2 Fabian Prada Team 7. Teammate: Rob Grupp Medical Image Analysis Report Project 2 Fabian Prada Team 7. Teammate: Rob Grupp 1 Abstract In this project we present two different approaches to the problem of finding a bounding box for the left and

More information

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING Francesca Pizzorni Ferrarese Pipeline overview WM and GM Segmentation Registration Data reconstruction Tractography

More information

A Design Toolbox to Generate Complex Phantoms for the Evaluation of Medical Image Processing Algorithms

A Design Toolbox to Generate Complex Phantoms for the Evaluation of Medical Image Processing Algorithms A Design Toolbox to Generate Complex Phantoms for the Evaluation of Medical Image Processing Algorithms Omar Hamo, Georg Nelles, Gudrun Wagenknecht Central Institute for Electronics, Research Center Juelich,

More information

SURFACE RECONSTRUCTION OF EX-VIVO HUMAN V1 THROUGH IDENTIFICATION OF THE STRIA OF GENNARI USING MRI AT 7T

SURFACE RECONSTRUCTION OF EX-VIVO HUMAN V1 THROUGH IDENTIFICATION OF THE STRIA OF GENNARI USING MRI AT 7T SURFACE RECONSTRUCTION OF EX-VIVO HUMAN V1 THROUGH IDENTIFICATION OF THE STRIA OF GENNARI USING MRI AT 7T Oliver P. Hinds 1, Jonathan R. Polimeni 2, Megan L. Blackwell 3, Christopher J. Wiggins 3, Graham

More information

An Intensity Consistent Approach to the Cross Sectional Analysis of Deformation Tensor Derived Maps of Brain Shape

An Intensity Consistent Approach to the Cross Sectional Analysis of Deformation Tensor Derived Maps of Brain Shape An Intensity Consistent Approach to the Cross Sectional Analysis of Deformation Tensor Derived Maps of Brain Shape C. Studholme, V. Cardenas, A. Maudsley, and M. Weiner U.C.S.F., Dept of Radiology, VAMC

More information

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

Norbert Schuff Professor of Radiology VA Medical Center and UCSF Norbert Schuff Professor of Radiology Medical Center and UCSF Norbert.schuff@ucsf.edu Slide 1/67 Overview Definitions Role of Segmentation Segmentation methods Intensity based Shape based Texture based

More information

Brain Extraction, Registration & EPI Distortion Correction

Brain Extraction, Registration & EPI Distortion Correction Brain Extraction, Registration & EPI Distortion Correction What use is Registration? Some common uses of registration: Combining across individuals in group studies: including fmri & diffusion Quantifying

More information

MIDAS Processing of Segmentation Data for Brain Lesions

MIDAS Processing of Segmentation Data for Brain Lesions MIDAS Processing of Segmentation Data for Brain Lesions A. A. Maudsley 4/6/2012 For studies that contain lesions, the MIDAS processing has two steps that benefit from a modified processing pipeline to

More information

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction Tina Memo No. 2007-003 Published in Proc. MIUA 2007 A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction P. A. Bromiley and N.A. Thacker Last updated 13 / 4 / 2007 Imaging Science and

More information

Topology Preserving Brain Tissue Segmentation Using Graph Cuts

Topology Preserving Brain Tissue Segmentation Using Graph Cuts Topology Preserving Brain Tissue Segmentation Using Graph Cuts Xinyang Liu 1, Pierre-Louis Bazin 2, Aaron Carass 3, and Jerry Prince 3 1 Brigham and Women s Hospital, Boston, MA 1 xinyang@bwh.harvard.edu

More information

Slicer3 Training Tutorial Using EM Segmenter with Non- Human Primate Images

Slicer3 Training Tutorial Using EM Segmenter with Non- Human Primate Images Slicer3 Training Compendium Slicer3 Training Tutorial Using EM Segmenter with Non- Human Primate Images Vidya Rajagopalan Christopher Wyatt BioImaging Systems Lab Dept. of Electrical Engineering Virginia

More information