Lecture 10: Image Descriptors and Representation

Size: px
Start display at page:

Download "Lecture 10: Image Descriptors and Representation"

Transcription

1 I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) Thanks to G&W website, Dr. Shahram Ebadollahi for slide materials 1

2 Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that are more suitable than the image itself. Benefits: Easier to understand Require fewer memory, faster to be processed More ready to be used 2

3 Outline Image Description Shape Descriptors Region Descriptors Texture & Texture Descriptors

4 Shape Description Shape Represented by its Boundary Shape Numbers, Fourier Descriptors, Statistical Moments Shape Represented by its Interior Topological Descriptors Moment Invariants 4

5 Boundary Representation: Chain Code Why boundary? The boundary is a good representation of an object shape and also requires a few memory. Chain codes: represent an object boundary by a connected sequence of straight line segments of specified length and direction. 5

6 Boundary Representation: Chain Code Object boundary (resampling) Boundary vertices 4-directional chain code 8-directional chain code 6

7 The First Difference of a Chain Codes Problem of a chain code: a chain code sequence depends on a starting point. Solution: treat a chain code as a circular sequence and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude. The first difference of a chain code: counting the number of direction change (in counterclockwise) between 2 adjacent elements of the code. 7

8 The First Difference of a Chain Codes: Example 2 Example: Example: - a chain code: The first difference = Treating a chain code as a circular sequence, we get the first difference = Chain code : The first difference (counterclockwise) The first difference is rotational invariant. 8

9 Chain Code: example (First difference of chain code) 9

10 Boundary Descriptors 1. Simple boundary descriptors: we can use - Length of the boundary - The size of smallest circle or box that can totally enclosing the object 2. Shape number 3. Fourier descriptor 4. Statistical moments

11 Shape Numbers Shape number of the boundary definition: the first difference of smallest magnitude The order n of the shape number: the number of digits in the sequence

12 Shape Numbers Shape numbers of order 4, 6 and 8

13 Example: Shape Numbers 2. Find the smallest rectangle that fits the shape 1. Original boundary Chain code: First difference: Create grid 4. Find the nearest Grid. Shape No

14 Boundary descriptor Fourier Fourier descriptor: view a coordinate (x,y) as a complex number (x = real part and y = imaginary part) then apply the Fourier transform to a sequence of boundary points. Let s(k) be a coordinate s( k) x( k) jy( k) of a boundary point k : Fourier descriptor : a( u) 1 K K 1 k 0 s( k) e 2 uk / K Reconstruction formula Boundary points s( k) 1 K K 1 k 0 a( u) e 2 uk / K

15 Fourier Descriptor Properties

16 Boundary Reconstruction using Fourier Descriptors 2868 descriptors Only 8 descriptors 16

17 Polygon Approximation Represent an object boundary by a polygon Minimum perimeter polygon consists of line segments that minimize distances between boundary pixels. 17

18 Polygon Approximation: Splitting Techniques 1. Find the line joining 0. Object boundary two extreme points 2. Find the farthest points from the line 3. Draw a polygon 18

19 Boundary Representation: Signatures Represent 2-D boundary shape using 1-D signature signal 19

20 Boundary Representation: Signatures 20

21 Boundary Segments Concept: Partitioning an object boundary by using vertices of a convex hull. Partitioned boundary Convex hull (gray color) Object boundary 21

22 Skeletons Obtained from thinning or skeletonizing processes 22

23 Region Descriptors - Simple 23

24 Region Descriptors - Example White pixels represent light of the cities % of white pixels Region no. compared to the total white pixels % % 3 4.9% % Infrared image of America at night 24

25 Topological Region Descriptors Topological properties: Properties of image preserved under rubber-sheet distortions 25

26 Topological Descriptors: example Original image: Infrared image Of Washington D.C. area The largest connected area (8479 Pixels) (Hudson river) After intensity Thresholding (1591 connected components with 39 holes) Euler no. = 1552 After thinning 26

27 Boundary Description: Statistical Moments Definition: the n th moment where ( r ) n m K 1 i 0 ( r K 1 i 0 i m ) r g ( i r i ) n g ( r i ) Example of moment: The first moment = mean The second moment = variance Boundary segment 1D graph 1. Convert a boundary segment into 1D graph 2. View a 1D graph as a PDF function 3. Compute the n th order moment of the graph 27

28 Geometric Moment Invariants 28

29 Central Moments 29

30 Moment Invariants (translation, scale, mirroring, rotation) 30

31 Moment Invariants (translation, scale, mirroring, rotation) 31

32 Affine Transform & Affine Moment Invariants 32

33 Affine Transform & Affine Moment Invariants 33

34 Elliptical Shape Descriptors 34

35 Texture - Definition Purpose: to describe pattern of the region. 35

36 Texture Quantification Methods 36

37 Statistical Texture Analysis 1st order statistics 37

38 Texture Examples: optical microscope images: B C A Superconductor (smooth texture) Cholesterol (coarse texture) Microprocessor (regular texture) 38

39 Texture Example: The 2 nd moment = variance measure smoothness The 3 rd moment measure skewness The 4 th moment measure uniformity (flatness) A B C 39

40 Statistical Texture Analysis: 1st order statistics 40

41 Statistical Texture Analysis: 2nd order statistics: Co-occurrence 41

42 Statistical Texture Analysis: 2nd order statistics: Co-occurrence 42

43 Statistical Texture Analysis: 2nd order statistics: Co-occurrence 43

44 Statistical Texture Analysis (Example) 44

45 Statistical Texture Analysis (Example) 45

46 Statistical Texture Analysis 2nd order statistics: Difference Statistics 46

47 Statistical Texture Analysis 2nd order statistics: Autocorrelation 47

48 48

49 49

50 Fourier Approach for Texture Descriptor Concept: convert 2D spectrum into 1D graphs Original image FFT2D +FFTSHIFT Fourier coefficient image Divide into areas by angles Divide into areas by radius Sum all pixels in each area S( ) R 0 r 1 S r ( ) Sum all pixels in each area S( r) S ( r) 0 50

51 Fourier Approach for Texture Descriptor Original image 2D Spectrum (Fourier Tr.) S(r) S( ) Another image Another S( ) 51

52 Which descriptors? Image Feature Evaluation 52

53 Announcement Reading G&W Chapter 11 Next lecture: Object Recognition (Chapter 12) 53

Digital Image Processing Chapter 11: Image Description and Representation

Digital Image Processing Chapter 11: Image Description and Representation Digital Image Processing Chapter 11: Image Description and Representation Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chapter 11 Representation & Description The results of segmentation is a set of regions. Regions have then to be represented and described. Two main ways of representing a region: - external characteristics

More information

Chapter 11 Representation & Description

Chapter 11 Representation & Description Chain Codes Chain codes are used to represent a boundary by a connected sequence of straight-line segments of specified length and direction. The direction of each segment is coded by using a numbering

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

EECS490: Digital Image Processing. Lecture #23

EECS490: Digital Image Processing. Lecture #23 Lecture #23 Motion segmentation & motion tracking Boundary tracking Chain codes Minimum perimeter polygons Signatures Motion Segmentation P k Accumulative Difference Image Positive ADI Negative ADI (ADI)

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

Ulrik Söderström 21 Feb Representation and description

Ulrik Söderström 21 Feb Representation and description Ulrik Söderström ulrik.soderstrom@tfe.umu.se 2 Feb 207 Representation and description Representation and description Representation involves making object definitions more suitable for computer interpretations

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Feature description. IE PŁ M. Strzelecki, P. Strumiłło

Feature description. IE PŁ M. Strzelecki, P. Strumiłło Feature description After an image has been segmented the detected region needs to be described (represented) in a form more suitable for further processing. Representation of an image region can be carried

More information

Image representation. 1. Introduction

Image representation. 1. Introduction Image representation Introduction Representation schemes Chain codes Polygonal approximations The skeleton of a region Boundary descriptors Some simple descriptors Shape numbers Fourier descriptors Moments

More information

- Low-level image processing Image enhancement, restoration, transformation

- Low-level image processing Image enhancement, restoration, transformation () Representation and Description - Low-level image processing enhancement, restoration, transformation Enhancement Enhanced Restoration/ Transformation Restored/ Transformed - Mid-level image processing

More information

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B 8. Boundary Descriptor 8.. Some Simple Descriptors length of contour : simplest descriptor - chain-coded curve 9 length of contour no. of horiontal and vertical components ( no. of diagonal components

More information

Machine vision. Summary # 6: Shape descriptors

Machine vision. Summary # 6: Shape descriptors Machine vision Summary # : Shape descriptors SHAPE DESCRIPTORS Objects in an image are a collection of pixels. In order to describe an object or distinguish between objects, we need to understand the properties

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Representation and Description 2 Representation and

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

Lecture 7: Morphological Image Processing

Lecture 7: Morphological Image Processing I2200: Digital Image processing Lecture 7: Morphological Image Processing Prof. YingLi Tian Oct. 25, 2017 Department of Electrical Engineering The City College of New York The City University of New York

More information

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 14 Shape ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang

Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang Lecture 6: Multimedia Information Retrieval Dr. Jian Zhang NICTA & CSE UNSW COMP9314 Advanced Database S1 2007 jzhang@cse.unsw.edu.au Reference Papers and Resources Papers: Colour spaces-perceptual, historical

More information

ECEN 447 Digital Image Processing

ECEN 447 Digital Image Processing ECEN 447 Digital Image Processing Lecture 8: Segmentation and Description Ulisses Braga-Neto ECE Department Texas A&M University Image Segmentation and Description Image segmentation and description are

More information

Basic Algorithms for Digital Image Analysis: a course

Basic Algorithms for Digital Image Analysis: a course Institute of Informatics Eötvös Loránd University Budapest, Hungary Basic Algorithms for Digital Image Analysis: a course Dmitrij Csetverikov with help of Attila Lerch, Judit Verestóy, Zoltán Megyesi,

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

Anne Solberg

Anne Solberg INF 4300 Digital Image Analysis OBJECT REPRESENTATION Anne Solberg 26.09.2012 26.09.2011 INF 4300 1 Today G & W Ch. 11.1 1 Representation Curriculum includes lecture notes. We cover the following: 11.1.1

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 18 Feature extraction and representation What will we learn? What is feature extraction and why is it a critical step in most computer vision and

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

EECS490: Digital Image Processing. Lecture #17

EECS490: Digital Image Processing. Lecture #17 Lecture #17 Morphology & set operations on images Structuring elements Erosion and dilation Opening and closing Morphological image processing, boundary extraction, region filling Connectivity: convex

More information

Digital Image Processing Lecture 7. Segmentation and labeling of objects. Methods for segmentation. Labeling, 2 different algorithms

Digital Image Processing Lecture 7. Segmentation and labeling of objects. Methods for segmentation. Labeling, 2 different algorithms Digital Image Processing Lecture 7 p. Segmentation and labeling of objects p. Segmentation and labeling Region growing Region splitting and merging Labeling Watersheds MSER (extra, optional) More morphological

More information

FROM PIXELS TO REGIONS

FROM PIXELS TO REGIONS Digital Image Analysis OBJECT REPRESENTATION FROM PIXELS TO REGIONS Fritz Albregtsen Today G & W Ch. 11.1 1 Representation Curriculum includes lecture notes. We cover the following: 11.1.1 Boundary following

More information

Multimedia Information Retrieval

Multimedia Information Retrieval Multimedia Information Retrieval Prof Stefan Rüger Multimedia and Information Systems Knowledge Media Institute The Open University http://kmi.open.ac.uk/mmis Why content-based? Actually, what is content-based

More information

Morphological Image Processing

Morphological Image Processing Digital Image Processing Lecture # 10 Morphological Image Processing Autumn 2012 Agenda Extraction of Connected Component Convex Hull Thinning Thickening Skeletonization Pruning Gray-scale Morphology Digital

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

SUMMARY PART I. What is texture? Uses for texture analysis. Computing texture images. Using variance estimates. INF 4300 Digital Image Analysis

SUMMARY PART I. What is texture? Uses for texture analysis. Computing texture images. Using variance estimates. INF 4300 Digital Image Analysis INF 4 Digital Image Analysis SUMMARY PART I Fritz Albregtsen 4.. F 4.. INF 4 What is texture? Intuitively obvious, but no precise definition exists fine, coarse, grained, smooth etc Texture consists of

More information

IN5520 Digital Image Analysis. Two old exams. Practical information for any written exam Exam 4300/9305, Fritz Albregtsen

IN5520 Digital Image Analysis. Two old exams. Practical information for any written exam Exam 4300/9305, Fritz Albregtsen IN5520 Digital Image Analysis Two old exams Practical information for any written exam Exam 4300/9305, 2016 Exam 4300/9305, 2017 Fritz Albregtsen 27.11.2018 F13 27.11.18 IN 5520 1 Practical information

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Computer Vision I - Basics of Image Processing Part 2

Computer Vision I - Basics of Image Processing Part 2 Computer Vision I - Basics of Image Processing Part 2 Carsten Rother 07/11/2014 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

OBJECT DESCRIPTION - FEATURE EXTRACTION

OBJECT DESCRIPTION - FEATURE EXTRACTION INF 4300 Digital Image Analysis OBJECT DESCRIPTION - FEATURE EXTRACTION Fritz Albregtsen 1.10.011 F06 1.10.011 INF 4300 1 Today We go through G&W section 11. Boundary Descriptors G&W section 11.3 Regional

More information

Computer Graphics and Image Processing

Computer Graphics and Image Processing Computer Graphics and Image Processing Lecture B2 Point Processing Joseph Niepce, 1826. The view from my window 1 Context How much input is used to compute an output value? Point Transforms Region Transforms

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Image retrieval based on region shape similarity

Image retrieval based on region shape similarity Image retrieval based on region shape similarity Cheng Chang Liu Wenyin Hongjiang Zhang Microsoft Research China, 49 Zhichun Road, Beijing 8, China {wyliu, hjzhang}@microsoft.com ABSTRACT This paper presents

More information

Digital Image Processing. Lecture # 15 Image Segmentation & Texture

Digital Image Processing. Lecture # 15 Image Segmentation & Texture Digital Image Processing Lecture # 15 Image Segmentation & Texture 1 Image Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) Applications:

More information

Geometric Transformations: Translation:

Geometric Transformations: Translation: Geometric Transformations: Translation: slide Reflection: Rotation: Dialation: mirror turn enlarge or reduce Notation: Pre-Image: original figure Image: after transformation. Use prime notation C A B C

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam: INF 4300 / INF 9305 Digital image analysis Date: Thursday December 21, 2017 Exam hours: 09.00-13.00 (4 hours) Number of pages: 8 pages

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

Lecture 5 2D Transformation

Lecture 5 2D Transformation Lecture 5 2D Transformation What is a transformation? In computer graphics an object can be transformed according to position, orientation and size. Exactly what it says - an operation that transforms

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Morphology Identification, analysis, and description of the structure of the smallest unit of words Theory and technique for the analysis and processing of geometric structures

More information

Review for the Final

Review for the Final Review for the Final CS 635 Review (Topics Covered) Image Compression Lossless Coding Compression Huffman Interpixel RLE Lossy Quantization Discrete Cosine Transform JPEG CS 635 Review (Topics Covered)

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Binary image processing In binary images, we conventionally take background as black (0) and foreground objects as white (1 or 255) Morphology Figure 4.1 objects on a conveyor

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

CS534 Introduction to Computer Vision Binary Image Analysis. Ahmed Elgammal Dept. of Computer Science Rutgers University

CS534 Introduction to Computer Vision Binary Image Analysis. Ahmed Elgammal Dept. of Computer Science Rutgers University CS534 Introduction to Computer Vision Binary Image Analysis Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding Digital

More information

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan Matching and Recognition in 3D Based on slides by Tom Funkhouser and Misha Kazhdan From 2D to 3D: Some Things Easier No occlusion (but sometimes missing data instead) Segmenting objects often simpler From

More information

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5

Binary Image Processing. Introduction to Computer Vision CSE 152 Lecture 5 Binary Image Processing CSE 152 Lecture 5 Announcements Homework 2 is due Apr 25, 11:59 PM Reading: Szeliski, Chapter 3 Image processing, Section 3.3 More neighborhood operators Binary System Summary 1.

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

OCCHIO USA WHITE STONE VA TEL(866)

OCCHIO USA WHITE STONE VA TEL(866) PARAMETERS : 79 Weight factors: 6 Parameter Other name Symbol Definition Formula Number Volume V The volume of the particle volume model. Equivalent Volume The volume of the sphere having the same projection

More information

COMP_4190 Artificial Intelligence Computer Vision. Computer Vision. Levels of Abstraction. Digital Images

COMP_4190 Artificial Intelligence Computer Vision. Computer Vision. Levels of Abstraction. Digital Images COMP_49 Artificial Intelligence Computer Vision Jacky Baltes Department of Computer Science University of Manitoba Winnipeg, Manitoba Canada, RT N jacky@cs.umanitoba.ca http://www.cs.umanitoba.ca/~jacky

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

SUMMARY PART I. Variance, 2, is directly a measure of roughness. A bounded measure of smoothness is

SUMMARY PART I. Variance, 2, is directly a measure of roughness. A bounded measure of smoothness is Digital Image Analsis SUMMARY PART I Fritz Albregtsen 4..6 Teture description of regions Remember: we estimate local properties (features) to be able to isolate regions which are similar in an image (segmentation),

More information

SI-100 Digital Microscope. User Manual

SI-100 Digital Microscope. User Manual SI-100 Digital Microscope User Manual Read this manual before use Keep for future reference Content 1 Introduction... 3 1.1 About The SI-100... 3 1.2 Advantage of SI-100... 3 1.3 Product Specification...

More information

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions EE210: Switching Systems Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions Prof. YingLi Tian Feb. 5/7, 2019 Department of Electrical Engineering The City College of New

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++

Dietrich Paulus Joachim Hornegger. Pattern Recognition of Images and Speech in C++ Dietrich Paulus Joachim Hornegger Pattern Recognition of Images and Speech in C++ To Dorothea, Belinda, and Dominik In the text we use the following names which are protected, trademarks owned by a company

More information

Requirements for region detection

Requirements for region detection Region detectors Requirements for region detection For region detection invariance transformations that should be considered are illumination changes, translation, rotation, scale and full affine transform

More information

Math 7, Unit 8: Geometric Figures Notes

Math 7, Unit 8: Geometric Figures Notes Math 7, Unit 8: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess

More information

6. Applications - Text recognition in videos - Semantic video analysis

6. Applications - Text recognition in videos - Semantic video analysis 6. Applications - Text recognition in videos - Semantic video analysis Stephan Kopf 1 Motivation Goal: Segmentation and classification of characters Only few significant features are visible in these simple

More information

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework assignment 5 due tomorrow, Nov

More information

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

11. Gray-Scale Morphology. Computer Engineering, i Sejong University. Dongil Han

11. Gray-Scale Morphology. Computer Engineering, i Sejong University. Dongil Han Computer Vision 11. Gray-Scale Morphology Computer Engineering, i Sejong University i Dongil Han Introduction Methematical morphology represents image objects as sets in a Euclidean space by Serra [1982],

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

Analytical and Computer Cartography Winter Lecture 9: Geometric Map Transformations

Analytical and Computer Cartography Winter Lecture 9: Geometric Map Transformations Analytical and Computer Cartography Winter 2017 Lecture 9: Geometric Map Transformations Cartographic Transformations Attribute Data (e.g. classification) Locational properties (e.g. projection) Graphics

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Problem definition Image acquisition Image segmentation Connected component analysis. Machine vision systems - 1

Problem definition Image acquisition Image segmentation Connected component analysis. Machine vision systems - 1 Machine vision systems Problem definition Image acquisition Image segmentation Connected component analysis Machine vision systems - 1 Problem definition Design a vision system to see a flat world Page

More information

Mathematical Morphology and Distance Transforms. Robin Strand

Mathematical Morphology and Distance Transforms. Robin Strand Mathematical Morphology and Distance Transforms Robin Strand robin.strand@it.uu.se Morphology Form and structure Mathematical framework used for: Pre-processing Noise filtering, shape simplification,...

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Image Enhancement: To improve the quality of images

Image Enhancement: To improve the quality of images Image Enhancement: To improve the quality of images Examples: Noise reduction (to improve SNR or subjective quality) Change contrast, brightness, color etc. Image smoothing Image sharpening Modify image

More information

Introduction. Computer Vision & Digital Image Processing. Preview. Basic Concepts from Set Theory

Introduction. Computer Vision & Digital Image Processing. Preview. Basic Concepts from Set Theory Introduction Computer Vision & Digital Image Processing Morphological Image Processing I Morphology a branch of biology concerned with the form and structure of plants and animals Mathematical morphology

More information

A taxonomy of boundary descriptions

A taxonomy of boundary descriptions A taxonomy of boundary descriptions (1) Model the best fit of a simple mathematical object Conics, conic splines, log-spirals, and other geometric objects Polynomials Circular functions (2) Redescribe

More information

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova CPSC 695 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova Biometric goals Verify users Identify users Synthesis - recently Biometric identifiers Courtesy of Bromba GmbH Classification of identifiers

More information

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This

CURVES OF CONSTANT WIDTH AND THEIR SHADOWS. Have you ever wondered why a manhole cover is in the shape of a circle? This CURVES OF CONSTANT WIDTH AND THEIR SHADOWS LUCIE PACIOTTI Abstract. In this paper we will investigate curves of constant width and the shadows that they cast. We will compute shadow functions for the circle,

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls 1/60 Geometric Algorithms Lecture 1: Introduction Convex Hulls Geometric algorithms scope 2/60 Geometry algorithms (practice): Study of geometric problems that arise in various applications and how algorithms

More information

Math 7, Unit 08: Geometric Figures Notes

Math 7, Unit 08: Geometric Figures Notes Math 7, Unit 08: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My

More information

Raghuraman Gopalan Center for Automation Research University of Maryland, College Park

Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 2D Shape Matching (and Object Recognition) Raghuraman Gopalan Center for Automation Research University of Maryland, College Park 1 Outline What is a shape? Part 1: Matching/ Recognition Shape contexts

More information

Glossary of dictionary terms in the AP geometry units

Glossary of dictionary terms in the AP geometry units Glossary of dictionary terms in the AP geometry units affine linear equation: an equation in which both sides are sums of terms that are either a number times y or a number times x or just a number [SlL2-D5]

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

CSCI 4620/8626. Coordinate Reference Frames

CSCI 4620/8626. Coordinate Reference Frames CSCI 4620/8626 Computer Graphics Graphics Output Primitives Last update: 2014-02-03 Coordinate Reference Frames To describe a picture, the world-coordinate reference frame (2D or 3D) must be selected.

More information