A Bricklaying Best-Fit Heuristic Algorithm for the Orthogonal Rectangle Packing Problem*

Size: px
Start display at page:

Download "A Bricklaying Best-Fit Heuristic Algorithm for the Orthogonal Rectangle Packing Problem*"

Transcription

1 A Bricklaying Best-Fit Heuristic Algorithm for the Orthogonal Rectangle Packing Problem* Wenshui Lin 1, Jinping Xu 1, Jiandong Wang 1, and Xinyou Wu 2 1 School of Information Science and Technology, Xiamen University, Xiamen, Fujian , China 2 Zhangzhou Cambridge School, Zhangzhou, Fujian , China w.s_lin@yahoo.com.cn Abstract. The present paper presents a novel heuristic algorithm, BBF algorithm, for the two-dimensional orthogonal rectangular packing problem. The BBF algorithm combines the main ideas of the Best-fit algorithm and the Bricklaying algorithm. Test data shows that the BBF algorithm compares with other heuristic algorithms in terms of both solution quality and efficiency. Keywords: Rectangle Packing Problem, Heuristic Algorithm, Best-fit, Reference Brick. 1 Introduction The orthogonal rectangle packing problem (also called two-dimensional orthogonal stock-cutting problem) is an important type of two-dimensional packing problems. It is to place rectangular items onto a rectangular sheet with infinite height in order to minimize the height of the nest, with restrict that all the items should have an edge orthogonal to an edge of the sheet, but rotations of 90 degrees of the items are allowed. The orthogonal rectangle packing problem has numerous applications in the area of dynamic memory allocation, multiprocessor scheduling problems, and general layout problems (see [1-4]). Since A. E. Paull [5] proposed the newsprint layout problem, the orthogonal rectangle packing problem became a hot topic, and many algorithms were obtained [6-13]. As the orthogonal rectangle packing problem is NP hard, the algorithms can be broadly categorized into three methods: exact, heuristic, and metaheuristic. Among the heuristic algorithms, the BL (Buttom-Left) algorithm [8] and BLF (Bottom-Left-Fill) algorithm [9] are most well-known, while the BF (Best-fit) algorithm [11] and the PH (Bricklaying) algorithm [12] seems to be the most outstanding. Our aim is to present a new heuristic algorithm that combines the main ideas of BF algorithm and PH algorithm. * This work is partially supported by the Natural Science Foundation of Fujian Province of China Grant #2009J05015 to W. Lin and J. Wang. D. Zeng (Ed.): ICAIC 2011, Part II, CCIS 225, pp , Springer-Verlag Berlin Heidelberg 2011

2 A Bricklaying Best-Fit Heuristic Algorithm BF Algorithm and HP Algorithm A. BF Algorithm The main idea of the BF algorithm is, at every time step of the algorithm to find the lowest gap of the sheet and seek a best-fitting item to place within the gap. An remaining item is best-fitting for the gap if among all the remaining items it can occupy the width of the gap at the most, and its area is as large as possible. Once a best-fitting item is found, the item will be placed within the gap depending on a socalled niche-placement policy. If a gap is found for which no remaining rectangle can fit, then this is waste space, and the height of the gap will be raised up to the lowest neighbor. B. HP Algorithm The HP algorithm was motivated by the bricklaying method of construction workers during building a wall with bricks. The algorithm includes two stages, the preprocessing stage and packing stage. At the first stage the items are sorted into decreasing area order. At the packing stage, first place the first item in the list in the bottom-left of the sheet, and call the brick the reference brick and call the line along the upper edge of the item the reference line. Then the sheet is separated into two parts, the lower space and upper space. Now place the former items in the list into the lower space from bottom to top and from left to right. When there is no item can be placed into the lower space, then place the first remaining item into the bottom-left of the upper space, and the item is referred to the new reference brick which gives rise to a higher reference line. Repeat the above procedure until all items are packed. 3 A New Heuristic Algorithm A. An Overview The main reason why the BF algorithm is regarded to be better than the BL and BLF algorithms is that, at every time step of packing it is not restricted to the first item encountered but to dynamically search the list for better candidate items for placement. However, in some time steps, the best-fitting items may occupy much height of the used sheet when their heights are much larger than their widths, which are expected to be rotated by 90 degrees before they are placed. On the other hand, the HP algorithm can overcomes the disadvantage of the BF algorithm by using the reference brick. Unfortunately, the HP algorithm does not adopt the best-fit strategy of the BF algorithm, i.e., at the time steps at the packing stage the HP algorithm does not dynamically select the best-fitting item for placement. We present a new heuristic algorithm called BBF (Bricklaying Best-fit) algorithm. The BBF algorithm introduces the reference brick idea into the BF algorithm in order to overcome the disadvantage of the BF algorithm. Note that in our algorithm the best-fit strategy and the niche-placement policy are slightly different from those of the BF algorithm, and the placement policy of the reference bricks is different from that of the HP algorithm. In order to avoid confusion, we descript the procedure of our BBF algorithm below, and main teminologies that used by [11] and [12] are re-defined.

3 640 W. Lin et al. First we rotate each item so that its width is note less than its height, and sort the items into descending area order (resolving equal areas by decreasing widths). At the beginning of the packing process there will not be any items on the sheet. Place the first item (that has largest area) onto the bottom-left of the sheet. The placed brick is referred to a reference brick, and the line along the upper edge of the reference brick is called the reference line. A reference line is indexed by y = its height from the bottom-left of the sheet. The space of the sheet below the reference line is called the lower space. Then find the lowest gap in the lower space. If there are more than one lowest gaps, we choose the widest one. If there are still more than one lowest gaps (with same width), then choose the most left one. Once a lowest gap is found, we examine the remaining items by their order in the item list to find the best-fitting item. The best-fitting item is the one that can be placed into the gap and after its placement its upper edge will not exceed the reference line, and with the largest area, and occupy the width of the lowest gap at the most. Note that, in the BF algorithm, the best-fit strategy priors to consider the width of the gap that the item occupies, instead of the area of the item. If a best-fitting item is found, then place the item within the lowest gap depending on the so-called niche-placement policy. That is, if after the placement of the item the height of the item s upper edge is more closed to that of the left neighbor s upper edge, then place the item next to the left neighbor, otherwise, place it next to the right neighbor. As the placement is restricted by the reference line, we call this a reference packing with the current reference line. If at some time step the reference packing is not available, then remove the current reference line and search the lowest gap for the placement of a new reference brick. In fact, the method to place of a new reference brick is a reference packing with reference line y =+. If a gap for which no remaining rectangle can be reference packed within, even when the reference line is y =+, then the gap is wasted space, and the relevant sheet array elements are raised up to the lower neighbour. We can now recheck for the lowest gap and continue with reference packing. B. Implementation of BBF Since floating-point data can be simply converted to integer format, we assume all the data (the widths and heights of the items, and the width of the sheet) are integers. The BBF algorithm includes two stages, the preprocessing stage and the packing stage. Preprocessing Stage: The stage is almost the same with that of BF algorithm [11]. That is, we store the sheet as a linear array that has a number of elements equal to the width of the sheet. Each element of the array holds the total height of the packing at that x coordinate of the sheet as to reflect the skyline of the sheet. Therefore, the coordinate of the lowest space of the stock sheet can be found by locating the smallest-valued entry of the array. The width of the gap can be found by examining how many consecutive array items of equal value exist. The item s data is defined as a list of rectangular items each denoted by a (width, height) pair. Note that different from the BF algorithm we sort the list of the items into decreasing area order (resolving equal area by decreasing width).

4 A Bricklaying Best-Fit Heuristic Algorithm 641 Packing Stage: First the reference line is y =+, and the sheet is examined to find the lowest gap (initially at x = 0, y = 0, and lasting the entire sheet width). The item list is examined and the best-fitting item (at first time step at the packing stage it will be the first reference brick) returned. Reference pack the best-fitting item within the lowest gap. The item is assigned coordinates and removed from the item list. At the meantime, the relevant sheet array elements are incremented by the item height. If the placed item is a new reference brick, then the reference line is updated, in fact, just to y = the maximum of the skyline. If a gap for which no remaining item can be reference packed within, then raise up the relevant sheet array elements to the lower neighbour, and update the reference line to be y =+. The procedure continues until all the items are placed. The maximum of the final skyline returned as the solution of the problem. Summary of Process: The whole process can be summarized by the following pseudo-code: Obtain Sheet Width W Obtain List of n items Rotate each item so that Width Height Sort Item List by Decreasing Area (resolving equal areas by decreasing widths) Initialize Skyline Array of n Elements Initialize Reference Line y =+ while Item Not Packed do Find Lowest Gap if(find Best-Fitting Item = = True) Reference Pack Best-Fitting Item Raise Array to Appropriately Reflect Skyline Update Reference Line to y = Maximum of Skyline else if(reference Line is Not y =+ ) Update Reference Line to be y =+ else Raise Gap to Lower Neighbor end if end if end while return Solution = maximum of Skyline Ο From the above pseudo-code, it is easy to see that, the time complexity is 2 ( nw). Futhermore, in order to improve the solution of the BBF algorithm we can adopt the same method with the HP algorithm [12] that change two certain items order in the item list at the preprocessing stage. Thus the time complexity is 4 Ο ( nw).

5 642 W. Lin et al. 4 Test Data In order to compare the relative performance of the pre-sented BBF algorithm to the BF and PH algorithms, we used several test problems from the literature. Perhaps the most extensive data sets given for this problem are found in Hopper and Turton [14], where 21 problem sets of rectangle data are presented in seven different-sized categories (each category has three problems of similar size and object dimension). Table 1 shows the test results. We also test the BBF algorithm with the ten instances with large item number n from literature [12]. The comparison of the BBF algorithm with the HP algorithm is shown in Table 2. Table 1. Comparison of BBF and BF, HP with Data from [14] Cat Ins. W N Opt BF PH BBF C C1 C C C C2 C C C C3 C C C C4 C C C C5 C C C C6 C C C C7 C C Table 2. Comparison of BBF and HP with Data from [12] Ins. W N Opt. PH BBF RPP RPP RPP RPP RPP RPP RPP RPP RPP RPP

6 A Bricklaying Best-Fit Heuristic Algorithm 643 References 1. Coffman Jr., E., Garey, M., Johnson, D.: An application of bin packing to multiprocessor scheduling. SIAM Journal on Computing 7(1), 1 17 (1978) 2. Coffman, E., Garey, M., Johason, D.: Approximation algorithms for bin packing problems An update survey. In: Ausiello, G., Lucertini, M., Serafini, P. (eds.) Algorithm Design for Computer System Design, pp Springer, New York (1984) 3. Coffman Jr., E., Leighton, F.: A provably efficient algorithm for dynamic storage allocation. Journal of Computer and System Sciences 38(1), 2 35 (1989) 4. Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44(2), (1990) 5. Paull, A.: Linear programming: A key to optimum newsprint production. Pulp Paper Magazine of Canada 57, (1956) 6. Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Operations Research 25(1), (1977) 7. Beasley, J.: An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research 33(1), (1985) 8. Baker, B., Coffman, E., Rivest, R.L.: Orthogonal packing in two dimensions. SIAM Journal on Computing 9, (1980) 9. Chazelle, B.: The bottom-left bin packing heuristic: An efficient implementation. IEEE Trans. Comput. 32(8), (1983) 10. Liu, D., Teng, H.: An improved BL-algorithm for genetic algorithms of the orthogonal packing of rectangles. European Journal of Operational Reseach 112(2), (1999) 11. Burke, E., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal stockcutting problem. Operatations Research 52(4), (2004) 12. Zhang, D., Han, S., Jiang, Y.: A personification heuristic algorithm for the orthogonal stock-cutting problem. Chinese Journal of Computers 31(3), (2008) (in Chinese) 13. Chen, D., Liu, J., Shang, M.: An intelligent enumerative algorithm for solving rectangle packing problem. Journal of Chongqing University of Post and Telecommunications (Natural Science) 20(4), (2008) (in Chinese) 14. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research 128(1), (2001)

arxiv: v1 [cs.dm] 22 Jul 2011

arxiv: v1 [cs.dm] 22 Jul 2011 Bottom-Left Placement Theorem for Rectangle Packing Wenqi Huang, Tao Ye arxiv:1107.6v1 [cs.dm] Jul 011 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 007,

More information

An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem

An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem Vol. 33, No. 9 ACTA AUTOMATICA SINICA September, 2007 An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem ZHANG De-Fu 1 CHEN Sheng-Da 1 LIU Yan-Juan

More information

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem

Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Arc-Flow Model for the Two-Dimensional Cutting Stock Problem Rita Macedo Cláudio Alves J. M. Valério de Carvalho Centro de Investigação Algoritmi, Universidade do Minho Escola de Engenharia, Universidade

More information

HYPER-HEURISTICS can be thought of as heuristics

HYPER-HEURISTICS can be thought of as heuristics IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing Heuristics Edmund K. Burke, Member, IEEE, Matthew Hyde, Member, IEEE, Graham

More information

An Empirical Investigation of Meta-heuristic and Heuristic Algorithms for a 2D Packing Problem

An Empirical Investigation of Meta-heuristic and Heuristic Algorithms for a 2D Packing Problem European Journal of Operational Research 128/1, 34-57, 2000. An Empirical Investigation of Meta-heuristic and Heuristic Algorithms for a 2D Packing Problem E. Hopper and B. C. H. Turton School of Engineering,

More information

Available online at ScienceDirect. Procedia Engineering 183 (2017 )

Available online at   ScienceDirect. Procedia Engineering 183 (2017 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 183 (2017 ) 291 296 17th International Conference on Sheet Metal, SHEMET17 Meta-heuristic algorithms for nesting problem of

More information

A recursive branch-and-bound algorithm for the rectangular guillotine strip packing problem

A recursive branch-and-bound algorithm for the rectangular guillotine strip packing problem Computers & Operations Research 35 (2008) 1281 1291 www.elsevier.com/locate/cor A recursive branch-and-bound algorithm for the rectangular guillotine strip packing problem Yaodong Cui, Yuli Yang, Xian

More information

A HYBRID HEURISTIC FOR THE CONSTRAINED TWO-DIMENSIONAL NON-GUILLOTINE ORTHOGONAL CUTTING PROBLEM

A HYBRID HEURISTIC FOR THE CONSTRAINED TWO-DIMENSIONAL NON-GUILLOTINE ORTHOGONAL CUTTING PROBLEM A HYBRID HEURISTIC FOR THE CONSTRAINED TWO-DIMENSIONAL NON-GUILLOTINE ORTHOGONAL CUTTING PROBLEM JOSÉ FERNANDO GONÇALVES AND MAURICIO G. C. RESENDE ABSTRACT. This paper addresses a constrained two-dimensional

More information

ON WEIGHTED RECTANGLE PACKING WITH LARGE RESOURCES*

ON WEIGHTED RECTANGLE PACKING WITH LARGE RESOURCES* ON WEIGHTED RECTANGLE PACKING WITH LARGE RESOURCES* Aleksei V. Fishkin, 1 Olga Gerber, 1 Klaus Jansen 1 1 University of Kiel Olshausenstr. 40, 24118 Kiel, Germany {avf,oge,kj}@informatik.uni-kiel.de Abstract

More information

SIMPLE ALGORITHMS FOR RECTANGLE PACKING PROBLEM FROM THEORY TO EXPERIMENTS

SIMPLE ALGORITHMS FOR RECTANGLE PACKING PROBLEM FROM THEORY TO EXPERIMENTS SIMPLE ALGORITHMS FOR RECTANGLE PACKING PROBLEM FROM THEORY TO EXPERIMENTS Adam KURPISZ Abstract: In this paper we consider a Rectangle Packing Problem which is a part of production process in many branches

More information

Hyper-heuristics and Classifier Systems for Solving 2D-Regular Cutting Stock Problems

Hyper-heuristics and Classifier Systems for Solving 2D-Regular Cutting Stock Problems Hyper-heuristics and Classifier Systems for Solving 2D-Regular Cutting Stock Problems H. Terashima-Marín ITESM-Center for Intelligent Systems Av. E. Garza Sada 2501 Monterrey, NL, 64849 Mexico terashima@itesm.mx

More information

New Heuristic and Interactive Approaches to 2D Rectangular Strip Packing

New Heuristic and Interactive Approaches to 2D Rectangular Strip Packing MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com New Heuristic and Interactive Approaches to 2D Rectangular Strip Packing Neal Lesh, Joe Marks, Adam McMahon, Michael Mitzenmacher TR2003-18

More information

5. Computational Geometry, Benchmarks and Algorithms for Rectangular and Irregular Packing. 6. Meta-heuristic Algorithms and Rectangular Packing

5. Computational Geometry, Benchmarks and Algorithms for Rectangular and Irregular Packing. 6. Meta-heuristic Algorithms and Rectangular Packing 1. Introduction 2. Cutting and Packing Problems 3. Optimisation Techniques 4. Automated Packing Techniques 5. Computational Geometry, Benchmarks and Algorithms for Rectangular and Irregular Packing 6.

More information

2D-Packing Images on a Large Scale: Packing a Billion Rectangles under 10 Minutes

2D-Packing Images on a Large Scale: Packing a Billion Rectangles under 10 Minutes 2D-Packing Images on a Large Scale: Packing a Billion Rectangles under 10 Minutes Dominique Thiebaut Dept. Computer Science Smith College Northampton, Ma 01063 Email: dthiebaut@smith.edu Abstract We present

More information

The Match Fit Algorithm: A Testbed for the Computational Motivation of Attention

The Match Fit Algorithm: A Testbed for the Computational Motivation of Attention The Match Fit Algorithm: A Testbed for the Computational Motivation of Attention Joseph G. Billock 1, Demetri Psaltis 1, and Christof Koch 1 California Institute of Technology Pasadena, CA 91125, USA billgr@sunoptics.caltech.edu

More information

An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem

An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem European Journal of Operational Research 128 (2001) 34±57 www.elsevier.com/locate/dsw Theory and Methodology An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem

More information

A Review of the Application of Meta-Heuristic Algorithms to 2D Strip Packing Problems

A Review of the Application of Meta-Heuristic Algorithms to 2D Strip Packing Problems Artificial Intelligence Review 16: 257 300, 2001. 2001 Kluwer Academic Publishers. Printed in the Netherlands. 257 A Review of the Application of Meta-Heuristic Algorithms to 2D Strip Packing Problems

More information

An Ant Colony Optimization Heuristic for Solving the Two- Dimensional Level Packing Problems

An Ant Colony Optimization Heuristic for Solving the Two- Dimensional Level Packing Problems An Ant Colony Optimization Heuristic for Solving the Two- Dimensional Level Packing Problems AzzaGaber, RaafatElshaer and MahassenKhater Industrial Engineering Department Faculty of Engineering, Zagazig

More information

Clustering-Based Distributed Precomputation for Quality-of-Service Routing*

Clustering-Based Distributed Precomputation for Quality-of-Service Routing* Clustering-Based Distributed Precomputation for Quality-of-Service Routing* Yong Cui and Jianping Wu Department of Computer Science, Tsinghua University, Beijing, P.R.China, 100084 cy@csnet1.cs.tsinghua.edu.cn,

More information

Minimal Test Cost Feature Selection with Positive Region Constraint

Minimal Test Cost Feature Selection with Positive Region Constraint Minimal Test Cost Feature Selection with Positive Region Constraint Jiabin Liu 1,2,FanMin 2,, Shujiao Liao 2, and William Zhu 2 1 Department of Computer Science, Sichuan University for Nationalities, Kangding

More information

Applying Evolutionary Algorithms and the No Fit Polygon to the Nesting Problem

Applying Evolutionary Algorithms and the No Fit Polygon to the Nesting Problem Applying Evolutionary Algorithms and the No Fit Polygon to the Nesting Problem Edmund Burke Department of Computer Science The University of Nottingham Nottingham NG7 2RD UK Graham Kendall Department of

More information

Two dimensional bin packing problem

Two dimensional bin packing problem Two dimensional bin packing problem The two dimensional bin packing problem is essentially a problem of fitting rectangles into minimum number of given large rectangles. Given rectangles (bins) of size

More information

One-Dimensional Heuristics Adapted for Two-Dimensional Rectangular Strip Packing G. Belov, G. Scheithauer, E. A. Mukhacheva

One-Dimensional Heuristics Adapted for Two-Dimensional Rectangular Strip Packing G. Belov, G. Scheithauer, E. A. Mukhacheva One-Dimensional Heuristics Adapted for Two-Dimensional Rectangular Strip Packing G. Belov, G. Scheithauer, E. A. Mukhacheva Dresden University Preprint MATH-NM-02-2006 Revised on October 23, 2006 Abstract

More information

Applying Simulated Annealing and the No Fit Polygon to the Nesting Problem. Abstract. 1. Introduction

Applying Simulated Annealing and the No Fit Polygon to the Nesting Problem. Abstract. 1. Introduction Applying Simulated Annealing and the No Fit Polygon to the Nesting Problem Edmund Burke University of Nottingham University Park Nottingham, UK NG7 2RD UK ekb@cs.nott.ac.uk Graham Kendall University of

More information

Technische Universität Dresden Herausgeber: Der Rektor

Technische Universität Dresden Herausgeber: Der Rektor Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor The Two-Dimensional Strip Packing Problem: A Numerical Experiment with Waste-Free Instances Using Algorithms with Block Structure

More information

Open Access Research on the Arranging and Patchwork Design for Storage Tank Bottom Based on Sinovation

Open Access Research on the Arranging and Patchwork Design for Storage Tank Bottom Based on Sinovation Send Orders for Reprints to reprints@benthamscience.ae 78 The Open Petroleum Engineering Journal, 05, 8, 78-83 Open Access Research on the Arranging and Patchwork Design for Storage Tank Bottom Based on

More information

One-Dimensional Heuristics Adapted for Two-Dimensional Rectangular Strip Packing G. Belov, G. Scheithauer, E.A. Mukhacheva

One-Dimensional Heuristics Adapted for Two-Dimensional Rectangular Strip Packing G. Belov, G. Scheithauer, E.A. Mukhacheva One-Dimensional Heuristics Adapted for Two-Dimensional Rectangular Strip Packing G. Belov, G. Scheithauer, E.A. Mukhacheva Dresden University Preprint MATH-NM-02-2006, March 1, 2006 Abstract We consider

More information

A GENETIC ALGORITHM FOR TWO DIMENSIONAL STRIP PACKING PROBLEMS. Nelson Mandela Metropolitan University, South Africa

A GENETIC ALGORITHM FOR TWO DIMENSIONAL STRIP PACKING PROBLEMS. Nelson Mandela Metropolitan University, South Africa A GENETIC ALGORITHM FOR TWO DIMENSIONAL STRIP PACKING PROBLEMS V. Mancapa 1, T.I. van Niekerk 2 and T Hua 2 1 Department of Electrical Engineering Nelson Mandela Metropolitan University, South Africa mancapa@nmmu.ac.za

More information

Constructive procedures to solve 2-Dimensional Bin Packing Problems with Irregular Pieces and Guillotine Cuts

Constructive procedures to solve 2-Dimensional Bin Packing Problems with Irregular Pieces and Guillotine Cuts Constructive procedures to solve 2-Dimensional Bin Packing Problems with Irregular Pieces and Guillotine Cuts Antonio Martinez a, Ramon Alvarez-Valdes b, Julia Bennell a, Jose Manuel Tamarit b a University

More information

eocsa: An Algorithm for Burst Mapping with Strict QoS Requirements in IEEE e Mobile WiMAX Networks

eocsa: An Algorithm for Burst Mapping with Strict QoS Requirements in IEEE e Mobile WiMAX Networks eocsa: An Algorithm for Burst Mapping with Strict QoS Requirements in IEEE 82.6e Mobile WiMAX Networks Chakchai So-In Department of Computer Science & Engineering, Washington University in St. Louis St.

More information

A Distributed Hybrid Algorithm for Composite Stock Cutting

A Distributed Hybrid Algorithm for Composite Stock Cutting Appl. Math. Inf. Sci. 6 No. 2S pp. 661S-667S (2012) Applied Mathematics & Information Sciences An International Journal @ 2012 NSP Natural Sciences Publishing Cor. A Distributed Hybrid Algorithm for Composite

More information

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I) 11/9OPT(I) +6/9

The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I) 11/9OPT(I) +6/9 The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I) /9OPT(I) +6/9 György Dósa Department of Mathematics, University of Pannonia, Veszprém, Hungary dosagy@almos.vein.hu Abstract. First

More information

Applying Meta-Heuristic Algorithms to the Nesting Problem Utilising the No Fit Polygon

Applying Meta-Heuristic Algorithms to the Nesting Problem Utilising the No Fit Polygon Applying Meta-Heuristic Algorithms to the Nesting Problem Utilising the No Fit Polygon A Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy by Graham Kendall, BSc (Hons)

More information

A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces

A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces European Journal of Operational Research 172 (2006) 814 837 Discrete Optimization A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces Andreas Bortfeldt * Department

More information

Guntram Scheithauer. Dresden University of Technology. Abstract: In this paper we consider the three-dimensional problem of optimal

Guntram Scheithauer. Dresden University of Technology. Abstract: In this paper we consider the three-dimensional problem of optimal Operations Research Proceedings 1991, Springer-Verlag Berlin Heidelberg (1992) 445{452 Algorithms for the container loading problem Guntram Scheithauer Dresden University of Technology Abstract: In this

More information

Worst-Case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor Systems

Worst-Case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor Systems Worst-Case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor Systems J.M. López, M. García, J.L. Díaz, D.F. García University of Oviedo Department of Computer Science Campus de Viesques,

More information

A Hybrid Improvement Heuristic for the Bin Packing Problem

A Hybrid Improvement Heuristic for the Bin Packing Problem MIC 2001-4th Metaheuristics International Conference 63 A Hybrid Improvement Heuristic for the Bin Packing Problem Adriana C.F. Alvim Dario J. Aloise Fred Glover Celso C. Ribeiro Department of Computer

More information

A Modular k-nearest Neighbor Classification Method for Massively Parallel Text Categorization

A Modular k-nearest Neighbor Classification Method for Massively Parallel Text Categorization A Modular k-nearest Neighbor Classification Method for Massively Parallel Text Categorization Hai Zhao and Bao-Liang Lu Department of Computer Science and Engineering, Shanghai Jiao Tong University, 1954

More information

Optimal Routing-Conscious Dynamic Placement for Reconfigurable Devices

Optimal Routing-Conscious Dynamic Placement for Reconfigurable Devices Optimal Routing-Conscious Dynamic Placement for Reconfigurable Devices Ali Ahmadinia 1, Christophe Bobda 1,Sándor P. Fekete 2, Jürgen Teich 1, and Jan C. van der Veen 2 1 Department of Computer Science

More information

Application of Genetic Algorithms to Packing Problems - A Review

Application of Genetic Algorithms to Packing Problems - A Review In: Chawdry, P. K., Roy, R. and Kant, R. K. (eds.), Proceedings of the 2nd On-line World Conference on Soft Computing in Engineering Design and Manufacturing, Springer Verlag, London, pp. 279-288, 1997.

More information

A Hyper-heuristic based on Random Gradient, Greedy and Dominance

A Hyper-heuristic based on Random Gradient, Greedy and Dominance A Hyper-heuristic based on Random Gradient, Greedy and Dominance Ender Özcan and Ahmed Kheiri University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

More information

Ranking Web Pages by Associating Keywords with Locations

Ranking Web Pages by Associating Keywords with Locations Ranking Web Pages by Associating Keywords with Locations Peiquan Jin, Xiaoxiang Zhang, Qingqing Zhang, Sheng Lin, and Lihua Yue University of Science and Technology of China, 230027, Hefei, China jpq@ustc.edu.cn

More information

Solving a Real-World Glass Cutting Problem

Solving a Real-World Glass Cutting Problem Solving a Real-World Glass Cutting Problem Jakob Puchinger, Günther R. Raidl, and Gabriele Koller Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria {puchinger

More information

A GRASP Approach to the Nesting Problem

A GRASP Approach to the Nesting Problem MIC 2001-4th Metaheuristics International Conference 47 A GRASP Approach to the Nesting Problem António Miguel Gomes José Fernando Oliveira Faculdade de Engenharia da Universidade do Porto Rua Roberto

More information

A parallel approach of Best Fit Decreasing algorithm

A parallel approach of Best Fit Decreasing algorithm A parallel approach of Best Fit Decreasing algorithm DIMITRIS VARSAMIS Technological Educational Institute of Central Macedonia Serres Department of Informatics Engineering Terma Magnisias, 62124 Serres

More information

Optimal Cutting Problem

Optimal Cutting Problem Ana Avdzhieva, Todor Balabanov, Georgi Evtimov, Detelina Kirova, Hristo Kostadinov, Tsvetomir Tsachev, Stela Zhelezova, Nadia Zlateva 1. Problems Setting One of the tasks of the Construction office of

More information

A Topological Order for a Rectangular Three Dimensional Bin Packing Problem

A Topological Order for a Rectangular Three Dimensional Bin Packing Problem A Topological Order for a Rectangular Three Dimensional Bin Packing Problem MARINESCU DANIELA, IACOB PAUL, BĂICOIANU ALEXANDRA Transilvania University of Braşov Department of Computer Science Iuliu Maniu

More information

Firefly Algorithm to Solve Two Dimensional Bin Packing Problem

Firefly Algorithm to Solve Two Dimensional Bin Packing Problem Firefly Algorithm to Solve Two Dimensional Bin Packing Problem Kratika Chandra, Sudhir Singh Department of Computer Science and Engineering, U.P.T.U. Kanpur Institute of Technology, Kanpur, India. Abstract

More information

Cutting Stock with Binary Patterns: Arc-flow Formulation with Graph Compression

Cutting Stock with Binary Patterns: Arc-flow Formulation with Graph Compression Cutting Stock with Binary Patterns: Arc-flow Formulation with Graph Compression Filipe Brandão INESC TEC and Faculdade de Ciências, Universidade do Porto, Portugal fdabrandao@dcc.fc.up.pt arxiv:1502.02899v1

More information

Optimal Packing of High-Precision Rectangles

Optimal Packing of High-Precision Rectangles Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence Optimal Packing of High-Precision Rectangles Eric Huang Palo Alto Research Center 3333 Coyote Hill Rd. Palo Alto, CA 94304 ehuang@parc.com

More information

Test-Architecture Optimization for 3D Stacked ICs

Test-Architecture Optimization for 3D Stacked ICs ACM STUDENT RESEARCH COMPETITION GRAND FINALS 1 Test-Architecture Optimization for 3D Stacked ICs I. PROBLEM AND MOTIVATION TSV-based 3D-SICs significantly impact core-based systemon-chip (SOC) design.

More information

New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm

New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm So-Yeong Jeon 1 and Yong-Hyuk Kim 2,* 1 Department of Computer Science, Korea Advanced Institute of Science

More information

Grouping Genetic Algorithm with Efficient Data Structures for the University Course Timetabling Problem

Grouping Genetic Algorithm with Efficient Data Structures for the University Course Timetabling Problem Grouping Genetic Algorithm with Efficient Data Structures for the University Course Timetabling Problem Felipe Arenales Santos Alexandre C. B. Delbem Keywords Grouping Genetic Algorithm Timetabling Problem

More information

Implementating the Genetic Algorithm with VLSI Approach for Optimization of Sheet Metal Nesting

Implementating the Genetic Algorithm with VLSI Approach for Optimization of Sheet Metal Nesting 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Implementating the Genetic Algorithm with

More information

Graph Matching Iris Image Blocks with Local Binary Pattern

Graph Matching Iris Image Blocks with Local Binary Pattern Graph Matching Iris Image Blocs with Local Binary Pattern Zhenan Sun, Tieniu Tan, and Xianchao Qiu Center for Biometrics and Security Research, National Laboratory of Pattern Recognition, Institute of

More information

Lecture 9. Knapsack Problem Dynamic Programming formulation. MATH3220 Operations Research and Logistics Mar. 4, 2015

Lecture 9. Knapsack Problem Dynamic Programming formulation. MATH3220 Operations Research and Logistics Mar. 4, 2015 Lecture 9 MATH3220 Operations Research and Logistics Mar. 4, 2015 2D Pan Li The Chinese University of Hong Kong 9.1 Agenda 1 2D 2 3 2D 9.2 Knapsack problem Consider a hiker who is going to carry a knapsack

More information

Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis

Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Improvement of SURF Feature Image Registration Algorithm Based on Cluster Analysis 1 Xulin LONG, 1,* Qiang CHEN, 2 Xiaoya

More information

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-1, January 2016 Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems Kemal Alaykiran,

More information

On Multi-Stack Boundary Labeling Problems

On Multi-Stack Boundary Labeling Problems On Multi-Stack Boundary Labeling Problems MICHAEL A. BEKOS 1, MICHAEL KAUFMANN 2, KATERINA POTIKA 1, ANTONIOS SYMVONIS 1 1 National Technical University of Athens School of Applied Mathematical & Physical

More information

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees

A Fast Algorithm for Optimal Alignment between Similar Ordered Trees Fundamenta Informaticae 56 (2003) 105 120 105 IOS Press A Fast Algorithm for Optimal Alignment between Similar Ordered Trees Jesper Jansson Department of Computer Science Lund University, Box 118 SE-221

More information

Image Classification Using Wavelet Coefficients in Low-pass Bands

Image Classification Using Wavelet Coefficients in Low-pass Bands Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August -7, 007 Image Classification Using Wavelet Coefficients in Low-pass Bands Weibao Zou, Member, IEEE, and Yan

More information

AMF Configurations: Checking for Service Protection Using Heuristics

AMF Configurations: Checking for Service Protection Using Heuristics AMF Configurations: Checking for Service Protection Using Heuristics P. Salehi, F. Khendek, A. Hamou-Lhadj Electrical and Computer Engineering Department Concordia University Montréal, Canada {pe_saleh,

More information

Edge Equalized Treemaps

Edge Equalized Treemaps Edge Equalized Treemaps Aimi Kobayashi Department of Computer Science University of Tsukuba Ibaraki, Japan kobayashi@iplab.cs.tsukuba.ac.jp Kazuo Misue Faculty of Engineering, Information and Systems University

More information

An Edge-Swap Heuristic for Finding Dense Spanning Trees

An Edge-Swap Heuristic for Finding Dense Spanning Trees Theory and Applications of Graphs Volume 3 Issue 1 Article 1 2016 An Edge-Swap Heuristic for Finding Dense Spanning Trees Mustafa Ozen Bogazici University, mustafa.ozen@boun.edu.tr Hua Wang Georgia Southern

More information

Applying an Enhanced Heuristic Algorithm to a Constrained Two-Dimensional Cutting Stock Problem

Applying an Enhanced Heuristic Algorithm to a Constrained Two-Dimensional Cutting Stock Problem Appl. Math. Inf. Sci. 9, No. 1L, 179-187 (2015) 179 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/091l23 Applying an Enhanced Heuristic Algorithm to

More information

Anale. Seria Informatică. Vol. X fasc Annals. Computer Science Series. 10 th Tome 1 st Fasc. 2012

Anale. Seria Informatică. Vol. X fasc Annals. Computer Science Series. 10 th Tome 1 st Fasc. 2012 Anale. Seria Informatică. Vol. X fasc. 1 2012 9 HEURISTIC ALGORITHM FOR GRAPH COLORING BASED ON MAXIMUM INDEPENDENT SET Hilal Al Mara beh, Amjad Suleiman Department Basic Science King Saud bin Abdulaziz

More information

Online algorithms for clustering problems

Online algorithms for clustering problems University of Szeged Department of Computer Algorithms and Artificial Intelligence Online algorithms for clustering problems Summary of the Ph.D. thesis by Gabriella Divéki Supervisor Dr. Csanád Imreh

More information

An Iterative Convex Optimization Procedure for Structural System Identification

An Iterative Convex Optimization Procedure for Structural System Identification An Iterative Convex Optimization Procedure for Structural System Identification Dapeng Zhu, Xinjun Dong, Yang Wang 3 School of Civil and Environmental Engineering, Georgia Institute of Technology, 79 Atlantic

More information

GENETIC LOCAL SEARCH ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS WITH RELEASE TIME

GENETIC LOCAL SEARCH ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS WITH RELEASE TIME GENETIC LOCAL SEARCH ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS WITH RELEASE TIME Jihchang Hsieh^, Peichann Chang^, Shihhsin Chen^ Department of Industrial Management, Vanung University, Chung-Li

More information

3 and 4-Bandwidth Critical Graphs

3 and 4-Bandwidth Critical Graphs and -Bandwidth Critical Graphs nn Kilzer ugust, 00 bstract This paper investigates and -bandwidth critical graphs. It concludes Holly Westerfield s proof that only six types of -bandwidth critical graphs

More information

Optimal Sequential Multi-Way Number Partitioning

Optimal Sequential Multi-Way Number Partitioning Optimal Sequential Multi-Way Number Partitioning Richard E. Korf, Ethan L. Schreiber, and Michael D. Moffitt Computer Science Department University of California, Los Angeles Los Angeles, CA 90095 IBM

More information

Mining Quantitative Association Rules on Overlapped Intervals

Mining Quantitative Association Rules on Overlapped Intervals Mining Quantitative Association Rules on Overlapped Intervals Qiang Tong 1,3, Baoping Yan 2, and Yuanchun Zhou 1,3 1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China {tongqiang,

More information

A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition

A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition A 2k-Kernelization Algorithm for Vertex Cover Based on Crown Decomposition Wenjun Li a, Binhai Zhu b, a Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha

More information

Informatik-Bericht Nr

Informatik-Bericht Nr F Informatik-Bericht Nr. 2008-1 Schriftenreihe Fachbereich Informatik, Fachhochschule Trier A Local-Search Approach for Solving a Bin-Packing Problem with Secondary Objectives Sebastian Niemann Heinz Schmitz

More information

A New Approach to Packing Non-Convex Polygons Using the No Fit Polygon and Meta- Heuristic and Evolutionary Algorithms

A New Approach to Packing Non-Convex Polygons Using the No Fit Polygon and Meta- Heuristic and Evolutionary Algorithms A New Approach to Packing Non-Convex Polygons Using the No Fit Polygon and Meta- Heuristic and Evolutionary s Edmund Burke and Graham Kendall The University of Nottingham, School of Computer Science &

More information

Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012

Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 Solving Assembly Line Balancing Problem in the State of Multiple- Alternative

More information

A GENERALIZATION OF THE

A GENERALIZATION OF THE A GENERALIZATION OF THE DIRECTED GRAPH LAYERING PROBLEM Ulf Rüegg, Thorsten Ehlers, Miro Spönemann, and Reinhard von Hanxleden Department of Computer Science Kiel University THE MOTIVATION 1 2 3 PROBLEM

More information

A Hybrid Genetic Algorithms and Tabu Search for Solving an Irregular Shape Strip Packing Problem

A Hybrid Genetic Algorithms and Tabu Search for Solving an Irregular Shape Strip Packing Problem A Hybrid Genetic Algorithms and Tabu Search for Solving an Irregular Shape Strip Packing Problem Kittipong Ekkachai 1 and Pradondet Nilagupta 2 ABSTRACT This paper presents a packing algorithm to solve

More information

BIN PACKING PROBLEM: A LINEAR CONSTANT- SPACE -APPROXIMATION ALGORITHM

BIN PACKING PROBLEM: A LINEAR CONSTANT- SPACE -APPROXIMATION ALGORITHM International Journal on Computational Science & Applications (IJCSA) Vol.5,No.6, December 2015 BIN PACKING PROBLEM: A LINEAR CONSTANT- SPACE -APPROXIMATION ALGORITHM Abdolahad Noori Zehmakan Department

More information

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization Richa Agnihotri #1, Dr. Shikha Agrawal #1, Dr. Rajeev Pandey #1 # Department of Computer Science Engineering, UIT,

More information

A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem

A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem José Fernando Gonçalves Faculdade de Economia do Porto, LIAAD Rua Dr. Roberto Frias, s/n, 4200-464

More information

A Recursive Revised First Fit Algorithm for Cutting Stock Problem

A Recursive Revised First Fit Algorithm for Cutting Stock Problem International Journal of Information Systems for Logistics and Management Vol. 4, No. 1 (2008) 31-40 http://www.knu.edu.tw/academe/englishweb/web/ijislmweb/index.html A Recursive Revised First Fit Algorithm

More information

3 The standard grid. N ode(0.0001,0.0004) Longitude

3 The standard grid. N ode(0.0001,0.0004) Longitude International Conference on Information Science and Computer Applications (ISCA 2013 Research on Map Matching Algorithm Based on Nine-rectangle Grid Li Cai1,a, Bingyu Zhu2,b 1 2 School of Software, Yunnan

More information

Tiling Rectangles with Gaps by Ribbon Right Trominoes

Tiling Rectangles with Gaps by Ribbon Right Trominoes Open Journal of Discrete Mathematics, 2017, 7, 87-102 http://www.scirp.org/journal/ojdm ISSN Online: 2161-7643 ISSN Print: 2161-7635 Tiling Rectangles with Gaps by Ribbon Right Trominoes Premalatha Junius,

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Michael A. Bekos 1, Michael Kaufmann 2, Katerina Potika 1, and Antonios Symvonis 1 1 National Technical University of Athens, School of Applied Mathematical & Physical

More information

Range Tree Applications in Computational Geometry

Range Tree Applications in Computational Geometry Range Tree Applications in Computational Geometry ANTONIO-GABRIEL STURZU, COSTIN-ANTON BOIANGIU Computer Science Department Politehnica University of Bucharest Splaiul Independentei 313, Sector 6, Bucharest,

More information

UMCS. Annales UMCS Informatica AI 7 (2007) Data mining techniques for portal participants profiling. Danuta Zakrzewska *, Justyna Kapka

UMCS. Annales UMCS Informatica AI 7 (2007) Data mining techniques for portal participants profiling. Danuta Zakrzewska *, Justyna Kapka Annales Informatica AI 7 (2007) 153-161 Annales Informatica Lublin-Polonia Sectio AI http://www.annales.umcs.lublin.pl/ Data mining techniques for portal participants profiling Danuta Zakrzewska *, Justyna

More information

Artificial Neural Network and Multi-Response Optimization in Reliability Measurement Approximation and Redundancy Allocation Problem

Artificial Neural Network and Multi-Response Optimization in Reliability Measurement Approximation and Redundancy Allocation Problem International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 Volume 4 Issue 10 December. 2016 PP-29-34 Artificial Neural Network and Multi-Response Optimization

More information

Solving a Nesting Problem using the Collision Free Region

Solving a Nesting Problem using the Collision Free Region Solving a Nesting Problem using the Collision Free Region Master Thesis August 31 th, 2016 Irene Reijntjes Supervisor: dr. ir. C.A.J. Hurkens Abstract This report investigates an irregular shape packing

More information

SCHEDULING WITH RELEASE TIMES AND DEADLINES ON A MINIMUM NUMBER OF MACHINES *

SCHEDULING WITH RELEASE TIMES AND DEADLINES ON A MINIMUM NUMBER OF MACHINES * SCHEDULING WITH RELEASE TIMES AND DEADLINES ON A MINIMUM NUMBER OF MACHINES * Mark Cieliebak 1, Thomas Erlebach 2, Fabian Hennecke 1, Birgitta Weber 1, and Peter Widmayer 1 1 Institute of Theoretical Computer

More information

Tabu search and genetic algorithms: a comparative study between pure and hybrid agents in an A-teams approach

Tabu search and genetic algorithms: a comparative study between pure and hybrid agents in an A-teams approach Tabu search and genetic algorithms: a comparative study between pure and hybrid agents in an A-teams approach Carlos A. S. Passos (CenPRA) carlos.passos@cenpra.gov.br Daniel M. Aquino (UNICAMP, PIBIC/CNPq)

More information

Geometric Considerations for Distribution of Sensors in Ad-hoc Sensor Networks

Geometric Considerations for Distribution of Sensors in Ad-hoc Sensor Networks Geometric Considerations for Distribution of Sensors in Ad-hoc Sensor Networks Ted Brown, Deniz Sarioz, Amotz Bar-Noy, Tom LaPorta, Dinesh Verma, Matthew Johnson, Hosam Rowaihy November 20, 2006 1 Introduction

More information

Performance Assessment of DMOEA-DD with CEC 2009 MOEA Competition Test Instances

Performance Assessment of DMOEA-DD with CEC 2009 MOEA Competition Test Instances Performance Assessment of DMOEA-DD with CEC 2009 MOEA Competition Test Instances Minzhong Liu, Xiufen Zou, Yu Chen, Zhijian Wu Abstract In this paper, the DMOEA-DD, which is an improvement of DMOEA[1,

More information

Some Approximation Algorithms for Constructing Combinatorial Structures Fixed in Networks

Some Approximation Algorithms for Constructing Combinatorial Structures Fixed in Networks Some Approximation Algorithms for Constructing Combinatorial Structures Fixed in Networks Jianping Li Email: jianping@ynu.edu.cn Department of Mathematics Yunnan University, P.R. China 11 / 31 8 ¹ 1 3

More information

Robust Steganography Using Texture Synthesis

Robust Steganography Using Texture Synthesis Robust Steganography Using Texture Synthesis Zhenxing Qian 1, Hang Zhou 2, Weiming Zhang 2, Xinpeng Zhang 1 1. School of Communication and Information Engineering, Shanghai University, Shanghai, 200444,

More information

A hybrid algorithm for the two-dimensional layout problem: the cases of regular and irregular shapes

A hybrid algorithm for the two-dimensional layout problem: the cases of regular and irregular shapes Intl. Trans. in Op. Res. 10 (2003) 195 216 INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH A hybrid algorithm for the two-dimensional layout problem: the cases of regular and irregular shapes M. Hifi

More information

An Integrated Design Algorithm for Detailed Layouts Based on the Contour Distance

An Integrated Design Algorithm for Detailed Layouts Based on the Contour Distance An Integrated Design Algorithm for Detailed Layouts Based on the Contour Distance Jae-Gon Kim and Marc Goetschalckx School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta,

More information

An Improved Approach for Examination Time Tabling Problem Using Graph Coloring

An Improved Approach for Examination Time Tabling Problem Using Graph Coloring International Journal of Engineering and Technical Research (IJETR) ISSN: 31-0869 (O) 454-4698 (P), Volume-7, Issue-5, May 017 An Improved Approach for Examination Time Tabling Problem Using Graph Coloring

More information

Research on Digital Library Platform Based on Cloud Computing

Research on Digital Library Platform Based on Cloud Computing Research on Digital Library Platform Based on Cloud Computing Lingling Han and Lijie Wang Heibei Energy Institute of Vocation and Technology, Tangshan, Hebei, China hanlingling2002@126.com, wanglj509@163.com

More information

Meshlization of Irregular Grid Resource Topologies by Heuristic Square-Packing Methods

Meshlization of Irregular Grid Resource Topologies by Heuristic Square-Packing Methods Meshlization of Irregular Grid Resource Topologies by Heuristic Square-Packing Methods Uei-Ren Chen 1, Chin-Chi Wu 2, and Woei Lin 3 1 Department of Electronic Engineering, Hsiuping Institute of Technology

More information