Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Size: px
Start display at page:

Download "Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University"

Transcription

1 Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

2 Can we identify node groups? (communities, modules, clusters) Nodes: Football Teams Edges: Games played 2

3 NCAA conferences Nodes: Football Teams Edges: Games played 3

4 Can we identify functional modules? Nodes: Proteins Edges: Physical interactions 4

5 Functional modules Nodes: Proteins Edges: Physical interactions 5

6 Can we identify social communities? Nodes: Facebook Users Edges: Friendships 6

7 Social communities High school Summer internship Stanford (Squash) Stanford (Basketball) Nodes: Facebook Users Edges: Friendships 7

8 Non-overlapping vs. overlapping communities 8

9 Nodes Nodes Network Adjacency matrix 9

10 What is the structure of community overlaps: Edge density in the overlaps is higher! Communities as tiles 10

11 Communities in a network This is what we want! 11

12 1) Given a model, we generate the network: Generative model for networks A C B D E F G 2) Given a network, find the best model H A C B D E H F G Generative model for networks 12

13 Goal:Define a model that can generate networks The model will have a set of parameters that we will later want to estimate (and detect communities) Generative model for networks A C B D E F G Q: Given a set of nodes, how do communities generate edges of the network? H 13

14 Communities, C p A p B Model Memberships, M Nodes, V Model Generative model B(V, C, M, {p c }) for graphs: Nodes V, Communities C, Memberships M Network Each community chas a single probability p c Later we fit the model to networks to detect communities 14

15 Communities, C Memberships, M p A p B Model Nodes, V Community Affiliations AGM generates the links: For each For each pair of nodes in community, we connect them with prob. The overall edge probability is: P ( u, v) = 1 (1 ) p c c M u M v If, share nocommunities:, Network Think of this as an OR function: If at least 1 community says YES we create an edge set of communities node belongs to 15

16 Model Network 16

17 AGM can express a variety of community structures: Non-overlapping, Overlapping, Nested 17

18

19 Detecting communities with AGM: A C B D E F G H Given a Graph, find the Model 1) Affiliation graph M 2) Number of communities C 3) Parameters p c 19

20 Maximum Likelihood Principle (MLE): Given:Data Assumption:Data is generated by some model model model parameters Want to estimate : The probability that our model (with parameters ) generated the data Now let s find the most likely model that could have generated the data: arg max 20

21 Imagine we are given a set of coin flips Task:Figure out the bias of a coin! Data:Sequence of coin flips:,,,,,,, Model: return 1 with prob. Θ,else return 0 What is? Assuming coin flips are independent So, What is? Simple, Then, For example:... What did we learn?our data was most likely generated by coin with bias / / 21

22 How do we do MLE for graphs? Model generates a probabilistic adjacency matrix We then flip all the entries of the probabilistic matrix to obtain the binary adjacency matrix For every pair of nodes, AGM gives the prob. of them being linked Flip biased coins The likelihood of AGM generating graph G: P( G Θ) = Π ( u, v) E P( u, v) Π ( u, v) E (1 P( u, v)) 22

23 Given graph G(V,E)and Θ,we calculate likelihood that Θ generated G: P(G Θ) G A B Θ=B(V, C, M, {p c }) P(G Θ) G P( G Θ) = Π ( u, v) E P( u, v) Π ( u, v) E (1 P( u, v)) 23

24 Our goal:find,,, such that: arg max Θ P( ) AGM Θ How do we find,,, that maximizes the likelihood? 24

25 Our goal is to find,,, such that: arg max,,,,,, Problem: Finding Bmeans finding the bipartite affiliation network. There is no nice way to do this. Fitting,,, is too hard, let s change the model (so it is easier to fit)! 25

26 Relaxation: Memberships have strengths u v :The membership strength of node to community ( : no membership) Each community links nodes independently:, 26

27 j Community membership strength matrix Nodes Communities, Probability of connection is proportional to the product of strengths Notice: If one node doesn t belong to the community ( 0) then, Prob. that at least one common community links the nodes:,, strength of s membership to vector of community membership strengths of 27

28 : : : Community links nodes, independently:, Then prob. at least one common links them:,, Example matrix: Then:. And:,.. But:,., Node community membership strengths 28

29 Task: Given a network,, estimate Find that maximizes the likelihood:,,,, where:, Many times we take the logarithm of the likelihood, and call it log-likelihood: Goal: Find that maximizes : 29

30 Compute gradient of a single row of : Coordinate gradient ascent: Iterate over the rows of : Compute gradient of row (while keeping others fixed) Update the row :.. Set out outgoing neighbors Project back to a non-negative vector: If : This is slow!computing takes linear time! 30

31 However, we notice: We cache So, computing in the degree of now takes linear time In networks degree of a node is much smaller to the total number of nodes in the network, so this is a significant speedup! 31

32 Time (Sec.) Link Clustering Clique Percolation MMSB BigCLAM Parallel BigCLAM Number of nodes ( 10 3 ) BigCLAMtakes 5 minutes for 300k node nets Other methods take 10 days Can process networks with 100M edges! 32

33

34 34

35 Extension: Make community membership edges directed! Outgoing membership: Nodes sends edges Incoming membership: Node receives edges 35

36 36

37 Everything is almost the same except now we have 2 matrices: and out-going community memberships in-coming community memberships Edge prob.:, Network log-likelihood: which we optimize the same way as before 37

38 38

39 Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approachby J. Yang, J. Leskovec.ACM International Conference on Web Search and Data Mining (WSDM), Detecting Cohesive and 2-mode Communities in Directed and Undirected Networksby J. Yang, J. McAuley, J. Leskovec.ACM International Conference on Web Search and Data Mining (WSDM), Community Detection in Networks with Node Attributesby J. Yang, J. McAuley, J. Leskovec.IEEE International Conference On Data Mining (ICDM),

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Can we identify node groups? (communities, modules, clusters) 2/13/2014 Jure Leskovec, Stanford C246: Mining

More information

Online Social Networks and Media. Community detection

Online Social Networks and Media. Community detection Online Social Networks and Media Community detection 1 Notes on Homework 1 1. You should write your own code for generating the graphs. You may use SNAP graph primitives (e.g., add node/edge) 2. For the

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection CSE 255 Lecture 6 Data Mining and Predictive Analytics Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

CSE 258 Lecture 6. Web Mining and Recommender Systems. Community Detection

CSE 258 Lecture 6. Web Mining and Recommender Systems. Community Detection CSE 258 Lecture 6 Web Mining and Recommender Systems Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

CSE 158 Lecture 6. Web Mining and Recommender Systems. Community Detection

CSE 158 Lecture 6. Web Mining and Recommender Systems. Community Detection CSE 158 Lecture 6 Web Mining and Recommender Systems Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

Graphs (Part II) Shannon Quinn

Graphs (Part II) Shannon Quinn Graphs (Part II) Shannon Quinn (with thanks to William Cohen and Aapo Kyrola of CMU, and J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University) Parallel Graph Computation Distributed computation

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/10/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University Infinite data. Filtering data streams

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University  Infinite data. Filtering data streams /9/7 Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them

More information

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm CLUSTERING What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related)

More information

Classify My Social Contacts into Circles Stanford University CS224W Fall 2014

Classify My Social Contacts into Circles Stanford University CS224W Fall 2014 Classify My Social Contacts into Circles Stanford University CS224W Fall 2014 Amer Hammudi (SUNet ID: ahammudi) ahammudi@stanford.edu Darren Koh (SUNet: dtkoh) dtkoh@stanford.edu Jia Li (SUNet: jli14)

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS46: Mining Massive Datasets Jure Leskovec, Stanford University http://cs46.stanford.edu /7/ Jure Leskovec, Stanford C46: Mining Massive Datasets Many real-world problems Web Search and Text Mining Billions

More information

Overlapping Community Detection in Temporal Text Networks

Overlapping Community Detection in Temporal Text Networks Overlapping Community Detection in Temporal Text Networks ABSTRACT Network is a powerful language to represent relational data. One way to understand network is to analyze groups of nodes which share same

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

Non Overlapping Communities

Non Overlapping Communities Non Overlapping Communities Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

Learning to Discover Social Circles in Ego Networks

Learning to Discover Social Circles in Ego Networks Learning to Discover Social Circles in Ego Networks Julian McAuley Stanford jmcauley@cs.stanford.edu Jure Leskovec Stanford jure@cs.stanford.edu Abstract Our personal social networks are big and cluttered,

More information

CSE 258 Lecture 5. Web Mining and Recommender Systems. Dimensionality Reduction

CSE 258 Lecture 5. Web Mining and Recommender Systems. Dimensionality Reduction CSE 258 Lecture 5 Web Mining and Recommender Systems Dimensionality Reduction This week How can we build low dimensional representations of high dimensional data? e.g. how might we (compactly!) represent

More information

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Welcome to DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Time: 6:00pm 8:50pm R Location: AK232 Fall 2016 Graph Data: Social Networks Facebook social graph 4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna,

More information

Information Networks: PageRank

Information Networks: PageRank Information Networks: PageRank Web Science (VU) (706.716) Elisabeth Lex ISDS, TU Graz June 18, 2018 Elisabeth Lex (ISDS, TU Graz) Links June 18, 2018 1 / 38 Repetition Information Networks Shape of the

More information

Stanford Infolab Technical Report. Overlapping Communities Explain Core-Periphery Organization of Networks

Stanford Infolab Technical Report. Overlapping Communities Explain Core-Periphery Organization of Networks Stanford Infolab Technical Report Overlapping Communities Explain Core-Periphery Organization of Networks Jaewon Yang, Jure Leskovec Stanford University To whom correspondence should be addressed; E-mail:

More information

Community Detection. Community

Community Detection. Community Community Detection Community In social sciences: Community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group a.k.a. group,

More information

Community detection algorithms survey and overlapping communities. Presented by Sai Ravi Kiran Mallampati

Community detection algorithms survey and overlapping communities. Presented by Sai Ravi Kiran Mallampati Community detection algorithms survey and overlapping communities Presented by Sai Ravi Kiran Mallampati (sairavi5@vt.edu) 1 Outline Various community detection algorithms: Intuition * Evaluation of the

More information

CSE 255 Lecture 5. Data Mining and Predictive Analytics. Dimensionality Reduction

CSE 255 Lecture 5. Data Mining and Predictive Analytics. Dimensionality Reduction CSE 255 Lecture 5 Data Mining and Predictive Analytics Dimensionality Reduction Course outline Week 4: I ll cover homework 1, and get started on Recommender Systems Week 5: I ll cover homework 2 (at the

More information

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Social Networks Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Introduction Political blogs Organizations Facebook networks Ingredient networks SN representation Networks

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Epilog: Further Topics

Epilog: Further Topics Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases SS 2016 Epilog: Further Topics Lecture: Prof. Dr. Thomas

More information

Lecture 8: The EM algorithm

Lecture 8: The EM algorithm 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 8: The EM algorithm Lecturer: Manuela M. Veloso, Eric P. Xing Scribes: Huiting Liu, Yifan Yang 1 Introduction Previous lecture discusses

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/25/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3 In many data mining

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 3/6/2012 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 In many data mining

More information

Community Preserving Network Embedding

Community Preserving Network Embedding Community Preserving Network Embedding Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, Shiqiang Yang Presented by: Ben, Ashwati, SK What is Network Embedding 1. Representation of a node in an m-dimensional

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Mining Data that Changes. 17 July 2015

Mining Data that Changes. 17 July 2015 Mining Data that Changes 17 July 2015 Data is Not Static Data is not static New transactions, new friends, stop following somebody in Twitter, But most data mining algorithms assume static data Even a

More information

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns This is a closed-book exam. You should have no material on your desk other than the exam itself and a pencil or pen.

More information

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007 Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

How to organize the Web?

How to organize the Web? How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second try: Web Search Information Retrieval attempts to find relevant docs in a small and trusted set Newspaper

More information

Graph Theory for Network Science

Graph Theory for Network Science Graph Theory for Network Science Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Networks or Graphs We typically

More information

Clusters and Communities

Clusters and Communities Clusters and Communities Lecture 7 CSCI 4974/6971 22 Sep 2016 1 / 14 Today s Biz 1. Reminders 2. Review 3. Communities 4. Betweenness and Graph Partitioning 5. Label Propagation 2 / 14 Today s Biz 1. Reminders

More information

Overlapping Communities

Overlapping Communities Yangyang Hou, Mu Wang, Yongyang Yu Purdue Univiersity Department of Computer Science April 25, 2013 Overview Datasets Algorithm I Algorithm II Algorithm III Evaluation Overview Graph models of many real

More information

Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/24/2014 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 High dim. data

More information

Community-Affiliation Graph Model for Overlapping Network Community Detection

Community-Affiliation Graph Model for Overlapping Network Community Detection Community-Affiliation Graph Model for Overlapping Network Community Detection Jaewon Yang Stanford University crucis@stanford.edu Jure Leskovec Stanford University jure@cs.stanford.edu Abstract One of

More information

Graph Mining: Overview of different graph models

Graph Mining: Overview of different graph models Graph Mining: Overview of different graph models Davide Mottin, Konstantina Lazaridou Hasso Plattner Institute Graph Mining course Winter Semester 2016 Lecture road Anomaly detection (previous lecture)

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2????? Machine Learning Node

More information

Chapters 11 and 13, Graph Data Mining

Chapters 11 and 13, Graph Data Mining CSI 4352, Introduction to Data Mining Chapters 11 and 13, Graph Data Mining Young-Rae Cho Associate Professor Department of Computer Science Balor Universit Graph Representation Graph An ordered pair GV,E

More information

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li

DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Welcome to DS504/CS586: Big Data Analytics Graph Mining Prof. Yanhua Li Time: 6:00pm 8:50pm R Location: AK 233 Spring 2018 Service Providing Improve urban planning, Ease Traffic Congestion, Save Energy,

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

Graph Theory Review. January 30, Network Science Analytics Graph Theory Review 1

Graph Theory Review. January 30, Network Science Analytics Graph Theory Review 1 Graph Theory Review Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ January 30, 2018 Network

More information

Lecture 3, Review of Algorithms. What is Algorithm?

Lecture 3, Review of Algorithms. What is Algorithm? BINF 336, Introduction to Computational Biology Lecture 3, Review of Algorithms Young-Rae Cho Associate Professor Department of Computer Science Baylor University What is Algorithm? Definition A process

More information

node2vec: Scalable Feature Learning for Networks

node2vec: Scalable Feature Learning for Networks node2vec: Scalable Feature Learning for Networks A paper by Aditya Grover and Jure Leskovec, presented at Knowledge Discovery and Data Mining 16. 11/27/2018 Presented by: Dharvi Verma CS 848: Graph Database

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu [Morris 2000] Based on 2 player coordination game 2 players

More information

Computer Vision. Exercise Session 10 Image Categorization

Computer Vision. Exercise Session 10 Image Categorization Computer Vision Exercise Session 10 Image Categorization Object Categorization Task Description Given a small number of training images of a category, recognize a-priori unknown instances of that category

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 3/12/2014 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 3/12/2014 Jure

More information

CSE 158. Web Mining and Recommender Systems. Midterm recap

CSE 158. Web Mining and Recommender Systems. Midterm recap CSE 158 Web Mining and Recommender Systems Midterm recap Midterm on Wednesday! 5:10 pm 6:10 pm Closed book but I ll provide a similar level of basic info as in the last page of previous midterms CSE 158

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/27/2017 Jumble of unlabeled images HISTOGRAM blue

More information

Deep Boltzmann Machines

Deep Boltzmann Machines Deep Boltzmann Machines Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines

More information

Clustering. Image segmentation, document clustering, protein class discovery, compression

Clustering. Image segmentation, document clustering, protein class discovery, compression Clustering CS 444 Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at: Clustering The problem of grouping unlabeled data on the basis of similarity. A key

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Clustering Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 19 Outline

More information

Analysis of Large Graphs: TrustRank and WebSpam

Analysis of Large Graphs: TrustRank and WebSpam Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 53 INTRO. TO DATA MINING Locality Sensitive Hashing (LSH) Huan Sun, CSE@The Ohio State University Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU MMDS Secs. 3.-3.. Slides

More information

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1

Graphs. Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Graphs Data Structures and Algorithms CSE 373 SU 18 BEN JONES 1 Warmup Discuss with your neighbors: Come up with as many kinds of relational data as you can (data that can be represented with a graph).

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS6: Mining Massive Datasets Jure Leskovec, Stanford University http://cs6.stanford.edu Training data 00 million ratings, 80,000 users, 7,770 movies 6 years of data: 000 00 Test data Last few ratings of

More information

Social Network Analysis

Social Network Analysis Social Network Analysis Mathematics of Networks Manar Mohaisen Department of EEC Engineering Adjacency matrix Network types Edge list Adjacency list Graph representation 2 Adjacency matrix Adjacency matrix

More information

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

Algorithmic and Economic Aspects of Networks. Nicole Immorlica

Algorithmic and Economic Aspects of Networks. Nicole Immorlica Algorithmic and Economic Aspects of Networks Nicole Immorlica Syllabus 1. Jan. 8 th (today): Graph theory, network structure 2. Jan. 15 th : Random graphs, probabilistic network formation 3. Jan. 20 th

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

Topic mash II: assortativity, resilience, link prediction CS224W

Topic mash II: assortativity, resilience, link prediction CS224W Topic mash II: assortativity, resilience, link prediction CS224W Outline Node vs. edge percolation Resilience of randomly vs. preferentially grown networks Resilience in real-world networks network resilience

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

Parameter Estimation. Learning From Data: MLE. Parameter Estimation. Likelihood. Maximum Likelihood Parameter Estimation. Likelihood Function 12/1/16

Parameter Estimation. Learning From Data: MLE. Parameter Estimation. Likelihood. Maximum Likelihood Parameter Estimation. Likelihood Function 12/1/16 Learning From Data: MLE Maximum Estimators Common approach in statistics: use a parametric model of data: Assume data set: Bin(n, p), Poisson( ), N(µ, exp( ) Uniform(a, b) 2 ) But parameters are unknown!!!

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Instructor: Dr. Mehmet Aktaş. Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University

Instructor: Dr. Mehmet Aktaş. Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University Instructor: Dr. Mehmet Aktaş Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

More information

This Talk. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured

This Talk. Map nodes to low-dimensional embeddings. 2) Graph neural networks. Deep learning architectures for graphstructured Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 1 This Talk 1) Node embeddings Map nodes to low-dimensional embeddings. 2) Graph neural networks Deep learning architectures

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/004 1

More information

Learning Undirected Models with Missing Data

Learning Undirected Models with Missing Data Learning Undirected Models with Missing Data Sargur Srihari srihari@cedar.buffalo.edu 1 Topics Log-linear form of Markov Network The missing data parameter estimation problem Methods for missing data:

More information

Spatial biosurveillance

Spatial biosurveillance Spatial biosurveillance Authors of Slides Andrew Moore Carnegie Mellon awm@cs.cmu.edu Daniel Neill Carnegie Mellon d.neill@cs.cmu.edu Slides and Software and Papers at: http://www.autonlab.org awm@cs.cmu.edu

More information

More details on Loopy BP

More details on Loopy BP Readings: K&F: 11.3, 11.5 Yedidia et al. paper from the class website Chapter 9 - Jordan Loopy Belief Propagation Generalized Belief Propagation Unifying Variational and GBP Learning Parameters of MNs

More information

Discovering Social Circles in Ego Networks. Julian McAuley and Jure Leskovec Stanford January 11, 2013

Discovering Social Circles in Ego Networks. Julian McAuley and Jure Leskovec Stanford  January 11, 2013 Discovering Social Circles in Ego Networks Julian McAuley and Jure Leskovec Stanford jmcauley@cs.stanford.edu, jure@cs.stanford.edu January, 203 arxiv:20.882v3 [cs.si] 0 Jan 203 Abstract People s personal

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

Sampling Large Graphs: Algorithms and Applications

Sampling Large Graphs: Algorithms and Applications Sampling Large Graphs: Algorithms and Applications Don Towsley College of Information & Computer Science Umass - Amherst Collaborators: P.H. Wang, J.C.S. Lui, J.Z. Zhou, X. Guan Measuring, analyzing large

More information

Bipartite Edge Prediction via Transductive Learning over Product Graphs

Bipartite Edge Prediction via Transductive Learning over Product Graphs Bipartite Edge Prediction via Transductive Learning over Product Graphs Hanxiao Liu, Yiming Yang School of Computer Science, Carnegie Mellon University July 8, 2015 ICML 2015 Bipartite Edge Prediction

More information

Web Structure Mining Community Detection and Evaluation

Web Structure Mining Community Detection and Evaluation Web Structure Mining Community Detection and Evaluation 1 Community Community. It is formed by individuals such that those within a group interact with each other more frequently than with those outside

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu /2/8 Jure Leskovec, Stanford CS246: Mining Massive Datasets 2 Task: Given a large number (N in the millions or

More information

Compressed representations for web and social graphs. Cecilia Hernandez and Gonzalo Navarro Presented by Helen Xu 6.

Compressed representations for web and social graphs. Cecilia Hernandez and Gonzalo Navarro Presented by Helen Xu 6. Compressed representations for web and social graphs Cecilia Hernandez and Gonzalo Navarro Presented by Helen Xu 6.886 April 6, 2018 Web graphs and social networks Web graphs represent the link structure

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize the Web? First try: Human curated Web directories Yahoo, DMOZ, LookSmart Second

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 5: Maximum Likelihood Estimation; Parameter Uncertainty Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk

More information