Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Size: px
Start display at page:

Download "Learning to Shoot a Goal Lecture 8: Learning Models and Skills"

Transcription

1 Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal. How ca it lear skill from practice? Parameterize the task ad result: x describes the egocetric ball positio y is a parameter of the kick actio z describes where the ball goes Lear a forward model: z = a + bx + cy A forward model predicts the result of a actio. A iverse model predicts the actio that will give the result. Practice, Practice, Practice To lear a predictive model: z = a + bx + cy Collect a lot of data (x i, y i, z i ) Fid a, b, ad c to best fit the data. To decide how to shoot, ivert the model to get: y = (z - a - bx)/c More geerally: Lear result = f(situatio,actio) Ivert to get actio = g(situatio,result) Do t igore the ucertaity. Regressio Regressio fids the best fuctio from a give class, to fit the available data. Liear regressio fids a liear fuctio. Like z = a + bx + cy Other regressios: polyomial, logistic, memory-based, kerel-based, etc. We ca add terms like x, y ad xy ad still use liear regressio to fid a model z = a + bx + dx + cy + ey + fxy Simple example: z = a + bx The residual is the remaiig error. Stochastic equatio: z i = a + bx i + ε i Set a ad b to esure that E[ε] = 0 ad miimize E[ε ]. Not quite idetical to: ε i N(0,σ) with miimal σ.

2 First, the simple case Suppose we have data poits (x i, z i ) ad we wat to lear a model z = a + bx + ε We eed to fid a ad b to miimize the squared error: E = "(z i # a ) Shift the mea to the origi: (x i " x, z i " z ) First we fid b such that (z i " z ) = b(x i Oce we have b, we will get a = z " bx After shiftig the data to the origi Give the data set (x i " x, z i " z ) look for the best fit b for (z " z ) = b(x that miimizes E = "(z i # z # b(x i # x )) Look for a local miimum of E de db = #"(z i " z " b(x i ) (x i = 0 ( ) = "# (z i " b(x i = 0 It s a miimum because d E db = + # (x " x i ) > 0 #(z i b = #(x i Summary Give data poits (x i, z i ) The best fittig lie z = a + bx is give by #(z i b = #(x i a = z " bx Up to more dimesios Suppose our dataset is (x i, y i, z i ) (For simplicity, assume data cetered at origi) We wat to fit the plae z = bx + cy The error term is E = "(z i ) Fid a miimum "E = $ #x i (z i ) = 0 "b "E Solve for b ad c "c b" x i + c" x i y i = " x i z i b" x i y i + c" y i = " y i z i = $ #y i (z i ) = 0 Cautio! It s easy to liste to this, ad eve read it carefully, ad thik it all makes sese. But you still do t uderstad it! Your dataset (x i, y i, z i ) will ot be cetered aroud the origi. You eed to fit the plae z = a + bx + cy Work through the math for this, by had. Cleaig the data Give the data (x i, y i, z i ) fid the best-fittig plae z = a + bx + cy Compute the residuals: r i = z i a bx i cy i The mea of the r i should be zero. Compute the stadard deviatio σ r A data poit is a outlier if r i > 3σ r Discard the outliers Recompute the regressio, usig oly iliers.

3 Discardig Outliers Why is it OK to discard outliers if r i > 3σ r? Outliers are still data, are t they? A model explais data by sayig that some causes are relevat, ad others are egligible. If a data poit has p <.00 accordig to the model, it is more likely explaied as a modelig error, tha as a ulikely outcome. A ulikely outcome is t helpful i fittig model parameters, ayway. Represetig a lie x cos θ + y si θ = r (x,y) (cos θ, si θ) = r For fixed (r,θ), represet all poits (x,y) o a give lie. For fixed (x,y), represet all lies (r,θ) through (x,y). Hough Trasform Hough Space: (r,θ) represetatios Each observed poit (x,y) votes for all lies (r,θ) passig through it. Votes From Three Poits Each poit cotributes a curve of votes. Lies Get the Most Votes Votes from three very strog lies. Lies Get the Most Votes Idetify local max i Hough Space to defie a lie i Image Space. 3

4 Hough Trasform Issues Hough Trasform works with ay parameterized model: circle, rectagle, etc. But i a high-dimesioal Hough Space, each cell gets few votes RANSAC Radom Sample Cosesus A method for robust model-fittig. Separatig iliers from outliers. To maximize votes, use large cells. But they give low resolutio model descriptios. RANSAC to Fid Lie Models Repeat k times: Select poits from data, to defie a model M. Collect all poits from data, withi tolerace t of the model M. These are the iliers. If #iliers < d, give up o model M. Fid the model M that best fits the iliers. I this case, by liear regressio. Record the error of the iliers from model M. Retur the model M with the lowest error. RANSAC Pros ad Cos Very robust search for models. The model classifies data as iliers ad outliers Ca estimate probability of failure as a fuctio of k. But o upper boud. Ca fid multiple models by deletig data explaied by curret best model. But this ca fail if curret best model is bad. Back to Learig a Skill! Remember: x describes the egocetric ball positio y is a parameter of the kick actio z describes where the ball goes Lear a forward model: z = a + bx + cy Practice to collect the data (x i, y i, z i ) Do regressio to fid a, b, ad c To decide how to shoot, ivert the model to get: y = (z - a - bx)/c Learig to Shoot a Goal Ball positio x. Goal positio z. Kick param y 4

5 Egocetric Ball Positio: x I assume that you ca positio your robot so that the ball positio ca be described by a sigle parameter x. You ca use (x, x ), but more variables requires more data. Whe you re close eough to kick the ball, you ll be too close to be sure where it is! Pick a positio farther away, for accurate x. Kick Actio parameter: y The built-i kicks have o parameters. Your kick actio icludes a step or two to approach the ball, the a built-i kick. Embed the parameter y i the approach. Try various parameterizatios: Sideways compoet of the walk Turig while walkig forward etc. Avoid gaps i the search space of y values. Where the ball goes: z Track the ball after the kick. Keep your eye o the ball! After a suitable period of time ( secod?), record the directio the ball wet. Body-cetered egocetric frame of referece Plaig the shot You have a forward model: z = a + bx + cy Ivert the model: y = (z - a - bx)/c z is where you wat the ball to go x is where you see the ball right ow a, b, c have bee leared Compute y: how to cotrol the kick actio Q: Would it help to have a Bayesia model of the distributio p(z x, y)? Next Kalma filters: trackig dyamic systems. Exteded Kalma filters: hadlig oliearity by local liearizatio. 5

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Image Analysis. Segmentation by Fitting a Model

Image Analysis. Segmentation by Fitting a Model Image Aalysis Segmetatio by Fittig a Model Christophoros Nikou cikou@cs.uoi.gr Images take from: D. Forsyth ad J. Poce. Computer Visio: A Moder Approach, Pretice Hall, 2003. Computer Visio course by Svetlaa

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis Overview Chapter 6 Writig a Program Bjare Stroustrup Some thoughts o software developmet The idea of a calculator Usig a grammar Expressio evaluatio Program orgaizatio www.stroustrup.com/programmig 3 Buildig

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

GRADIENT DESCENT. Admin 10/24/13. Assignment 5. David Kauchak CS 451 Fall 2013

GRADIENT DESCENT. Admin 10/24/13. Assignment 5. David Kauchak CS 451 Fall 2013 Adi Assiget 5 GRADIENT DESCENT David Kauchak CS 451 Fall 2013 Math backgroud Liear odels A strog high-bias assuptio is liear separability: i 2 diesios, ca separate classes by a lie i higher diesios, eed

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA

Creating Exact Bezier Representations of CST Shapes. David D. Marshall. California Polytechnic State University, San Luis Obispo, CA , USA Creatig Exact Bezier Represetatios of CST Shapes David D. Marshall Califoria Polytechic State Uiversity, Sa Luis Obispo, CA 93407-035, USA The paper presets a method of expressig CST shapes pioeered by

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

A Note on Least-norm Solution of Global WireWarping

A Note on Least-norm Solution of Global WireWarping A Note o Least-orm Solutio of Global WireWarpig Charlie C. L. Wag Departmet of Mechaical ad Automatio Egieerig The Chiese Uiversity of Hog Kog Shati, N.T., Hog Kog E-mail: cwag@mae.cuhk.edu.hk Abstract

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Assignment 5; Due Friday, February 10

Assignment 5; Due Friday, February 10 Assigmet 5; Due Friday, February 10 17.9b The set X is just two circles joied at a poit, ad the set X is a grid i the plae, without the iteriors of the small squares. The picture below shows that the iteriors

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Overview Chapter 12 A display model

Overview Chapter 12 A display model Overview Chapter 12 A display model Why graphics? A graphics model Examples Bjare Stroustrup www.stroustrup.com/programmig 3 Why bother with graphics ad GUI? Why bother with graphics ad GUI? It s very

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces COMMON CORE Learig Stadards HSF-IF.A. HSF-BF.A.1a HSF-BF.A. HSF-LE.A. Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered

More information

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees.

Our second algorithm. Comp 135 Machine Learning Computer Science Tufts University. Decision Trees. Decision Trees. Decision Trees. Comp 135 Machie Learig Computer Sciece Tufts Uiversity Fall 2017 Roi Khardo Some of these slides were adapted from previous slides by Carla Brodley Our secod algorithm Let s look at a simple dataset for

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

Parametric curves. Reading. Parametric polynomial curves. Mathematical curve representation. Brian Curless CSE 457 Spring 2015

Parametric curves. Reading. Parametric polynomial curves. Mathematical curve representation. Brian Curless CSE 457 Spring 2015 Readig Required: Agel 0.-0.3, 0.5., 0.6-0.7, 0.9 Parametric curves Bria Curless CSE 457 Sprig 05 Optioal Bartels, Beatty, ad Barsy. A Itroductio to Splies for use i Computer Graphics ad Geometric Modelig,

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual) Wavelet Trasform CSE 49 G Itroductio to Data Compressio Witer 6 Wavelet Trasform Codig PACW Wavelet Trasform A family of atios that filters the data ito low resolutio data plus detail data high pass filter

More information

Random Graphs and Complex Networks T

Random Graphs and Complex Networks T Radom Graphs ad Complex Networks T-79.7003 Charalampos E. Tsourakakis Aalto Uiversity Lecture 3 7 September 013 Aoucemet Homework 1 is out, due i two weeks from ow. Exercises: Probabilistic iequalities

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

Orientation. Orientation 10/28/15

Orientation. Orientation 10/28/15 Orietatio Orietatio We will defie orietatio to mea a object s istataeous rotatioal cofiguratio Thik of it as the rotatioal equivalet of positio 1 Represetig Positios Cartesia coordiates (x,y,z) are a easy

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

ENGR Spring Exam 1

ENGR Spring Exam 1 ENGR 300 Sprig 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB ad

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra

Mathematics and Art Activity - Basic Plane Tessellation with GeoGebra 1 Mathematics ad Art Activity - Basic Plae Tessellatio with GeoGebra Worksheet: Explorig Regular Edge-Edge Tessellatios of the Cartesia Plae ad the Mathematics behid it. Goal: To eable Maths educators

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

ENGR 132. Fall Exam 1

ENGR 132. Fall Exam 1 ENGR 3 Fall 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work. Keep your work covered at all times.. Each studet is resposible for followig directios. Read carefully.. MATLAB ad Excel

More information

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 11. Friends, Overloaded Operators, and Arrays in Classes. Copyright 2014 Pearson Addison-Wesley. All rights reserved. Chapter 11 Frieds, Overloaded Operators, ad Arrays i Classes Copyright 2014 Pearso Addiso-Wesley. All rights reserved. Overview 11.1 Fried Fuctios 11.2 Overloadig Operators 11.3 Arrays ad Classes 11.4

More information

2) Give an example of a polynomial function of degree 4 with leading coefficient of -6

2) Give an example of a polynomial function of degree 4 with leading coefficient of -6 Math 165 Read ahead some cocepts from sectios 4.1 Read the book or the power poit presetatios for this sectio to complete pages 1 ad 2 Please, do ot complete the other pages of the hadout If you wat to

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

GRADIENT DESCENT. An aside: text classification. Text: raw data. Admin 9/27/16. Assignment 3 graded. Assignment 5. David Kauchak CS 158 Fall 2016

GRADIENT DESCENT. An aside: text classification. Text: raw data. Admin 9/27/16. Assignment 3 graded. Assignment 5. David Kauchak CS 158 Fall 2016 Adi Assiget 3 graded Assiget 5! Course feedback GRADIENT DESCENT David Kauchak CS 158 Fall 2016 A aside: text classificatio Text: ra data Ra data labels Ra data labels Features? Chardoay Chardoay Piot

More information

Reading. Parametric curves. Mathematical curve representation. Curves before computers. Required: Angel , , , 11.9.

Reading. Parametric curves. Mathematical curve representation. Curves before computers. Required: Angel , , , 11.9. Readig Required: Agel.-.3,.5.,.6-.7,.9. Optioal Parametric curves Bartels, Beatty, ad Barsky. A Itroductio to Splies for use i Computer Graphics ad Geometric Modelig, 987. Fari. Curves ad Surfaces for

More information

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour Diego Nehab A Trasformatio For Extractig New Descriptors of Shape Locus of poits equidistat from cotour Medial Axis Symmetric Axis Skeleto Shock Graph Shaked 96 1 Shape matchig Aimatio Dimesio reductio

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

Algorithms for Disk Covering Problems with the Most Points

Algorithms for Disk Covering Problems with the Most Points Algorithms for Disk Coverig Problems with the Most Poits Bi Xiao Departmet of Computig Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog csbxiao@comp.polyu.edu.hk Qigfeg Zhuge, Yi He, Zili Shao, Edwi

More information

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018 CS 111: Program Desig I Lecture 15: Modules, Padas agai Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago March 8, 2018 PYTHON STANDARD LIBRARY & BEYOND: MODULES Extedig Pytho Every moder

More information

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions

CS 111: Program Design I Lecture # 7: First Loop, Web Crawler, Functions CS 111: Program Desig I Lecture # 7: First Loop, Web Crawler, Fuctios Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago September 18, 2018 What will this prit? x = 5 if x == 3: prit("hi!")

More information

ENGR 132. Fall Exam 1 SOLUTIONS

ENGR 132. Fall Exam 1 SOLUTIONS ENGR 3 Fall 03 Exam SOLUTIONS INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work! Keep your work covered at all times!. Each studet is resposible for followig directios. Read carefully.. MATLAB

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

Thompson s Group F (p + 1) is not Minimally Almost Convex

Thompson s Group F (p + 1) is not Minimally Almost Convex Thompso s Group F (p + ) is ot Miimally Almost Covex Claire Wladis Thompso s Group F (p + ). A Descriptio of F (p + ) Thompso s group F (p + ) ca be defied as the group of piecewiseliear orietatio-preservig

More information

Informed Search. Russell and Norvig Chap. 3

Informed Search. Russell and Norvig Chap. 3 Iformed Search Russell ad Norvig Chap. 3 Not all search directios are equally promisig Outlie Iformed: use problem-specific kowledge Add a sese of directio to search: work toward the goal Heuristic fuctios:

More information

Chapter 3 MATHEMATICAL MODELING OF TOLERANCE ALLOCATION AND OVERVIEW OF EVOLUTIONARY ALGORITHMS

Chapter 3 MATHEMATICAL MODELING OF TOLERANCE ALLOCATION AND OVERVIEW OF EVOLUTIONARY ALGORITHMS 28 Chapter 3 MATHEMATICAL MODELING OF TOLERANCE ALLOCATION AND OVERVIEW OF EVOLUTIONARY ALGORITHMS Tolerace sythesis deals with the allocatio of tolerace values to various dimesios of idividual compoets

More information

CS 111: Program Design I Lecture #26: Heat maps, Nothing, Predictive Policing

CS 111: Program Design I Lecture #26: Heat maps, Nothing, Predictive Policing CS 111: Program Desig I Lecture #26: Heat maps, Nothig, Predictive Policig Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago November 29, 2018 Some Logistics Extra credit: Sample Fial Exam

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

Civil Engineering Computation

Civil Engineering Computation Civil Egieerig Computatio Fidig Roots of No-Liear Equatios March 14, 1945 World War II The R.A.F. first operatioal use of the Grad Slam bomb, Bielefeld, Germay. Cotets 2 Root basics Excel solver Newto-Raphso

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory Cluster Aalysis Adrew Kusiak Itelliget Systems Laboratory 2139 Seamas Ceter The Uiversity of Iowa Iowa City, Iowa 52242-1527 adrew-kusiak@uiowa.edu http://www.icae.uiowa.edu/~akusiak Two geeric modes of

More information

CS473-Algorithms I. Lecture 2. Asymptotic Notation. CS 473 Lecture 2 1

CS473-Algorithms I. Lecture 2. Asymptotic Notation. CS 473 Lecture 2 1 CS473-Algorithms I Lecture Asymptotic Notatio CS 473 Lecture 1 O-otatio (upper bouds) f() = O(g()) if positive costats c, 0 such that e.g., = O( 3 ) 0 f() cg(), 0 c 3 c c = 1 & 0 = or c = & 0 = 1 Asymptotic

More information

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup Chapter 18 Vectors ad Arrays Bjare Stroustrup Vector revisited How are they implemeted? Poiters ad free store Destructors Iitializatio Copy ad move Arrays Array ad poiter problems Chagig size Templates

More information

ANN WHICH COVERS MLP AND RBF

ANN WHICH COVERS MLP AND RBF ANN WHICH COVERS MLP AND RBF Josef Boští, Jaromír Kual Faculty of Nuclear Scieces ad Physical Egieerig, CTU i Prague Departmet of Software Egieerig Abstract Two basic types of artificial eural etwors Multi

More information

Mobile terminal 3D image reconstruction program development based on Android Lin Qinhua

Mobile terminal 3D image reconstruction program development based on Android Lin Qinhua Iteratioal Coferece o Automatio, Mechaical Cotrol ad Computatioal Egieerig (AMCCE 05) Mobile termial 3D image recostructio program developmet based o Adroid Li Qihua Sichua Iformatio Techology College

More information

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON Roberto Lopez ad Eugeio Oñate Iteratioal Ceter for Numerical Methods i Egieerig (CIMNE) Edificio C1, Gra Capitá s/, 08034 Barceloa, Spai ABSTRACT I this work

More information

Apparent Depth. B' l'

Apparent Depth. B' l' REFRACTION by PLANE SURFACES Apparet Depth Suppose we have a object B i a medium of idex which is viewed from a medium of idex '. If '

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

Math 3201 Notes Chapter 4: Rational Expressions & Equations

Math 3201 Notes Chapter 4: Rational Expressions & Equations Learig Goals: See p. tet.. Equivalet Ratioal Epressios ( classes) Read Goal p. 6 tet. Math 0 Notes Chapter : Ratioal Epressios & Equatios. Defie ad give a eample of a ratioal epressio. p. 6. Defie o-permissible

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information