HW 1: Project Report (Camera Calibration)

Size: px
Start display at page:

Download "HW 1: Project Report (Camera Calibration)"

Transcription

1 HW 1: Project Report (Camera Calibration) ABHISHEK KUMAR 1 Problem The problem is to calibrate a camera for a fixed focal length using two orthogonal checkerboard planes, and to find intrinsic and extrinsic parameters. 2 Experimental Procedure 2.1 Data Capture Two checkerboard patterns are pasted on a wall corner at an angle of 90 degree to each other, as shown in the following figure. The world frame axes are chosen as follows: The origin is at the lower end where two images meet on the corner. Z axis points upward from the origin. X axis is pointed along the left wall from the origin. Y axis is pointed along the right wall and goes through the origin. The origin and the three axes are shown in the following figure. Figure 1: Checkerboard pattern on the wall corner and the world frame coordinate axes The points to be measured are shown with red dots in the above image. Total 60 points are chosen as shown in figure, with 30 on one checkerboard and 30 on the other checkerboard. The real world coordinates for these 60 points are measured using a ruler (in the reference of the world frames axes shown in Fig. 1). All world frame coordinates are measured in centimeters. 1

2 The picture of the checkerboard pattern is captured using a camera and the coordinates of these 60 points are measured in the image coordinate frame (with origin taken at top left corner of the image). The image pixel resolution is This step gives us the coordinates of 60 pairs of points with each pair having one point in world frame and the corresponding point in image frame. We need to estimate 11 free parameters for camera calibration so this number of points is more than sufficient. We choose a large number of points so that human measurement errors (in marking points in image and world frame) are averaged out and we get a robust estimate of the camera parameters. 2.2 Estimation of the Calibration Matrix Least squares method is used to estimate the calibration matrix. There are 120 homogeneous linear equations in twelve variables, which are the coefficients of the calibration matrix M. Lets denote this system of linear equations as Pm = 0, m := [m 1 m 2 m 3 ] T, (1) where, m 1, m 2, m 3 are first, second and third rows of the matrix M respectively. m is a 12 1 vector, and P is a matrix. The problem of least square estimation of P is defined as min Pm 2, subject to m 2 = 1. (2) As it turns out, the solution of above problem is given by the eigenvector of matrix P T P having the least eigenvalue. The eigenvectors of matrix P T P can also be computed by performing the singular value decomposition (SVD) of P. The 12 right singular vectors of P are also the eigenvectors of P T P. The SVD method is used here to get the eigenvector corresponding to the least eigenvalue. This eigenvector is the solution to the above problem. Reorganizing the 12 1 vector m in a matrix of 4 3 gives us the matrix M. The first three elements of the third row of this matrix denote one of the three rotation vectors. As we know that the norm of rotation vectors is unity, this matrix is scaled by the norm of the third rotation vector to get the calibration matrix in canonical form. We take this matrix as the final calibration matrix M. 2.3 Computation of Intrinsic and Extrinsic Parameters The intrinsic and extrinsic parameters are computed from the calibration matrix M by using the method given in the book. These methods use the various properties of the rotation vectors, namely the norm of them being one and the dot product of two rotation matrix being zero. Once the calibration matrix is estimates, we pick 4 different points on the checkerboard pattern (other than the points picked before) and record their coordinates in the world frame. These points are then transformed to image frame using the calibration matrix obtained using least squares estimation. These coordinates are then compared with measured coordinates of these points in the image frame. We give the errors obtained in the following section. 3 Results The estimated calibration matrix using least squares estimation is given below M =

3 Parameter Value θ rad ( π/2 deg) u v α β Table 1: Intrinsic Parameters The intrinsic parameters are tabulated below. The extrinsic parameters consist of rotation matrix and the translation vector. The rotation matrix is given below: R = The translation vector t is estimated as K 1 b, where K is the intrinsic parameter matrix and b is the last column of the calibration matrix M. The t obtained in our experiments is [ ] T. 4 Discussion 4.1 Intrinsic Parameters We get θ almost equal to π/2 (Table 1), which means that the camera coordinates are not skewed much and the X and Y axes in the image frame are almost at 90 to each other. As mentioned in the Sec. 2, the image resolution is This means that the center of the image lies at (1024, 768). We obtain u 0 and v 0 equal to and respectively. The image center does not coincide with the principle point C 0 and is offset by (8.5, 166.4), as estimated in the experiments. α and β are magnifications equal to kf and lf respectively. The terms k and l denote the number of pixels per centimeter, and f is the distance of physical image frame from the pinhole or equivalent lens. The magnitude of α and β are reasonable from this point of view. 4.2 Extrinsic Parameters Three rows of rotation matrix have norm equal to 1 and their dot product with each other is a very low number (of the order of ). This is justified because of possible errors in the measurement process which is purely manual. The translation vector also approximately matches the real values. We measured the difference in the world origin and the camera along the three coordinates and the values match approximately. A plain distance measure from the world origin to the camera was measured almost equal to 75 centimeters which is approximately equal to the norm of the translation vector (76 centimeters). The experiments using total 60 points give a very good estimates of the camera parameters. 4.3 Image Coordinates Reconstruction To reconfirm the validity of the estimated parameters, we identify 4 new test points marked as light green dots in the following figure. 3

4 Figure 2: Checkerboard pattern on the wall corner: 4 new test points The coordinates of these points are measured in the world coordinate system, and the camera calibration matrix estimated in the previous sections is used to get the corresponding coordinates in the image frame. We also measure the true coordinate values of these points using MATLAB. These true measurements are also prone to error as they are done manually using the mouse click. Results of this experiment are tabulated below: World Coordinates (measured, in cms.) Image Coordinates (estimated) Image Coordinates (measured) Error norm ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Table 2: Test of the Calibration Parameters: Error between measured and estimated image coordinates The error norm is calculated by subtracting corresponding coordinates and find errors along X and Y axes. These errors are then squared and added, and then square root of the resultant is taken to get the error norm. We note that the reconstruction errors are not so big and can be justified given the amount of inherent errors in the measuring process itself. MATLAB Code %world coordinates in cms. %z coordinates wz(1:6) = 7*2.8; wz(31:36) = 7*2.8; wz(7:12) = 6*2.8; wz(37:42) = 6*2.8; wz(13:18) = 5*2.8; wz(43:48) = 5*2.8; wz(19:24) = 4*2.8; wz(49:54) = 4*2.8; 4

5 wz(25:30) = 3*2.8; wz(55:60) = 3*2.8; %x coordinates wx(1:60) = 0; wx(1:6:30) = *2.8; wx(2:6:30) = *2.8; wx(3:6:30) = *2.8; wx(4:6:30) = *2.8; wx(5:6:30) = *2.8; wx(6:6:30) = *2.8; %y coordinates wy(1:60) = 0; wy(31:6:60) = *2.8; wy(32:6:60) = *2.8; wy(33:6:60) = *2.8; wy(34:6:60) = *2.8; wy(35:6:60) = *2.8; wy(36:6:60) = *2.8; %%image coordinates ix = [ ] * 1000; iy = [ ] * 1000; n=60; %number of points P(1:2*n,1:12) = 0; j=1; %construct matrix P for i=1:2:120 P(i,1) = wx(j); P(i+1,5) = wx(j); P(i,2) = wy(j); P(i+1,6) = wy(j); P(i,3) = wz(j); P(i+1,7) = wz(j); P(i,4) = 1; P(i+1,8) = 1; P(i,9:12) = P(i,1:4)*-1*ix(j); P(i+1,9:12) = P(i,1:4)*-1*iy(j); j = j+1; end %Perform SVD of P [U S V] = svd(p); [min_val, min_index] = min(diag(s(1:12,1:12))); %m is given by right singular vector of min. singular value m = V(1:12, min_index); %normalize M to make the norm of third rotation vecto unity norm_31 = norm(m(9:11)); m_canonical = m / norm_31; M(1,1:4) = m_canonical(1:4); M(2,1:4) = m_canonical(5:8); M(3,1:4) = m_canonical(9:12); 5

6 a1 = M(1,1:3); a2 = M(2,1:3); a3 = M(3,1:3); b = M(1:3, 4); r3 = a3; %compute the intrinsic parameters u_0 = a1*a3 ; v_0 = a2*a3 ; cross_a1a3 = cross(a1,a3); cross_a2a3 = cross(a2,a3); theta = acos (-1*cross_a1a3*cross_a2a3 /(norm(cross_a1a3)*norm(cross_a2a3))); alpha = norm(cross_a1a3) * sin(theta); beta = norm(cross_a2a3) * sin(theta); %compute the extrinsic parameters r1 = cross_a2a3/norm(cross_a2a3); r2 = cross(r3, r1); K = [alpha -1*alpha*cot(theta) u_0 0 beta/sin(theta) v_ ]; t = inv(k) * b; %translation vector %rotation matrix R(1,1:3) = r1; R(2,1:3) = r2; R(3,1:3) = r3; %%Test of calibration estimates: reconstruction error of 4 new points %image coordinates (measured) ix_test_measured = 1.0e+003 *[ ]; iy_test_measured = 1.0e+003 *[ ]; %world coordinates (measured) wx_test_measured = [0.9+5* * ]; wy_test_measured = [ * *2.8]; wz_test_measured = [8*2.8 8*2.8 2*2.8 2*2.8]; %reconstruct image coordinates and calculate estimation error for i=1:4 temp(1:4) = [wx_test_measured(i) wy_test_measured(i) wz_test_measured(i) 1]; image_reconstructed = M * temp ; image_recons_x(i) = image_reconstructed(1)/image_reconstructed(3); image_recons_y(i) = image_reconstructed(2)/image_reconstructed(3); error(i) = norm([image_recons_x(i)-ix_test_measured(i) image_recons_y(i)-iy_test_measured(i)]); end %print all the values %intrinsic theta u_0 v_0 alpha beta %extrinsic R t %reconstruction error error 6

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

Perspective Projection [2 pts]

Perspective Projection [2 pts] Instructions: CSE252a Computer Vision Assignment 1 Instructor: Ben Ochoa Due: Thursday, October 23, 11:59 PM Submit your assignment electronically by email to iskwak+252a@cs.ucsd.edu with the subject line

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

CSCI 5980: Assignment #3 Homography

CSCI 5980: Assignment #3 Homography Submission Assignment due: Feb 23 Individual assignment. Write-up submission format: a single PDF up to 3 pages (more than 3 page assignment will be automatically returned.). Code and data. Submission

More information

Multiple View Reconstruction of Calibrated Images using Singular Value Decomposition

Multiple View Reconstruction of Calibrated Images using Singular Value Decomposition Multiple View Reconstruction of Calibrated Images using Singular Value Decomposition Ayan Chaudhury, Abhishek Gupta, Sumita Manna, Subhadeep Mukherjee, Amlan Chakrabarti Abstract Calibration in a multi

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne Hartley - Zisserman reading club Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration

Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration Performance Study of Quaternion and Matrix Based Orientation for Camera Calibration Rigoberto Juarez-Salazar 1, Carlos Robledo-Sánchez 2, Fermín Guerrero-Sánchez 2, J. Jacobo Oliveros-Oliveros 2, C. Meneses-Fabian

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman Assignment #1. (Due date: 10/23/2012) x P. = z

Computer Vision I Name : CSE 252A, Fall 2012 Student ID : David Kriegman   Assignment #1. (Due date: 10/23/2012) x P. = z Computer Vision I Name : CSE 252A, Fall 202 Student ID : David Kriegman E-Mail : Assignment (Due date: 0/23/202). Perspective Projection [2pts] Consider a perspective projection where a point = z y x P

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

Computer Vision. Geometric Camera Calibration. Samer M Abdallah, PhD

Computer Vision. Geometric Camera Calibration. Samer M Abdallah, PhD Computer Vision Samer M Abdallah, PhD Faculty of Engineering and Architecture American University of Beirut Beirut, Lebanon Geometric Camera Calibration September 2, 2004 1 Computer Vision Geometric Camera

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

Short on camera geometry and camera calibration

Short on camera geometry and camera calibration Short on camera geometry and camera calibration Maria Magnusson, maria.magnusson@liu.se Computer Vision Laboratory, Department of Electrical Engineering, Linköping University, Sweden Report No: LiTH-ISY-R-3070

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Motivation Taken from: http://img.gawkerassets.com/img/18w7i1umpzoa9jpg/original.jpg

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision 0

CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision 0 CSE152a Computer Vision Assignment 1 WI14 Instructor: Prof. David Kriegman. Revision Instructions: This assignment should be solved, and written up in groups of 2. Work alone only if you can not find a

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches

Reminder: Lecture 20: The Eight-Point Algorithm. Essential/Fundamental Matrix. E/F Matrix Summary. Computing F. Computing F from Point Matches Reminder: Lecture 20: The Eight-Point Algorithm F = -0.00310695-0.0025646 2.96584-0.028094-0.00771621 56.3813 13.1905-29.2007-9999.79 Readings T&V 7.3 and 7.4 Essential/Fundamental Matrix E/F Matrix Summary

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

NAME VCamera camera model representation

NAME VCamera camera model representation NAME VCamera camera model representation SYNOPSIS #include void VRegisterCameraType (void); extern VRepnKind VCameraRepn; VCamera camera; ld... -lvcam -lvista -lm -lgcc... DESCRIPTION

More information

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms Chapter IV Spaces and Transforms Scaling 2D scaling with the scaling factors, s x and s y, which are independent. Examples When a polygon is scaled, all of its vertices are processed by the same scaling

More information

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2

Module 4F12: Computer Vision and Robotics Solutions to Examples Paper 2 Engineering Tripos Part IIB FOURTH YEAR Module 4F2: Computer Vision and Robotics Solutions to Examples Paper 2. Perspective projection and vanishing points (a) Consider a line in 3D space, defined in camera-centered

More information

Pin Hole Cameras & Warp Functions

Pin Hole Cameras & Warp Functions Pin Hole Cameras & Warp Functions Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Pinhole Camera. Homogenous Coordinates. Planar Warp Functions. Example of SLAM for AR Taken from:

More information

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM CIS 580, Machine Perception, Spring 2015 Homework 1 Due: 2015.02.09. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Camera Model, Focal Length and

More information

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system The Lecture Contains: Back-projection of a 2D point to 3D 6.3 Coordinate system conversion file:///d /...(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2032/32_1.htm[12/31/2015

More information

3D Reconstruction with two Calibrated Cameras

3D Reconstruction with two Calibrated Cameras 3D Reconstruction with two Calibrated Cameras Carlo Tomasi The standard reference frame for a camera C is a right-handed Cartesian frame with its origin at the center of projection of C, its positive Z

More information

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM CIS 580, Machine Perception, Spring 2016 Homework 2 Due: 2015.02.24. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Recover camera orientation By observing

More information

Camera calibration. Robotic vision. Ville Kyrki

Camera calibration. Robotic vision. Ville Kyrki Camera calibration Robotic vision 19.1.2017 Where are we? Images, imaging Image enhancement Feature extraction and matching Image-based tracking Camera models and calibration Pose estimation Motion analysis

More information

Calibrating an Overhead Video Camera

Calibrating an Overhead Video Camera Calibrating an Overhead Video Camera Raul Rojas Freie Universität Berlin, Takustraße 9, 495 Berlin, Germany http://www.fu-fighters.de Abstract. In this section we discuss how to calibrate an overhead video

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka CS223b Midterm Exam, Computer Vision Monday February 25th, Winter 2008, Prof. Jana Kosecka Your name email This exam is 8 pages long including cover page. Make sure your exam is not missing any pages.

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

CS231A Course Notes 4: Stereo Systems and Structure from Motion

CS231A Course Notes 4: Stereo Systems and Structure from Motion CS231A Course Notes 4: Stereo Systems and Structure from Motion Kenji Hata and Silvio Savarese 1 Introduction In the previous notes, we covered how adding additional viewpoints of a scene can greatly enhance

More information

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Transformation Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Project

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Early Fundamentals of Coordinate Changes and Rotation Matrices for 3D Computer Vision

Early Fundamentals of Coordinate Changes and Rotation Matrices for 3D Computer Vision Early Fundamentals of Coordinate Changes and Rotation Matrices for 3D Computer Vision Ricardo Fabbri Benjamin B. Kimia Brown University, Division of Engineering, Providence RI 02912, USA Based the first

More information

AH Matrices.notebook November 28, 2016

AH Matrices.notebook November 28, 2016 Matrices Numbers are put into arrays to help with multiplication, division etc. A Matrix (matrices pl.) is a rectangular array of numbers arranged in rows and columns. Matrices If there are m rows and

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe : Martin Stiaszny and Dana Qu LECTURE 0 Camera Calibration 0.. Introduction Just like the mythical frictionless plane, in real life we will

More information

Image Formation I Chapter 2 (R. Szelisky)

Image Formation I Chapter 2 (R. Szelisky) Image Formation I Chapter 2 (R. Selisky) Guido Gerig CS 632 Spring 22 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified from

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Midterm Exam Solutions

Midterm Exam Solutions Midterm Exam Solutions Computer Vision (J. Košecká) October 27, 2009 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow

More information

Camera models and calibration

Camera models and calibration Camera models and calibration Read tutorial chapter 2 and 3. http://www.cs.unc.edu/~marc/tutorial/ Szeliski s book pp.29-73 Schedule (tentative) 2 # date topic Sep.8 Introduction and geometry 2 Sep.25

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

Geometric Computing. in Image Analysis and Visualization. Lecture Notes March 2007

Geometric Computing. in Image Analysis and Visualization. Lecture Notes March 2007 . Geometric Computing in Image Analysis and Visualization Lecture Notes March 2007 Stefan Carlsson Numerical Analysis and Computing Science KTH, Stockholm, Sweden stefanc@bion.kth.se Contents Cameras and

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 05/11/2015 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration 1 Lab 1 Camera Calibration Objective In this experiment, students will use stereo cameras, an image acquisition program and camera calibration algorithms to achieve the following goals: 1. Develop a procedure

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing point Mapping from 3D to 2D Point & Line Goal: Point Homogeneous coordinates represent coordinates in 2 dimensions

More information

Assignment 2 : Projection and Homography

Assignment 2 : Projection and Homography TECHNISCHE UNIVERSITÄT DRESDEN EINFÜHRUNGSPRAKTIKUM COMPUTER VISION Assignment 2 : Projection and Homography Hassan Abu Alhaija November 7,204 INTRODUCTION In this exercise session we will get a hands-on

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 2 is due today, 11:59 PM Homework 3 will be assigned today Reading: Chapter 7: Stereopsis CSE 152 Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where relative

More information

Take Home Exam # 2 Machine Vision

Take Home Exam # 2 Machine Vision 1 Take Home Exam # 2 Machine Vision Date: 04/26/2018 Due : 05/03/2018 Work with one awesome/breathtaking/amazing partner. The name of the partner should be clearly stated at the beginning of your report.

More information

Computer Vision I. Announcement. Stereo Vision Outline. Stereo II. CSE252A Lecture 15

Computer Vision I. Announcement. Stereo Vision Outline. Stereo II. CSE252A Lecture 15 Announcement Stereo II CSE252A Lecture 15 HW3 assigned No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in WLH Room 2112 Mars Exploratory Rovers: Spirit and Opportunity Stereo Vision Outline

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 215 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure 4.1 Radian and Degree Measure Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus 4.1 Radian and Degree Measure Mr. Niedert 1 / 27 4.1 Radian and Degree Measure 1 Angles Accelerated Pre-Calculus

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures)

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures) COS429: COMPUTER VISON CMERS ND PROJECTIONS (2 lectures) Pinhole cameras Camera with lenses Sensing nalytical Euclidean geometry The intrinsic parameters of a camera The extrinsic parameters of a camera

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 01/11/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE45 Computer Graphics Lecture 8: Computer Projection CSE45 Lecture 8: Computer Projection 1 Review In the last lecture We set up a Virtual Camera Position Orientation Clipping planes Viewing angles Orthographic/Perspective

More information

3D Motion Analysis Based on 2D Point Displacements

3D Motion Analysis Based on 2D Point Displacements 3D Motion Analysis Based on 2D Point Displacements 2D displacements of points observed on an unknown moving rigid body may provide information about - the 3D structure of the points - the 3D motion parameters

More information

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt ECE 47: Homework 5 Due Tuesday, October 7 in class @:3pm Seth Hutchinson Luke A Wendt ECE 47 : Homework 5 Consider a camera with focal length λ = Suppose the optical axis of the camera is aligned with

More information

Camera Registration in a 3D City Model. Min Ding CS294-6 Final Presentation Dec 13, 2006

Camera Registration in a 3D City Model. Min Ding CS294-6 Final Presentation Dec 13, 2006 Camera Registration in a 3D City Model Min Ding CS294-6 Final Presentation Dec 13, 2006 Goal: Reconstruct 3D city model usable for virtual walk- and fly-throughs Virtual reality Urban planning Simulation

More information

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective

COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective COMP30019 Graphics and Interaction Three-dimensional transformation geometry and perspective Department of Computing and Information Systems The Lecture outline Introduction Rotation about artibrary axis

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

EECS 442: Final Project

EECS 442: Final Project EECS 442: Final Project Structure From Motion Kevin Choi Robotics Ismail El Houcheimi Robotics Yih-Jye Jeffrey Hsu Robotics Abstract In this paper, we summarize the method, and results of our projective

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Self-Calibration of a Camera Equipped SCORBOT ER-4u Robot

Self-Calibration of a Camera Equipped SCORBOT ER-4u Robot Self-Calibration of a Camera Equipped SCORBOT ER-4u Robot Gossaye Mekonnen Alemu and Sanjeev Kumar Department of Mathematics IIT Roorkee Roorkee-247 667, India gossayemekonnen@gmail.com malikfma@iitr.ac.in

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Epipolar Geometry and the Essential Matrix

Epipolar Geometry and the Essential Matrix Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and

More information

Perspective Projection in Homogeneous Coordinates

Perspective Projection in Homogeneous Coordinates Perspective Projection in Homogeneous Coordinates Carlo Tomasi If standard Cartesian coordinates are used, a rigid transformation takes the form X = R(X t) and the equations of perspective projection are

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. Objectives Describe angles. Use radian measure. Use degree

More information

Perspective Projection Describes Image Formation Berthold K.P. Horn

Perspective Projection Describes Image Formation Berthold K.P. Horn Perspective Projection Describes Image Formation Berthold K.P. Horn Wheel Alignment: Camber, Caster, Toe-In, SAI, Camber: angle between axle and horizontal plane. Toe: angle between projection of axle

More information

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T.

The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that A = UΣV T. Section 7.4 Notes (The SVD) The Singular Value Decomposition: Let A be any m n matrix. orthogonal matrices U, V and a diagonal matrix Σ such that Then there are A = UΣV T Specifically: The ordering of

More information