4.2 Simplicial Homology Groups

Size: px
Start display at page:

Download "4.2 Simplicial Homology Groups"

Transcription

1 4.2. SIMPLICIAL HOMOLOGY GROUPS Simplicial Homology Groups Simplicial Complexes Let p 0, p 1,... p k be k + 1 points in R n, with k n. We identify points in R n with the vectors that point to them. Assume that they are independent, that is, do not lie in a (k 1)-dimensional hyperplane, or that the vectors v i j = p j p i are linearly independent. The k-simplex σ k = p 0, p 1,..., p k is the compact subset of R n defined by k k σ k = x Rn x = c i p i, with c i 0, c i = 1 i=0 For any j, 0 j k, a subset of j + 1 points defines a j-simplex called the j-face. A 0-simplex is a point, called a vertex. A 1-simplex is a line segment, called an edge. A 2-simplex is the interior of a triangle. The 3-simplex is a tetrahedron. A simplicial complex is a set K of finitely many simplexes such that: every face of every simplex of K belongs to K, the intersection of any two simplexes in K is either empty or is a common face. A subset K of R n which is the union of all simplexes in a complex K is called a polyhedron. A simplicial complex K and a homeomorphism F : K X to a topological space X is called a triangulation of X. A topological space X is called triangulable if there is a triangulation of X. i=0 topicsdiffgeom.tex; October 23, 2014; 10:32; p. 92

2 94 CHAPTER 4. HOMOLOGY THEORY An unoriented k-simplex p 0, p 1,..., p k can be oriented as follows. An oriented k-simplex (p 0, p 1,..., p k ) changes sign under a permutation of any two points. Let ϕ be a permutation of points {p 0, p 1,..., p k }. Then (p ϕ(0), p ϕ(1),..., p ϕ(k) ) = (sign ϕ)(p 0, p 1,..., p k ), where sign ϕ is the parity of the permutation ϕ Simplicial Homology Groups Let K be an n-dimensional simplicial complex. Let N p is the number of p-simplexes in K. A p-chains is a formal sum N p c = c i σ p,i where σ p,i are p-simplexes in K and c i Z. Remark. We can define chains over any Abelian group, for example, R or Z 2. This allows to define the Abelian group structure: addition, zero, opposite. The p-chain group C p (K) of K is a free Abelian group generated by the oriented k-simplexes of K, By definition C p (K) = 0 for p > n. N p C p (K) Z The boundary operator is a homomorphism defined as follows. p : C p (K) C p 1 (K) topicsdiffgeom.tex; October 23, 2014; 10:32; p. 93

3 4.2. SIMPLICIAL HOMOLOGY GROUPS 95 The boundary of an oriented p-simplex σ p = (p 0, p 1,..., p p ) is a (p 1)- chain defined by p σ p = p ( 1) i (p 0, p 1,..., ˆp i,..., p k ) i=0 where ˆp i is omitted. The boundary of a p-chain is defined by linearity. The chain complex is a sequence of free Abelian groups and homomorphisms 0 i C n (K) n C n 1 (K) n 1 1 C 0 (K) 0 0 where i : C n (K) is the inclusion map. A p-chain z such that is called a p-cycle. p z = 0 The p-cycles form a free Abelian subgroup of C p (K) called the p-cycle group Z p (K) = Ker p A p-chain b such that b = p+1 c for some (p + 1)-chain c, is called a p-boundary. The p-boundaries form a free Abelian subgroup of C p (K) called the p- boundary group B p (K) = Im p+1 Proposition. The boundary of a boundary vanishes, that is, p p+1 = 0 Corollary. Every boundary is a cycle, that is, B p (K) Z p (K) topicsdiffgeom.tex; October 23, 2014; 10:32; p. 94

4 96 CHAPTER 4. HOMOLOGY THEORY The p-homology group H p (K) is defined by It is not necessarily free Abelian. H p (K) = Z p (K)/B p (K) We say that two p-cycles are homologous if they differ by a boundary. Homology is an equivalence relation. The equivalence classes of the homology are called homology classes. The homology groups are the sets of homology classes. Theorem. Homology groups are topological invariants. In particular, The homology groups of different triangulations of the same topological space are isomorphic. The homology groups of any triangulations of homeomorphic topological spaces are isomorphic. Therefore, the homology groups of a triangulable topological space (which is not necessary a polyhedron) are defined to be the homology groups of some triangulation. Spheres. H 0 (S 1 ) = H 1 (S 1 ) = Z. H 0 (S 2 ) = H 2 (S 2 ) = Z, H 1 (S 2 ) = 0. Theorem. For any connected simplicial complex K H 0 (K) = Z. Möbius Strip. H 0 (K) = Z, H 1 (K) = Z, H 2 (K) = 0. Real Projective Space RP 2. H 0 (RP 2 ) = Z, H 1 (RP 2 ) = Z 2, H 2 (RP 2 ) = 0. topicsdiffgeom.tex; October 23, 2014; 10:32; p. 95

5 4.2. SIMPLICIAL HOMOLOGY GROUPS 97 The homology group over Z is not necessarily free Abelian group but may include the torsion. Torus T 2. H 0 (T 2 ) = H 2 (T 2 ) = Z, H 1 (T 2 ) = Z Z. Surface Σ g of genus g. H 0 (Σ g ) = H 2 (Σ g ) = Z, H 1 (Σ g ) = 2g Z. Klein Bottle K 2. H 0 (K 2 ) = Z, H 2 (K 2 ) = 0, H 1 (K 2 ) = Z Z 2. Theorem. The homology groups of a disconnected simplicial complex are equal to the direct sum of the homology groups of its connected components. Corollary. If a complex K has m connected components, then Corollary. For a complex K if and only if K is connected. H 0 (K) = m Z. H 0 (K) = Z A general homology group over Z has the form H p (K) = m Z r1 Z rk The number of generators of H p counts the number of (p + 1) dimensional holes in the polyhedron K. The torsion subgroup Z r1 Z rk measures the twisting in the polyhedron K. topicsdiffgeom.tex; October 23, 2014; 10:32; p. 96

6 98 CHAPTER 4. HOMOLOGY THEORY The homology groups over R or Z 2 do not have torsion. The homology groups H p (K, R) are finite-dimensional vector spaces. The dimension of the vector spaces H p (K, R) are called Betti numbers b p (K) = dim H p (K, R) The Betti numbers are equal to the ranks of the free Abelian parts of the homology groups over Z. The Euler characteristic of a simplicial complex K with N p p-simplexes is an integer defined by χ(k) = ( 1) p dim C p (K, R) = ( 1) p N p. Theorem. The Euler characteristic of a simplicial complex K is equal to χ(k) = ( 1) p dim H p (K, R) = ( 1) p b p (K). The Euler characteristic is a topological invariant. The Euler characteristic of a topological space does not depend on the triangulation, so, it can be defined for any triangulation. topicsdiffgeom.tex; October 23, 2014; 10:32; p. 97

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Homology of Simplicial Complexes

Homology of Simplicial Complexes Homology of Simplicial Complexes Math, David Perkinson Introduction. This is an introduction to the homology of simplicial complexes suitable for a first course in linear algebra. It uses little more than

More information

Lecture 5 CLASSIFICATION OF SURFACES

Lecture 5 CLASSIFICATION OF SURFACES Lecture 5 CLASSIFICATION OF SURFACES In this lecture, we present the topological classification of surfaces. This will be done by a combinatorial argument imitating Morse theory and will make use of the

More information

Problem 1: A connected graph which contains no cycles is called a tree. Prove that the following are equivalent:

Problem 1: A connected graph which contains no cycles is called a tree. Prove that the following are equivalent: Problem Set 1 Due on February 13th. Problem 1: A connected graph which contains no cycles is called a tree. Prove that the following are equivalent: G is a tree. G is minimally connected, that is G \ e

More information

HOMOLOGY. Equivalently,

HOMOLOGY. Equivalently, HOMOLOGY JOHN ROGNES 1. Homology 1.1. The Euler characteristic. The Euler characteristic of a compact triangulated surface X is defined to be the alternating sum χ(x) = V E + F where V, E and F are the

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

Basics of Combinatorial Topology

Basics of Combinatorial Topology Chapter 7 Basics of Combinatorial Topology 7.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union

More information

Algebra II: Review Exercises

Algebra II: Review Exercises : Review Exercises These notes reflect material from our text, A First Course in Abstract Algebra, Seventh Edition, by John B. Fraleigh, published by Addison-Wesley, 2003. Chapter 7. Advanced Group Theory

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P.

The orientability of small covers and coloring simple polytopes. Nishimura, Yasuzo; Nakayama, Hisashi. Osaka Journal of Mathematics. 42(1) P.243-P. Title Author(s) The orientability of small covers and coloring simple polytopes Nishimura, Yasuzo; Nakayama, Hisashi Citation Osaka Journal of Mathematics. 42(1) P.243-P.256 Issue Date 2005-03 Text Version

More information

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES HANEY MAXWELL Abstract. We introduce homology and finite topological spaces. From the basis of that introduction, persistent homology is applied to finite

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Geom/Top: Homework 1 (due Monday, 10/08/12)

Geom/Top: Homework 1 (due Monday, 10/08/12) Geom/Top: Homework (due Monday, 0/08/2). Read Farb notes. 2. Read Hatcher, Intro to Chapter 2 and Section 2.. 3. (Do not hand this in) Let φ : A B and ψ : B A be group homomorphisms. Suppose that φ ψ =

More information

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY

COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY COMBINATORIAL METHODS IN ALGEBRAIC TOPOLOGY 1. Geometric and abstract simplicial complexes Let v 0, v 1,..., v k be points in R n. These points determine a hyperplane in R n, consisting of linear combinations

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES YUJIE ZHANG Abstract. The sphere, Möbius strip, torus, real projective plane and Klein bottle are all important examples of surfaces (topological 2-manifolds). In fact, via the

More information

Homology and Persistent Homology Bootcamp Notes 2017

Homology and Persistent Homology Bootcamp Notes 2017 Homology and Persistent Homology Bootcamp Notes Summer@ICERM 2017 Melissa McGuirl September 19, 2017 1 Preface This bootcamp is intended to be a review session for the material covered in Week 1 of Summer@ICERM

More information

Solutions to Selected Exercises

Solutions to Selected Exercises Solutions to Selected Exercises Chapter 2 2.1. For x (2, 3), let δ x = min(x 2, 3 x). 2.3. R {x} =(,x) (x, ). If y (,x), then let δ y = x y so that δ y > 0 and (y δ y,y+ δ y ) (,x). Hence (,x) is open,

More information

SOCIAL CHOICE AMONG COMPLEX OBJECTS:MATHEMATICAL TOOLS

SOCIAL CHOICE AMONG COMPLEX OBJECTS:MATHEMATICAL TOOLS SOCIAL CHOICE AMONG COMPLEX OBJECTS:MATHEMATICAL TOOLS SIMONA SETTEPANELLA Abstract. Here the reader can find some basic definitions and notations in order to better understand the model for social choise

More information

Lectures on topology. S. K. Lando

Lectures on topology. S. K. Lando Lectures on topology S. K. Lando Contents 1 Reminder 2 1.1 Topological spaces and continuous mappings.......... 3 1.2 Examples............................. 4 1.3 Properties of topological spaces.................

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Sudesh Kalyanswamy 1 Introduction Euler characteristic is a very important topological property which started out as nothing more than a simple formula involving polyhedra. Euler observed

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Part 3. Topological Manifolds

Part 3. Topological Manifolds Part 3 Topological Manifolds This part is devoted to study of the most important topological spaces, the spaces which provide a scene for most of geometric branches in mathematics such as Differential

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

Topological Invariance under Line Graph Transformations

Topological Invariance under Line Graph Transformations Symmetry 2012, 4, 329-335; doi:103390/sym4020329 Article OPEN ACCESS symmetry ISSN 2073-8994 wwwmdpicom/journal/symmetry Topological Invariance under Line Graph Transformations Allen D Parks Electromagnetic

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

THE BASIC THEORY OF PERSISTENT HOMOLOGY

THE BASIC THEORY OF PERSISTENT HOMOLOGY THE BASIC THEORY OF PERSISTENT HOMOLOGY KAIRUI GLEN WANG Abstract Persistent homology has widespread applications in computer vision and image analysis This paper first motivates the use of persistent

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Algebraic Topology: A brief introduction

Algebraic Topology: A brief introduction Algebraic Topology: A brief introduction Harish Chintakunta This chapter is intended to serve as a brief, and far from comprehensive, introduction to Algebraic Topology to help the reading flow of this

More information

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism CS 6170 Computational Topology: Topological Data Analysis University of Utah Spring 2017 School of Computing Lecture 7: Jan 31, 2017 Lecturer: Prof. Bei Wang Scribe: Avani Sharma,

More information

MATH 215B MIDTERM SOLUTIONS

MATH 215B MIDTERM SOLUTIONS MATH 215B MIDTERM SOLUTIONS 1. (a) (6 marks) Show that a finitely generated group has only a finite number of subgroups of a given finite index. (Hint: Do it for a free group first.) (b) (6 marks) Show

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

Simplicial Complexes

Simplicial Complexes CHAPTER 7 Simplicial Complexes 1. Simplicial Complexes Singular homology is defined for arbitrary spaces, but as we have seen it may be quite hard to calculate. Also, if the spaces are bizarre enough,

More information

Computational Topology in Neuroscience

Computational Topology in Neuroscience Computational Topology in Neuroscience Bernadette Stolz Lincoln College University of Oxford A dissertation submitted for the degree of Master of Science in Mathematical Modelling & Scientific Computing

More information

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi

Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi Math 210 Manifold III, Spring 2018 Euler Characteristics of Surfaces Hirotaka Tamanoi 1. Euler Characteristic of Surfaces Leonhard Euler noticed that the number v of vertices, the number e of edges and

More information

) for all p. This means however, that the map ϕ 0 descends to the quotient

) for all p. This means however, that the map ϕ 0 descends to the quotient Solutions to sheet 6 Solution to exercise 1: (a) Let M be the Möbius strip obtained by a suitable identification of two opposite sides of the unit square [0, 1] 2. We can identify the boundary M with S

More information

Embedded graphs. Sasha Patotski. Cornell University November 24, 2014

Embedded graphs. Sasha Patotski. Cornell University November 24, 2014 Embedded graphs Sasha Patotski Cornell University ap744@cornell.edu November 24, 2014 Sasha Patotski (Cornell University) Embedded graphs November 24, 2014 1 / 11 Exercise Embed K 6 and K 7 into a torus.

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

arxiv: v1 [math.gt] 28 Feb 2009

arxiv: v1 [math.gt] 28 Feb 2009 Coverings and Minimal Triangulations of 3 Manifolds William Jaco, Hyam Rubinstein and Stephan Tillmann arxiv:0903.0112v1 [math.gt] 28 Feb 2009 Abstract This paper uses results on the classification of

More information

Lecture IV - Further preliminaries from general topology:

Lecture IV - Further preliminaries from general topology: Lecture IV - Further preliminaries from general topology: We now begin with some preliminaries from general topology that is usually not covered or else is often perfunctorily treated in elementary courses

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

arxiv: v2 [math.gt] 15 Jan 2014

arxiv: v2 [math.gt] 15 Jan 2014 Finite rigid sets and homologically non-trivial spheres in the curve complex of a surface Joan Birman, Nathan Broaddus and William Menasco arxiv:1311.7646v2 [math.gt] 15 Jan 2014 January 15, 2014 Abstract

More information

Classifications in Low Dimensions

Classifications in Low Dimensions Chapter XI Classifications in Low Dimensions In different geometric subjects there are different ideas which dimensions are low and which high. In topology of manifolds low dimension means at most 4. However,

More information

Exact discrete Morse functions on surfaces. To the memory of Professor Mircea-Eugen Craioveanu ( )

Exact discrete Morse functions on surfaces. To the memory of Professor Mircea-Eugen Craioveanu ( ) Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 4, 469 476 Exact discrete Morse functions on surfaces Vasile Revnic To the memory of Professor Mircea-Eugen Craioveanu (1942-2012) Abstract. In this paper,

More information

Cell-Like Maps (Lecture 5)

Cell-Like Maps (Lecture 5) Cell-Like Maps (Lecture 5) September 15, 2014 In the last two lectures, we discussed the notion of a simple homotopy equivalences between finite CW complexes. A priori, the question of whether or not a

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Reflection groups 4. Mike Davis. May 19, Sao Paulo Reflection groups 4 Mike Davis Sao Paulo May 19, 2014 https://people.math.osu.edu/davis.12/slides.html 1 2 Exotic fundamental gps Nonsmoothable aspherical manifolds 3 Let (W, S) be a Coxeter system. S

More information

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee Analysis of high dimensional data via Topology Louis Xiang Oak Ridge National Laboratory Oak Ridge, Tennessee Contents Abstract iii 1 Overview 1 2 Data Set 1 3 Simplicial Complex 5 4 Computation of homology

More information

RIEMANN SURFACES. matrices define the identity transformation, the authomorphism group of Ĉ is

RIEMANN SURFACES. matrices define the identity transformation, the authomorphism group of Ĉ is RIEMANN SURFACES 3.4. Uniformization theorem: Advertisement. The following very important theorem firstly formulated by Riemann has a tremendous impact on the theory. We will not prove it in this course.

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics SIMPLIFYING TRIANGULATIONS OF S 3 Aleksandar Mijatović Volume 208 No. 2 February 2003 PACIFIC JOURNAL OF MATHEMATICS Vol. 208, No. 2, 2003 SIMPLIFYING TRIANGULATIONS OF S

More information

GEOMETRY OF SURFACES. b3 course Nigel Hitchin

GEOMETRY OF SURFACES. b3 course Nigel Hitchin GEOMETRY OF SURFACES b3 course 2004 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on surfaces. Your mental image of a surface should be something like this: or this However we

More information

751 Problem Set I JWR. Due Sep 28, 2004

751 Problem Set I JWR. Due Sep 28, 2004 751 Problem Set I JWR Due Sep 28, 2004 Exercise 1. For any space X define an equivalence relation by x y iff here is a path γ : I X with γ(0) = x and γ(1) = y. The equivalence classes are called the path

More information

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case?

More information

Isomorphisms. Sasha Patotski. Cornell University November 23, 2015

Isomorphisms. Sasha Patotski. Cornell University November 23, 2015 Isomorphisms Sasha Patotski Cornell University ap744@cornell.edu November 23, 2015 Sasha Patotski (Cornell University) Isomorphisms November 23, 2015 1 / 5 Last time Definition If G, H are groups, a map

More information

! B be a covering, where B is a connected graph. Then E is also a

! B be a covering, where B is a connected graph. Then E is also a 26. Mon, Mar. 24 The next application is the computation of the fundamental group of any graph. We start by specifying what we mean by a graph. Recall that S 0 R is usually defined to be the set S 0 =

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013

topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013 topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013 Promise of topological data analysis: extract the structure from the data. In: point clouds Out: hidden structure

More information

A non-partitionable Cohen-Macaulay simplicial complex

A non-partitionable Cohen-Macaulay simplicial complex A non-partitionable Cohen-Macaulay simplicial complex Art Duval 1, Bennet Goeckner 2, Caroline Klivans 3, Jeremy Martin 2 1 University of Texas at El Paso, 2 University of Kansas, 3 Brown University Discrete

More information

Normal Surfaces and 3-Manifold Algorithms

Normal Surfaces and 3-Manifold Algorithms Colby College Digital Commons @ Colby Honors Theses Student Research 2017 Normal Surfaces and 3-Manifold Algorithms Josh D. Hews Colby College Follow this and additional works at: http://digitalcommons.colby.edu/honorstheses

More information

Elementary Combinatorial Topology

Elementary Combinatorial Topology Elementary Combinatorial Topology Frédéric Meunier Université Paris Est, CERMICS, Ecole des Ponts Paristech, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex E-mail address: frederic.meunier@cermics.enpc.fr

More information

The Cyclic Cycle Complex of a Surface

The Cyclic Cycle Complex of a Surface The Cyclic Cycle Complex of a Surface Allen Hatcher A recent paper [BBM] by Bestvina, Bux, and Margalit contains a construction of a cell complex that gives a combinatorial model for the collection of

More information

Effective Computational Geometry for Curves and Surfaces. Chapter 7 Computational Topology: An Introduction

Effective Computational Geometry for Curves and Surfaces. Chapter 7 Computational Topology: An Introduction Effective Computational Geometry for Curves and Surfaces Chapter 7 Computational Topology: An Introduction Günter Rote and Gert Vegter We give an introduction to combinatorial topology, with an emphasis

More information

CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE

CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE CLASSIFICATION OF ORDERABLE AND DEFORMABLE COMPACT COXETER POLYHEDRA IN HYPERBOLIC SPACE DHRUBAJIT CHOUDHURY, SUHYOUNG CHOI, AND GYE-SEON LEE Abstract. The aim of this work is to investigate properties

More information

Toric Cohomological Rigidity of Simple Convex Polytopes

Toric Cohomological Rigidity of Simple Convex Polytopes Toric Cohomological Rigidity of Simple Convex Polytopes Dong Youp Suh (KAIST) The Second East Asian Conference on Algebraic Topology National University of Singapore December 15-19, 2008 1/ 28 This talk

More information

Simplicial Objects and Homotopy Groups

Simplicial Objects and Homotopy Groups Simplicial Objects and Homotopy Groups Jie Wu Department of Mathematics National University of Singapore July 8, 2007 Simplicial Objects and Homotopy Groups -Objects and Homology Simplicial Sets and Homotopy

More information

Orientation of manifolds - definition*

Orientation of manifolds - definition* Bulletin of the Manifold Atlas - definition (2013) Orientation of manifolds - definition* MATTHIAS KRECK 1. Zero dimensional manifolds For zero dimensional manifolds an orientation is a map from the manifold

More information

The virtual cohomology dimension of Teichmüller modular groups: the first results and a road not taken

The virtual cohomology dimension of Teichmüller modular groups: the first results and a road not taken The virtual cohomology dimension of Teichmüller modular groups: the first results and a road not taken To Leningrad Branch of Steklov Mathematical Institute, with gratitude for giving me freedom to pursue

More information

Computational Homology of cubical and permutahedral complexes

Computational Homology of cubical and permutahedral complexes Computational Homology of cubical and permutahedral complexes by Fintan Hegarty School of Mathematics, Statistics, and Applied Mathematics Supervised by Prof. Graham Ellis SUBMITTED IN PARTIAL FULFILLMENT

More information

arxiv: v2 [math-ph] 10 Sep 2013

arxiv: v2 [math-ph] 10 Sep 2013 Algebraic Topology arxiv:1304.7846v2 [math-ph] 10 Sep 2013 Abstract Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra

More information

INTRODUCTION AND PREVIEW

INTRODUCTION AND PREVIEW Chapter One INTRODUCTION AND PREVIEW 1.1. INTRODUCTION Geometric Reflection Groups Finite groups generated by orthogonal linear reflections on R n play a decisive role in the classification of Lie groups

More information

Project Report on Classification Theorem and Fundamental Group of a Surface. Santanil Jana

Project Report on Classification Theorem and Fundamental Group of a Surface. Santanil Jana Project Report on Classification Theorem and Fundamental Group of a Surface Santanil Jana September 13, 2016 Abstract The sphere, torus, Klein bottle, and the projective plane are the classical examples

More information

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Tamal K. Dey Department of Computer Science and Engineering The Ohio State University Dey (2014) Computational Topology CCCG

More information

Topology Hmwk 3 All problems are from Allen Hatcher Algebraic Topology (online) ch 1

Topology Hmwk 3 All problems are from Allen Hatcher Algebraic Topology (online) ch 1 Topology Hmwk 3 All problems are from Allen Hatcher Algebraic Topology (online) ch Andrew Ma December 23, 203 This assignment has been corrected post - grading...6 (a) Proof. Assume for a contradiction

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Braid groups and Curvature Talk 2: The Pieces

Braid groups and Curvature Talk 2: The Pieces Braid groups and Curvature Talk 2: The Pieces Jon McCammond UC Santa Barbara Regensburg, Germany Sept 2017 Rotations in Regensburg Subsets, Subdisks and Rotations Recall: for each A [n] of size k > 1 with

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

BAR-MAGNET POLYHEDRA AND NS-ORIENTATIONS OF MAPS

BAR-MAGNET POLYHEDRA AND NS-ORIENTATIONS OF MAPS University of Ljubljana Institute of Mathematics, Physics and Mechanics Department of Mathematics Jadranska 19, 1111 Ljubljana, Slovenia Preprint series, Vol. 42 (2004), 940 BAR-MAGNET POLYHEDRA AND NS-ORIENTATIONS

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

THE DOLD-KAN CORRESPONDENCE

THE DOLD-KAN CORRESPONDENCE THE DOLD-KAN CORRESPONDENCE 1. Simplicial sets We shall now introduce the notion of a simplicial set, which will be a presheaf on a suitable category. It turns out that simplicial sets provide a (purely

More information

arxiv:math/ v3 [math.gt] 12 Jun 2007

arxiv:math/ v3 [math.gt] 12 Jun 2007 arxiv:math/0406271v3 [math.gt] 12 Jun 2007 Normal surfaces in topologically finite 3 manifolds Stephan Tillmann Abstract The concept of a normal surface in a triangulated, compact 3 manifold was generalised

More information

Simplicial Objects and Homotopy Groups. J. Wu

Simplicial Objects and Homotopy Groups. J. Wu Simplicial Objects and Homotopy Groups J. Wu Department of Mathematics, National University of Singapore, Singapore E-mail address: matwuj@nus.edu.sg URL: www.math.nus.edu.sg/~matwujie Partially supported

More information

Independence Complexes of Certain Families of Graphs

Independence Complexes of Certain Families of Graphs Independence Complexes of Certain Families of Graphs Rickard Fors rifo0@kth.se Master thesis in Mathematics at KTH Presented August 19, 011 Supervisor: Jakob Jonsson Abstract The focus of this report

More information

Simplicial and Cellular Spanning Trees, I: General Theory

Simplicial and Cellular Spanning Trees, I: General Theory Simplicial and Cellular Spanning Trees, I: General Theory Art Duval (University of Texas at El Paso) Caroline Klivans (Brown University) Jeremy Martin (University of Kansas) University of California, Davis

More information

6.3 Poincare's Theorem

6.3 Poincare's Theorem Figure 6.5: The second cut. for some g 0. 6.3 Poincare's Theorem Theorem 6.3.1 (Poincare). Let D be a polygon diagram drawn in the hyperbolic plane such that the lengths of its edges and the interior angles

More information

Homological and Combinatorial Proofs of the Brouwer Fixed-Point Theorem

Homological and Combinatorial Proofs of the Brouwer Fixed-Point Theorem Homological and Combinatorial Proofs of the Brouwer Fixed-Point Theorem Everett Cheng June 6, 2016 Three major, fundamental, and related theorems regarding the topology of Euclidean space are the Borsuk-Ulam

More information

ON THE FUNDAMENTAL GROUP OF SURFACES

ON THE FUNDAMENTAL GROUP OF SURFACES ON THE FUNDAMENTAL GROUP OF SURFACES MATTHEW ACTIPES Abstract. This paper begins by reviewing the idea of homotopy while motivating the idea of the fundamental group. We then define free groups and the

More information

DUALITY, MANIFOLDS AND SOME ALGEBRAIC TOPOLOGY

DUALITY, MANIFOLDS AND SOME ALGEBRAIC TOPOLOGY DUALITY, MANIFOLDS AND SOME ALGEBRAIC TOPOLOGY VIPUL NAIK Abstract. This is a short note intended to explore the applications of duality theory to the study of manifolds. I discuss Alexander duality, Lefschetz

More information

A non-partitionable Cohen-Macaulay simplicial complex

A non-partitionable Cohen-Macaulay simplicial complex A non-partitionable Cohen-Macaulay simplicial complex Art Duval 1, Bennet Goeckner 2, Caroline Klivans 3, Jeremy Martin 2 1 University of Texas at El Paso, 2 University of Kansas, 3 Brown University Department

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

Examples of Groups: Coxeter Groups

Examples of Groups: Coxeter Groups Examples of Groups: Coxeter Groups OSU May 31, 2008 http://www.math.ohio-state.edu/ mdavis/ 1 Geometric reflection groups Some history Properties 2 Coxeter systems The cell complex Σ Variation for Artin

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

CUBICAL SUBDIVISIONS AND LOCAL h-vectors

CUBICAL SUBDIVISIONS AND LOCAL h-vectors CUBICAL SUBDIVISIONS AND LOCAL h-vectors CHRISTOS A. ATHANASIADIS Abstract. Face numbers of triangulations of simplicial complexes were studied by Stanley by use of his concept of a local h-vector. It

More information

On the Heegaard splittings of amalgamated 3 manifolds

On the Heegaard splittings of amalgamated 3 manifolds On the Heegaard splittings of amalgamated 3 manifolds TAO LI We give a combinatorial proof of a theorem first proved by Souto which says the following. Let M 1 and M 2 be simple 3 manifolds with connected

More information