Advanced Scatter Correction for Quantitative Cardiac SPECT

Size: px
Start display at page:

Download "Advanced Scatter Correction for Quantitative Cardiac SPECT"

Transcription

1 Advanced Scatter Correction for Quantitative Cardiac SPECT Frederik J. Beekman PhD Molecular Image Science Laboratory University Medical Center Utrecht The Netherlands

2 Outline What is scatter? Scatter correction methods (they really work!) Advanced iterative methods that incorporate scatter models General-purpose algorithms for scatter modelling: Rapid 3D Monte Carlo simulation Monte Carlo down-scatter correction for dual-isotope SPECT and attenuation maps Hardware essentials for attenuation and scatter correction

3 #1 ideal direct detection #2 direct detection; blur #3 not detected #4 scattered, causing attenuation What is scatter? #5 scatter,, Inappropriately detected => causes blur, distortion, and quantitative inaccuracy Energy resolution is insufficient for discriminating between scattered and primary photons

4 Energy resolution of camera determines amount of detected scatter Scatter Fraction for LAO View Tc-99m MIBI 0.40 Scatter Fraction For Window Twice % FWHM % 2% 4% 6% 8% 10% 12% Energy Resolution (% FWHM) Figure courtesy of Prof. Michael King

5 Examples of projections in SPECT Effect of scatter: Line source behind slab (1*) (1*) Simon Cherry et al, Physics in Nuclear Medicine Effect of scatter: Point source in cylinder

6 SPECT is severely degraded by photon scatter in patient Correction of scatter complicated by non-uniformity of thorax density We need methods that 1. reconstruct the same emission images of identical hearts, independent of surrounding anatomy 2. are robust to noise 3. are quantitative 4. provide good resolution 5. are fast enough and practical

7 Anatomical differences leads to different images of identical hearts Difference of amounts surrounding tissue leads to Quantitative inaccuracy Variable visual appearance of image Loss of lesion detectability Results in unnecessary exposure to catheterization risk

8 Scatter correction methods Recommended review paper: Zaidi & Koral Scatter modeling and compensation in emission tomography. Eur J Nucl Med Slides Mol are not Imaging. to be reproduced without 2004 permission May;31(5): of the author

9 Three main lines of scatter correction Energy based window subtraction * spectral deconvolution maximum likelihood estimation Spatial domain based spatial convolution, scatter point spread function *, Monte Carlo* Combined energy and spatial multiple energy response re-projection maximum likelihood Slides are estimation not to be reproduced without permission of the author *will be addressed

10 Scatter Estimation Projection data can be written as: Acq = (P + S) + Noise (P + S) = + + Scatter compensation attempts to reconstruct P Estimate S using Energy or Spatial Methods S can be subtracted before or used in reconstruction Note Noise Slide courtesy of Prof. Michael King

11 Energy Spectrum Scatter Estimation Use energy spectrum at each pixel to estimate scatter contribution at that pixel. Example: Triple Energy Window (TEW) Ogawa, IEEE TMI 10: , 1991 S W C C ' =. + 1 W W3 Slide courtesy of Prof. Michael King

12 Energy Spectrum Scatter Estimation Example: Triple Energy Window True noise free scatter projection Noise free TEW scatter estimate Noisy TEW scatter estimate Filtered TEW scatter estimate Slide courtesy of Prof Michael King

13 TPF TEW scatter correction helps! ROC Curves for Overall Detection of CAD FBP vs Iterative (OSEM) FBP AC AC+SC AC+SC+RC FPF AUC FBP AC AC+SC AC+SC+RC p < Narayanan et al, J. Nucl. Med., vol. 44, , Gradual improvement in detection accuracy (over FBP) for CAD is seen when corrections are added in incremental steps OSEM with all 3 corrections (AC+SC+RC) provides statistically significantly improved detection accuracy over OSEM with solely AC

14 Spatial Domain Scatter Estimation Create an estimate of the scatter projection from: Current estimate of activity distribution Attenuation Map Model of Scatter Response (Point Spread Function or Monte Carlo simulation) Estimate can be: Subtracted from acquired projection Summed to the estimated primary projection and employed in iterative reconstruction (preferred method) Examples of Domain Methods: Floyd et al 1986 J. Nucl. Med. 27: ; E.C. Frey et al IEEE Nuclear Science Symposium ; S. Meikle et al J. Nucl. Med. 23: ; B.F Hutton et al.1996 Eur. J. Nucl. Med. 23: ; and F.J. Beekman et al 2002 IEEE TMI 21:

15 Domain scatter correction helps to.. cardiac insert with lesions non-uniform thorax phantom

16 Dependency reconstruction on accuracy of mathematical model used during reconstruction Tl-201 filled myocardial insert with lesion N A AD ADS From: F.J. Beekman et al, Improvement Slides are not to be of reproduced image without resolution permission of and the author quantitative accuracy in clinical Single Photon Emission Computed Tomography Comp. Med. Im. Graph., 2001

17 TC-99m ML-EM A ML-EM AD ML-EM EM-ADS DM-OS OS-ADS Note that ML-EM EM-ADS and DM-OS OS-ADS are extremely close

18 No scatter model Scatter model Gain in contrast when compared at equal image noise level (C. Kamphuis et al, Eur. J. Nucl. Med.,vol. 25 pp. 8-18, )

19 Advanced iterative methods that incorporate scatter models

20 Iterative reconstruction can be seen as a parameter estimation problem with a typical form: p = M a + n <=> p j = Σ i M a ji i + n j p j = projection data in pixel j (e.g. detected # of photons) Unknowns: a i = values of volume elements ( voxel voxel ) i (activity concentration) n j = noise in pixel j M ji = transition matrix element represents probability that photon emitted in voxel i is detected in pixel j Iterative reconstruction estimates a from above equation

21 Influence accuracy of matrix M ML-EM: δ-like PSF Only attenuation modeled ML-EM: Accurate scatter and detector model added

22 Transition matrix M is huge, and complicated Detector blurring Non-uniform attenuation (thorax!) Scatter 3D reconstruction

23 2D versus 3D SPECT reconstruction 3D DETECTOR DETECTOR 2D 3D SPECT reconstruction models photon cross-talk between slices, where a is an entire volume instead of a slice, and p consist of pixels lying in multiple planes Improved quantification, better SNR 3D requires larger matrix Slides are size not to be reproduced and without longer permission of reconstruction the author time

24 Iterative Reconstruction illustrated Object space Projection space Current estimate Update Object error map Matrix M Simulation (or re-projection ) Matrix M or M Backprojection Estimated projection Measured projection Error projection Compare e.g. - or /

25 Example iteration process: ML-EM reconstruction brain SPECT 0 iterations 10 iterations 30 iterations 60 iterations

26 Simulations studies have shown that modeling of scatter (in matrix M) during iterative reconstruction improves image noise properties compared to any window-based scatter correction Scatter Compensation Methods in 3D Iterative SPECT Reconstruction: A Simulation Study. F.J. Beekman, C. Kamphuis, E.C. Frey., Phys. Med. Biol. 1997

27 What may be achieved with modeling of photon scatter in M ij? Better quantitative accuracy Fewer windows required Better noise properties May be more robust

28 Novel general-purpose algorithms for scatter modelling: Rapid 3D Monte Carlo modelling

29 Accuracy physics model depends on the photon energy and grade of non-uniformity of the scatter medium Many scatter models proposed. Monte Carlo (MC) based modeling is accurate and general MLEM 2D MC version has been proposed in 1986 by the Duke group (Floyd et al 1986 J. Nucl. Med. 27: ) Fully 3D MC based SR has always been prohibitively slow and required prohibitively large matrix (Terabytes)

30 A solution is to combine methods of acceleration of 3D MC reconstruction Dual Matrix OS-EM eliminates matrix storage Convolution Forced Detection (speed up MC re-projection) Lower number of photon tracks in early iterations Re-use of photon tracks calculated in previous iterations Details: F.J Beekman, H.M. de Jong, S. van Geloven, IEEE Trans. Med. Imaging :

31 Dual Matrix OSEM reconstruction (DM-OS, Kamphuis,, et al. Eur.. J. Nucl Med. 1998): Do simultaneous (I) Ordered subsets and (ii) Dual Matrix (Zeng & Gullberg IEEE Trans. Nucl. Sci. 92 ) a k i + 1 = a k i ~ j M ji j ~ M p ji i M j a k ji i M models attenuation, detector and scatter (ADS) and ~ M models only attenuation and detector blur. No storage of huge scatter matrix required anymore!

32 Convolution Forced Detection (CFD) Phantom (density) Phantom Activity Forced Detection Convolution Forced Detection Evaluation: De Jong,, Beekman & Slijpen,, IEEE TNS 2001 Acceleration factor typically

33 artifacts No scatter modeled scatter PSF Monte Carlo based

34 Computational Load: Influence of Photon tracks 10^4 Photons 10^5 Photons 10^6 Photons Short axis Vertical profile 6 min 8 min 42 min Single CPU, Pentium IV, 2GHz De Wit, Xiao, Beekman (submitted)

35 Preliminary result 99m Tc Small lesion (3 ml) in the apical part of the inferior wall Short Axis Vertical profile ExSPECT (ADS) Monte Carlo based (ADS)

36 Down-scatter correction of Tl-201 images in simultaneous Tl-201/Tc-99m SPECT Simultaneous Tc-99m/ 99m/Tl-201 dual-isotope SPECT with Monte Carlo based down-scatter correction H.W.A.M. de Jong,, F. J. Beekman P.P. van Rijk and M.A. Viergever Eur.. J.Nucl Med., Aug; 29(8): , 2002

37 Problems in simultaneous Tc-99m/Tl-201 dualisotope SPECT for cardiac imaging -Down-scatter: Tc-99m photons are detected in Tl- 201 window Tl-201 Tc-99m -Down-scatter leads to decrease of contrast and quantitative accuracy Tc+Tl -Simultaneous Tc/Tl dualisotope SPECT is not recommended because sufficient down-scatter correction lacks 72 kev 140 kev Energy

38 Results Virgin Tl-201 image compared to dual-isotope (DI) Tl-201 images with and without down-scatter correction Virgin Tl-201 image Contaminated with Tc-99m down-scatter Corrected for Down-scatter

39 Tc-99m down-scatter correction of Gd-153 attenuation maps Monte Carlo-based down-scatter correction of SPECT attenuation maps. Bokulic T, Vastenhouw B, De Jong HW, Van Dongen AJ, Van Rijk PP, Beekman FJ. Eur J. Nucl. Med, 2004

40 1. Approximate attenuation map is reconstructed using down-scatter contaminated transmission data. 2. Emission map reconstruction using contaminated attenuation map. 3. Based on result step 1 & 2, down-scatter in the (153)Gd window is simulated using accelerated Monte Carlo simulation 4. Down-scatter estimate is used during reconstruction of a corrected attenuation map. 5. With corrected attenuation map, an improved (99m)Tc image is reconstructed. Steps 3-5 are repeated to incrementally improve the down-scatter estimate.

41

42

43 Hardware requirements Good attenuation maps are key to proper attenuation and scatter correction O'Connor MK et al. A multi-centre evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models., J Nucl Cardiol More energy information has to be recorded to make further progress More counts: converging collimators, more detectors

44 Hardware requirements (I) Attenuation Maps (problems) Sensitivity to down-scatter is significant Number of energy windows and how the system allows them to be positioned is often too limited for optimal down-scatter correction Reliability of mechanics involved can be disappointing Evans and Hutton; Variation in scanning line source sensitivity: a significant source of error in simultaneous emission-transmission tomography. Eur J Nucl Med Resolution and reproducibility are not optimal yet Truncation of attenuation maps

45 Hardware requirements (II) Industry, please Choose good transmission hardware designs Do proper implementation Consult the inventors/scientists that proposed the TCT systems Take complains of customers serious Make systems cost effective (e.g., low cost transmission sources)

46 Hardware requirements (III) Attenuation Maps (solutions) Systems providing better attenuation maps have been proposed: X-ray CT: Good quality attenuation maps. Do you want this with all cardiac scans? Costs? Dose? Offset fan beam collimators with line source prevent truncation and have good transmission map resolution and emission sensitivity e.g. Chang et al.phys Med Biol May;40(5):913-2 Gilland, Jaszczak and Coleman. Transmission CT IEEE Trans Nucl Sci 2000 Offset fan beam collimators with moving point source: Cheap sources, high resolution, low down-scatter contamination. minimal or no truncation, increased emission sensitivity F.J. Beekman et al. J.Nucl. Med. 1998; 39:

47 Hardware requirements (V) Energy Windows More windows required to utilize information of scattered photons (4 is insufficient, approx. 15 is very nice) Preferred is list mode data ( infinite number of windows). (see presentation James Cullom) Overlapping moving windows are required for implementing simple and efficient correction methods (e.g. down-scatter correction for attenuation maps) and for increasing counting efficiency

48 Hardware requirements (VI) Detectors Use detectors with high energy resolution. => Less scatter detected => Main problem: costs

49 Conclusions and Discussion Scatter correction is important and can be effective Monte Carlo based iterative reconstruction is versatile and accurate. Is attractive for (down-)scatter correction in single and dual isotope SPECT Availability of better hardware for attenuation and scatter correction is essential to move forward to better cardiac SPECT images Industry should more rapidly adopt new methods that have been proposed in (recent) years.

50 Prof. Brian Hutton Dr. Hugo de Jong Dr. Chris Kamphuis Prof. Michael King Dr. V. Narayanan Brendan Vastenhouw Dr. Tim de Wit Prof. Peter van Rijk Jianbin Xiao Alice van Dongen Dr. Fred van het Schip Dr. Frank Nijssen Dr. Fred Verzijlbergen Acknowledgements

51 U-SPECT-I University Medical Centre Utrecht Mouse Heart LV RV LV apex LV 5 mm RV Six mci (99m)Tc Tetrofosmin Statistical reconstruction Acquisition: 30 min. non-gated 75 gold pinholes, = 0.6mm

52 U-SPECT-I University Medical Centre Utrecht Mouse Spine Spinous process Intervertebral foramen 5 mm Vertebral foramen Four mci (99m)Tc-HDP Acquisition time: 22 min. 75 gold pinholes, = 0.6mm Iso-surface renderings of Slides SPECT are not to bedata reproduced without permission of the author Transverse process

Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction

Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction Monte-Carlo-Based Scatter Correction for Quantitative SPECT Reconstruction Realization and Evaluation Rolf Bippus 1, Andreas Goedicke 1, Henrik Botterweck 2 1 Philips Research Laboratories, Aachen 2 Fachhochschule

More information

3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction 3-D Monte Carlo-based Scatter Compensation in Quantitative I-131 SPECT Reconstruction Yuni K. Dewaraja, Member, IEEE, Michael Ljungberg, Member, IEEE, and Jeffrey A. Fessler, Member, IEEE Abstract- we

More information

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Bernd Schweizer, Andreas Goedicke Philips Technology Research Laboratories, Aachen, Germany bernd.schweizer@philips.com Abstract.

More information

Slab-by-Slab Blurring Model for Geometric Point Response Correction and Attenuation Correction Using Iterative Reconstruction Algorithms

Slab-by-Slab Blurring Model for Geometric Point Response Correction and Attenuation Correction Using Iterative Reconstruction Algorithms 2168 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 45, NO. 4, AUGUST 1998 Slab-by-Slab Blurring Model for Geometric Point Response Correction and Attenuation Correction Using Iterative Reconstruction Algorithms

More information

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET

Workshop on Quantitative SPECT and PET Brain Studies January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Workshop on Quantitative SPECT and PET Brain Studies 14-16 January, 2013 PUCRS, Porto Alegre, Brasil Corrections in SPECT and PET Físico João Alfredo Borges, Me. Corrections in SPECT and PET SPECT and

More information

A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques

A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques IMAGING A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques Lai K. Leong, Randall L. Kruger, and Michael K. O Connor Section of Nuclear Medicine, Department

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

SINGLE-PHOTON emission computed tomography

SINGLE-PHOTON emission computed tomography 1458 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 59, NO. 4, AUGUST 2012 SPECT Imaging With Resolution Recovery Andrei V. Bronnikov Abstract Single-photon emission computed tomography (SPECT) is a method

More information

Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111 In SPECT

Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111 In SPECT Improved activity estimation with MC-JOSEM versus TEW-JOSEM in 111 In SPECT Jinsong Ouyang, a Georges El Fakhri, and Stephen C. Moore Department of Radiology, Harvard Medical School and Brigham and Women

More information

(RMSE). Reconstructions showed that modeling the incremental blur improved the resolution of the attenuation map and quantitative accuracy.

(RMSE). Reconstructions showed that modeling the incremental blur improved the resolution of the attenuation map and quantitative accuracy. Modeling the Distance-Dependent Blurring in Transmission Imaging in the Ordered-Subset Transmission (OSTR) Algorithm by Using an Unmatched Projector/Backprojector Pair B. Feng, Member, IEEE, M. A. King,

More information

Reconstruction from Projections

Reconstruction from Projections Reconstruction from Projections M.C. Villa Uriol Computational Imaging Lab email: cruz.villa@upf.edu web: http://www.cilab.upf.edu Based on SPECT reconstruction Martin Šámal Charles University Prague,

More information

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy

Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Assessment of OSEM & FBP Reconstruction Techniques in Single Photon Emission Computed Tomography Using SPECT Phantom as Applied on Bone Scintigraphy Physics Department, Faculty of Applied Science,Umm Al-Qura

More information

SPECT reconstruction

SPECT reconstruction Regional Training Workshop Advanced Image Processing of SPECT Studies Tygerberg Hospital, 19-23 April 2004 SPECT reconstruction Martin Šámal Charles University Prague, Czech Republic samal@cesnet.cz Tomography

More information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY 2006 181 3-D Monte Carlo-Based Scatter Compensation in Quantitative I-131 SPECT Reconstruction Yuni K. Dewaraja, Member, IEEE, Michael Ljungberg,

More information

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney.

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC What is needed? Why? How often? Who says? QA and QC in Nuclear Medicine QA - collective term for all the efforts made to produce

More information

SPECT images are degraded by photon attenuation, by

SPECT images are degraded by photon attenuation, by Evaluation of 3D Monte Carlo Based Scatter Correction for 99m Tc Cardiac Perfusion SPECT Jianbin Xiao 1,2, Tim C. de Wit 1,2, Steven G. Staelens 3, and Freek J. Beekman 1,2 1 Department of Nuclear Medicine,

More information

Iterative and analytical reconstruction algorithms for varying-focal-length cone-beam

Iterative and analytical reconstruction algorithms for varying-focal-length cone-beam Home Search Collections Journals About Contact us My IOPscience Iterative and analytical reconstruction algorithms for varying-focal-length cone-beam projections This content has been downloaded from IOPscience.

More information

IN single photo emission computed tomography (SPECT)

IN single photo emission computed tomography (SPECT) IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 7, JULY 2006 941 Incorporation of System Resolution Compensation (RC) in the Ordered-Subset Transmission (OSTR) Algorithm for Transmission Imaging in

More information

Research Article Optimisation of Simultaneous Tl-201/Tc-99m Dual Isotope Reconstruction with Monte-Carlo-Based Scatter Correction

Research Article Optimisation of Simultaneous Tl-201/Tc-99m Dual Isotope Reconstruction with Monte-Carlo-Based Scatter Correction International Journal of Molecular Imaging Volume 2012, Article ID 695632, 9 pages doi:10.1155/2012/695632 Research Article Optimisation of Simultaneous Tl-201/Tc-99m Dual Isotope Reconstruction with Monte-Carlo-Based

More information

Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I 131 imaging

Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I 131 imaging Iran. J. Radiat. Res., 2007; 4 (4): 175-182 Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I 131 imaging H.R. Khosravi 1, 2*, S. Sarkar 1, 3,A.Takavar 1, 4, M. Saghari

More information

Iterative SPECT reconstruction with 3D detector response

Iterative SPECT reconstruction with 3D detector response Iterative SPECT reconstruction with 3D detector response Jeffrey A. Fessler and Anastasia Yendiki COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science

More information

ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY *

ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY * Romanian Reports in Physics, Vol. 66, No. 1, P. 200 211, 2014 ATTENUATION CORRECTION IN SPECT DURING IMAGE RECONSTRUCTION USING INVERSE MONTE CARLO METHOD A SIMULATION STUDY * S. AHMADI 1, H. RAJABI 2,

More information

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO Abstract C.S. Levin, Y-C Tai, E.J. Hoffman, M. Dahlbom, T.H. Farquhar UCLA School of Medicine Division

More information

Introduction to Positron Emission Tomography

Introduction to Positron Emission Tomography Planar and SPECT Cameras Summary Introduction to Positron Emission Tomography, Ph.D. Nuclear Medicine Basic Science Lectures srbowen@uw.edu System components: Collimator Detector Electronics Collimator

More information

Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm

Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm 548 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 5, MAY 2000 Unmatched Projector/Backprojector Pairs in an Iterative Reconstruction Algorithm Gengsheng L. Zeng*, Member, IEEE, and Grant T. Gullberg,

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

A slice-by-slice blurring model and kernel evaluation using the Klein-Nishina formula for 3D

A slice-by-slice blurring model and kernel evaluation using the Klein-Nishina formula for 3D Home Search Collections Journals About Contact us My IOPscience A slice-by-slice blurring model and kernel evaluation using the Klein-Nishina formula for 3D scatter compensation in parallel and converging

More information

SPECT (single photon emission computed tomography)

SPECT (single photon emission computed tomography) 2628 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 5, OCTOBER 2006 Detector Blurring and Detector Sensitivity Compensation for a Spinning Slat Collimator Gengsheng L. Zeng, Senior Member, IEEE Abstract

More information

Introduction to Emission Tomography

Introduction to Emission Tomography Introduction to Emission Tomography Gamma Camera Planar Imaging Robert Miyaoka, PhD University of Washington Department of Radiology rmiyaoka@u.washington.edu Gamma Camera: - collimator - detector (crystal

More information

Constructing System Matrices for SPECT Simulations and Reconstructions

Constructing System Matrices for SPECT Simulations and Reconstructions Constructing System Matrices for SPECT Simulations and Reconstructions Nirantha Balagopal April 28th, 2017 M.S. Report The University of Arizona College of Optical Sciences 1 Acknowledgement I would like

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

USING cone-beam geometry with pinhole collimation,

USING cone-beam geometry with pinhole collimation, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE 2009 687 A Backprojection-Based Parameter Estimation Technique for Skew-Slit Collimation Jacob A. Piatt, Student Member, IEEE, and Gengsheng L.

More information

Impact of X-ray Scatter When Using CT-based Attenuation Correction in PET: A Monte Carlo Investigation

Impact of X-ray Scatter When Using CT-based Attenuation Correction in PET: A Monte Carlo Investigation 26 IEEE Nuclear Science Symposium Conference Record M6-349 Impact of X-ray Scatter When Using CT-based Attenuation Correction in PET: A Monte Carlo Investigation Habib Zaidi, Senior Member, IEEE and Mohammad

More information

S rect distortions in single photon emission computed

S rect distortions in single photon emission computed IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 41, NO. 6, DECEMBER 1994 2807 A Rotating and Warping Projector/Backprojector for Fan-Beam and Cone-Beam Iterative Algorithm G. L. Zeng, Y.-L. Hsieh, and G. T.

More information

Spiral ASSR Std p = 1.0. Spiral EPBP Std. 256 slices (0/300) Kachelrieß et al., Med. Phys. 31(6): , 2004

Spiral ASSR Std p = 1.0. Spiral EPBP Std. 256 slices (0/300) Kachelrieß et al., Med. Phys. 31(6): , 2004 Spiral ASSR Std p = 1.0 Spiral EPBP Std p = 1.0 Kachelrieß et al., Med. Phys. 31(6): 1623-1641, 2004 256 slices (0/300) Advantages of Cone-Beam Spiral CT Image quality nearly independent of pitch Increase

More information

Philips SPECT/CT Systems

Philips SPECT/CT Systems Philips SPECT/CT Systems Ling Shao, PhD Director, Imaging Physics & System Analysis Nuclear Medicine, Philips Healthcare June 14, 2008 *Presented SNM08 Categorical Seminar - Quantitative SPECT and PET

More information

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system

Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system Implementation and evaluation of a fully 3D OS-MLEM reconstruction algorithm accounting for the PSF of the PET imaging system 3 rd October 2008 11 th Topical Seminar on Innovative Particle and Radiation

More information

*Health Physics Department, **Nuclear Medicine Department, Azienda Ospedaliera Maggiore della Carità, Novara, Italy

*Health Physics Department, **Nuclear Medicine Department, Azienda Ospedaliera Maggiore della Carità, Novara, Italy ORIGINAL ARTICLE Annals of Nuclear Medicine Vol. 19, No. 2, 75 82, 2005 Characterization of ordered-subsets expectation maximization with 3D post-reconstruction Gauss filtering and comparison with filtered

More information

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA

Review of PET Physics. Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Review of PET Physics Timothy Turkington, Ph.D. Radiology and Medical Physics Duke University Durham, North Carolina, USA Chart of Nuclides Z (protons) N (number of neutrons) Nuclear Data Evaluation Lab.

More information

A new approach to scatter correction in SPECT images based on Klein_Nishina equation

A new approach to scatter correction in SPECT images based on Klein_Nishina equation A new approach to scatter correction in SPECT images based on Klein_Nishina equation Mohsen Hajizadeh Saffar 1, Shabnam Oloomi 2, Peter Knoll 3, Hadi Taleshi 4 Original Article 1 Medical Physics Research

More information

A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms

A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms A Weighted Least Squares PET Image Reconstruction Method Using Iterative Coordinate Descent Algorithms Hongqing Zhu, Huazhong Shu, Jian Zhou and Limin Luo Department of Biological Science and Medical Engineering,

More information

DUAL energy X-ray radiography [1] can be used to separate

DUAL energy X-ray radiography [1] can be used to separate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY 2006 133 A Scatter Correction Using Thickness Iteration in Dual-Energy Radiography S. K. Ahn, G. Cho, and H. Jeon Abstract In dual-energy

More information

Mathematical methods and simulations tools useful in medical radiation physics

Mathematical methods and simulations tools useful in medical radiation physics Mathematical methods and simulations tools useful in medical radiation physics Michael Ljungberg, professor Department of Medical Radiation Physics Lund University SE-221 85 Lund, Sweden Major topic 1:

More information

Emission Computed Tomography Notes

Emission Computed Tomography Notes Noll (24) ECT Notes: Page 1 Emission Computed Tomography Notes Introduction Emission computed tomography (ECT) is the CT applied to nuclear medicine. There are two varieties of ECT: 1. SPECT single-photon

More information

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram TomoTherapy Related Projects An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram Development of A Novel Image Guidance Alternative for Patient Localization

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Development and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System

Development and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System Development and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System Navid Zeraatkar 1, Arman Rahmim 2,3, Saeed Sarkar 4,5, Mohammad Reza Ay 1,4* 1 Research Center for Molecular

More information

The Emory Reconstruction Toolbox Version 1.0

The Emory Reconstruction Toolbox Version 1.0 The Emory Reconstruction Toolbox Version 1.0 Operating Instructions Revision 02 (April, 2008) Operating Instructions The Emory Reconstruction Toolbox Application Copyrights, Trademarks, Restrictions

More information

Modeling and Incorporation of System Response Functions in 3D Whole Body PET

Modeling and Incorporation of System Response Functions in 3D Whole Body PET Modeling and Incorporation of System Response Functions in 3D Whole Body PET Adam M. Alessio, Member IEEE, Paul E. Kinahan, Senior Member IEEE, and Thomas K. Lewellen, Senior Member IEEE University of

More information

The Near Future in Cardiac CT Image Reconstruction

The Near Future in Cardiac CT Image Reconstruction SCCT 2010 The Near Future in Cardiac CT Image Reconstruction Marc Kachelrieß Institute of Medical Physics (IMP) Friedrich-Alexander Alexander-University Erlangen-Nürnberg rnberg www.imp.uni-erlangen.de

More information

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

Artifact Mitigation in High Energy CT via Monte Carlo Simulation PIERS ONLINE, VOL. 7, NO. 8, 11 791 Artifact Mitigation in High Energy CT via Monte Carlo Simulation Xuemin Jin and Robert Y. Levine Spectral Sciences, Inc., USA Abstract The high energy (< 15 MeV) incident

More information

Abstract I. INTRODUCTION

Abstract I. INTRODUCTION IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 1, FEBRUARY 2001 I I7 Asymmetric Cone-Beam Transmission Tomography Gengsheng L. Zeng, Member IEEE, Grant T. Gullberg, Senior Member IEEE, and Paul E.

More information

Spectral analysis of non-stationary CT noise

Spectral analysis of non-stationary CT noise Spectral analysis of non-stationary CT noise Kenneth M. Hanson Los Alamos Scientific Laboratory Int. Symposium and Course on Computed Tomography, Las Vegas, April 7-11, 1980 This presentation available

More information

Accelerated Monte Carlo simulation for scatter correction in SPECT. Hugo de Jong

Accelerated Monte Carlo simulation for scatter correction in SPECT. Hugo de Jong Accelerated Monte Carlo simulation for scatter correction in SPECT Hugo de Jong Colophon This book was typeset by the author using L A TEX2 ". Copyright cfl 21 by Hugo de Jong. All rights reserved. No

More information

Computer-Tomography II: Image reconstruction and applications

Computer-Tomography II: Image reconstruction and applications Computer-Tomography II: Image reconstruction and applications Prof. Dr. U. Oelfke DKFZ Heidelberg Department of Medical Physics (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de

More information

664 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 3, JUNE 2005

664 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 3, JUNE 2005 664 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 3, JUNE 2005 Attenuation Correction for the NIH ATLAS Small Animal PET Scanner Rutao Yao, Member, IEEE, Jürgen Seidel, Jeih-San Liow, Member, IEEE,

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial

8/2/2017. Disclosure. Philips Healthcare (Cleveland, OH) provided the precommercial 8//0 AAPM0 Scientific Symposium: Emerging and New Generation PET: Instrumentation, Technology, Characteristics and Clinical Practice Aug Wednesday 0:4am :pm Solid State Digital Photon Counting PET/CT Instrumentation

More information

Background. Outline. Radiographic Tomosynthesis: Image Quality and Artifacts Reduction 1 / GE /

Background. Outline. Radiographic Tomosynthesis: Image Quality and Artifacts Reduction 1 / GE / Radiographic Tomosynthesis: Image Quality and Artifacts Reduction Baojun Li, Ph.D Department of Radiology Boston University Medical Center 2012 AAPM Annual Meeting Background Linear Trajectory Tomosynthesis

More information

A publicly accessible Monte Carlo database for validation purposes in emission tomography

A publicly accessible Monte Carlo database for validation purposes in emission tomography Short communication A publicly accessible Monte Carlo database for validation purposes in emission tomography I. Castiglioni 1, I. Buvat 2, G. Rizzo 1, M. C. Gilardi 1, J. Feuardent 2, F. Fazio 1 1 IBFM-CNR,

More information

Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System

Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Temperature Distribution Measurement Based on ML-EM Method Using Enclosed Acoustic CT System Shinji Ohyama, Masato Mukouyama Graduate School

More information

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Christopher M Rank 1, Thorsten Heußer 1, Andreas Wetscherek 1, and Marc Kachelrieß 1 1 German Cancer

More information

Medical Imaging BMEN Spring 2016

Medical Imaging BMEN Spring 2016 Name Medical Imaging BMEN 420-501 Spring 2016 Homework #4 and Nuclear Medicine Notes All questions are from the introductory Powerpoint (based on Chapter 7) and text Medical Imaging Signals and Systems,

More information

CT vs. VolumeScope: image quality and dose comparison

CT vs. VolumeScope: image quality and dose comparison CT vs. VolumeScope: image quality and dose comparison V.N. Vasiliev *a, A.F. Gamaliy **b, M.Yu. Zaytsev b, K.V. Zaytseva ***b a Russian Sci. Center of Roentgenology & Radiology, 86, Profsoyuznaya, Moscow,

More information

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT Simulation Imaging Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT imaging Goal: Achieve image quality that allows to perform the task at hand (diagnostic

More information

Image-based Monte Carlo calculations for dosimetry

Image-based Monte Carlo calculations for dosimetry Image-based Monte Carlo calculations for dosimetry Irène Buvat Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165 CNRS Universités Paris 7 et Paris 11 Orsay, France buvat@imnc.in2p3.fr

More information

3-D PET Scatter Correction

3-D PET Scatter Correction Investigation of Accelerated Monte Carlo Techniques for PET Simulation and 3-D PET Scatter Correction C.H. Holdsworth, Student Member, IEEE, C.S. Levin", Member, IEEE, T.H. Farquhar, Student Member, IEEE,

More information

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies g Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies Presented by Adam Kesner, Ph.D., DABR Assistant Professor, Division of Radiological Sciences,

More information

8/1/2017. Current Technology: Energy Integrating Detectors. Principles, Pitfalls and Progress in Photon-Counting-Detector Technology.

8/1/2017. Current Technology: Energy Integrating Detectors. Principles, Pitfalls and Progress in Photon-Counting-Detector Technology. Photon Counting Detectors and Their Applications in Medical Imaging Principles, Pitfalls and Progress in Photon-Counting-Detector Technology Taly Gilat Schmidt, PhD Associate Professor Department of Biomedical

More information

Customizable and Advanced Software for Tomographic Reconstruction

Customizable and Advanced Software for Tomographic Reconstruction Customizable and Advanced Software for Tomographic Reconstruction 1 What is CASToR? Open source toolkit for 4D emission (PET/SPECT) and transmission (CT) tomographic reconstruction Focus on generic, modular

More information

Parallel iterative cone beam CT image reconstruction on a PC cluster

Parallel iterative cone beam CT image reconstruction on a PC cluster Galley Proof 30/04/2005; 12:41 File: xst127.tex; BOKCTP/ljl p. 1 Journal of X-Ray Science and Technology 13 (2005) 1 10 1 IOS Press Parallel iterative cone beam CT image reconstruction on a PC cluster

More information

Scatter correction improvement based on the Convolution Subtraction Technique in SPECT imaging

Scatter correction improvement based on the Convolution Subtraction Technique in SPECT imaging Vol.2, Issue.3, May-June 2012 pp-1414-1418 ISSN: 2249-6645 Scatter correction improvement based on the Convolution Subtraction Technique in SPECT imaging Mohsen Zand 1 1 (Department of Computer, Islamic

More information

EMISSION tomography, which includes positron emission

EMISSION tomography, which includes positron emission 1248 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 Aligning Emission Tomography and MRI Images by Optimizing the Emission-Tomography Image Reconstruction Objective Function James E. Bowsher,

More information

AN ELLIPTICAL ORBIT BACKPROJECTION FILTERING ALGORITHM FOR SPECT

AN ELLIPTICAL ORBIT BACKPROJECTION FILTERING ALGORITHM FOR SPECT 1102 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 40, NO. 4, AUGUST 1993 AN ELLIPTICAL ORBIT BACKPROJECTION FILTERING ALGORITHM FOR SPECT Grant. T. Gullberg and Gengsheng L. Zeng, Department of Radiology,

More information

Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program

Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program James R Halama, PhD Loyola University Medical Center Conflicts of Interest Nuclear Medicine and PET physics reviewer for the ACR Accreditation program Learning Objectives 1. Be familiar with recommendations

More information

CIVA Computed Tomography Modeling

CIVA Computed Tomography Modeling CIVA Computed Tomography Modeling R. FERNANDEZ, EXTENDE, France S. LEGOUPIL, M. COSTIN, D. TISSEUR, A. LEVEQUE, CEA-LIST, France page 1 Summary Context From CIVA RT to CIVA CT Reconstruction Methods Applications

More information

ML reconstruction for CT

ML reconstruction for CT ML reconstruction for CT derivation of MLTR rigid motion correction resolution modeling polychromatic ML model dual energy ML model Bruno De Man, Katrien Van Slambrouck, Maarten Depypere, Frederik Maes,

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland Metal Artifact Reduction CT Techniques R S S S Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland N. 1 v o 4 1 0 2. Postoperative CT Metal Implants CT is accurate for assessment

More information

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA Computed Tomography Principles, Design, Artifacts, and Recent Advances THIRD EDITION Jiang Hsieh SPIE PRESS Bellingham, Washington USA Table of Contents Preface Nomenclature and Abbreviations xi xv 1 Introduction

More information

Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography

Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography Iranian Journal of Medical Physics Vol. 10, No. 1-2, Winter & Spring 2013, 69-77 Received: November 29, 2012; Accepted: April 21, 2013 Original Article Monte Carlo Study of the Effect of Backscatter Materail

More information

DUE to beam polychromacity in CT and the energy dependence

DUE to beam polychromacity in CT and the energy dependence 1 Empirical Water Precorrection for Cone-Beam Computed Tomography Katia Sourbelle, Marc Kachelrieß, Member, IEEE, and Willi A. Kalender Abstract We propose an algorithm to correct for the cupping artifact

More information

Corso di laurea in Fisica A.A Fisica Medica 4 TC

Corso di laurea in Fisica A.A Fisica Medica 4 TC Corso di laurea in Fisica A.A. 2007-2008 Fisica Medica 4 TC Computed Tomography Principles 1. Projection measurement 2. Scanner systems 3. Scanning modes Basic Tomographic Principle The internal structure

More information

Determination of Three-Dimensional Voxel Sensitivity for Two- and Three-Headed Coincidence Imaging

Determination of Three-Dimensional Voxel Sensitivity for Two- and Three-Headed Coincidence Imaging IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 3, JUNE 2003 405 Determination of Three-Dimensional Voxel Sensitivity for Two- and Three-Headed Coincidence Imaging Edward J. Soares, Kevin W. Germino,

More information

Cardiac Dual Energy CT: Technique

Cardiac Dual Energy CT: Technique RSNA 2013, VSCA51-01, Chicago, Dec. 5, 2013 Cardiac Radiology Series Cardiac Dual Energy CT: Technique Willi A. Kalender, Ph.D. Institute of Medical Physics University of Erlangen www.imp.uni-erlangen.de

More information

Acknowledgments and financial disclosure

Acknowledgments and financial disclosure AAPM 2012 Annual Meeting Digital breast tomosynthesis: basic understanding of physics principles James T. Dobbins III, Ph.D., FAAPM Director, Medical Physics Graduate Program Ravin Advanced Imaging Laboratories

More information

Gengsheng Lawrence Zeng. Medical Image Reconstruction. A Conceptual Tutorial

Gengsheng Lawrence Zeng. Medical Image Reconstruction. A Conceptual Tutorial Gengsheng Lawrence Zeng Medical Image Reconstruction A Conceptual Tutorial Gengsheng Lawrence Zeng Medical Image Reconstruction A Conceptual Tutorial With 163 Figures Author Prof. Dr. Gengsheng Lawrence

More information

Fits you like no other

Fits you like no other Fits you like no other BrightView X and XCT specifications The new BrightView X system is a fully featured variableangle camera that is field-upgradeable to BrightView XCT without any increase in room

More information

Fast Timing and TOF in PET Medical Imaging

Fast Timing and TOF in PET Medical Imaging Fast Timing and TOF in PET Medical Imaging William W. Moses Lawrence Berkeley National Laboratory October 15, 2008 Outline: Time-of-Flight PET History Present Status Future This work was supported in part

More information

Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model 5 Paul A Wolf 1, Jakob H Jørgensen 2, Taly G Schmidt 1 and Emil Y Sidky 3 1

More information

Xi = where r is the residual error. In order to find the optimal basis vectors {vj}, the residual norms must be minimized, that is

Xi = where r is the residual error. In order to find the optimal basis vectors {vj}, the residual norms must be minimized, that is IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 4, AUGUST 1998 2119 Reconstructions cif Truncated Projections Using an Optimal Basis Expansion Derived from the Crops-Correlation of a Knowledge Set of

More information

A Radiometry Tolerant Method for Direct 3D/2D Registration of Computed Tomography Data to X-ray Images

A Radiometry Tolerant Method for Direct 3D/2D Registration of Computed Tomography Data to X-ray Images A Radiometry Tolerant Method for Direct 3D/2D Registration of Computed Tomography Data to X-ray Images Transfer Function Independent Registration Boris Peter Selby 1, Georgios Sakas 2, Stefan Walter 1,

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Assessment of 3D performance metrics. X-ray based Volumetric imaging systems: Fourier-based imaging metrics. The MTF in CT

Assessment of 3D performance metrics. X-ray based Volumetric imaging systems: Fourier-based imaging metrics. The MTF in CT Assessment of 3D performance metrics D and 3D Metrics of Performance Towards Quality Index: Volumetric imaging systems X-ray based Volumetric imaging systems: CBCT/CT Tomosynthesis Samuel Richard and Ehsan

More information

Scatter Correction Methods in Dimensional CT

Scatter Correction Methods in Dimensional CT Scatter Correction Methods in Dimensional CT Matthias Baer 1,2, Michael Hammer 3, Michael Knaup 1, Ingomar Schmidt 3, Ralf Christoph 3, Marc Kachelrieß 2 1 Institute of Medical Physics, Friedrich-Alexander-University

More information

Small Angle Gamma Ray Scatter: What Is The Impact On Image Quality

Small Angle Gamma Ray Scatter: What Is The Impact On Image Quality ISPUB.COM The Internet Journal of Medical Technology Volume 4 Number 2 Small Angle Gamma Ray Scatter: What Is The Impact On Image Quality G CUrrie, J Wheat Citation G CUrrie, J Wheat.. The Internet Journal

More information

Quantitative capabilities of four state-of-the-art SPECT-CT cameras

Quantitative capabilities of four state-of-the-art SPECT-CT cameras Seret et al. EJNMMI Research 2012, 2:45 ORIGINAL RESEARCH Open Access Quantitative capabilities of four state-of-the-art SPECT-CT cameras Alain Seret 1,2*, Daniel Nguyen 1 and Claire Bernard 3 Abstract

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Technical aspects of SPECT and SPECT-CT. John Buscombe

Technical aspects of SPECT and SPECT-CT. John Buscombe Technical aspects of SPECT and SPECT-CT John Buscombe What does the clinician need to know? For SPECT What factors affect SPECT How those factors should be sought Looking for artefacts For SPECT-CT Issues

More information