PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

Size: px
Start display at page:

Download "PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)"

Transcription

1 Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist n! different permutations of A. Assignment 2 Prove the following three claims for all n N and all x R: n i=0 ( ) n x i = (1 + x) n i n i=0 ( ) n i n ( ) n = 2 n ( 1) i = 0 i Assignment 3 Prove that the following identity holds for all n, c N 0 : n k=0 ( ) k = c ( ) n + 1 c + 1 Assignment 4 In R[x] we consider the polynomials a, b, c, d with a := 1 + x + x 2 + x 3, b := x + x 2, c := x, d := 3 + 2x + x 3, e := x 4. Do {a, b, c, d, e} form a basis of the vector space of all polynomials of R[x] whose degree is at most four? i=0

2 Homework Assignment Sheet II (Due 10-Nov-2017) Assignment 5 Apply Euklid s Algorithm to compute the greatest common divisor, gcd(p, q), of p, q R[x] with p := x 3 3x 2 + 5x 3 and q := x 3 1. (Note: Euclid s Algorithm for computing the GCD of two integers can also be applied in polynomial rings, and division of two polynomials is similar to what you had learned in school for dividing one integer by another integer by hand.) Assignment 6 Prove that f(x) := cos(2 arccos(x)) is a polynomial function over [ 1, 1]. Assignment 7 Prove that two different polynomials may result in the same polynomial function. Assignment 8 Prove explicitly (based on Def. 19) that f : R R with f(x) := x 2 is differentiable on all of R.

3 Homework Assignment Sheet III (Due 17-Nov-2017) Assignment 9 In the lecture we discussed that the length of the Koch snowflake after the n-th iteration is ( 4 /3) n s if the original triangle had a perimeter of s. Hence, its length grows unboundedly as n increases. What about the area enclosed by the Koch snowflake? Your task is to formulate a formula that models the area enclosed by the Koch snowflake after the n-th iteration. What do you get for the area for n? (You are welcome to assume that the Koch snowflake is a simple curve after every iteration.) Assignment 10 Prove precisely that in the proof of Lem. 49 equality at ( ) does indeed hold. (Of course, you are welcome to assume the correctness of the Mean Value Theorem.) Assignment 11 Find a reparameterization β of γ : R + 0 R 3, with γ(t) := (a cos t, a sin t, bt) for a, b R +, which has unit speed. What is the arc length of β in dependence on the parameter t? Assignment 12 We consider a regular curve γ : I R 2, for some (non-empty) interval I R. Your task is to compute the (algebraic) equation of the tangent in γ(t), for some t I.

4 Homework Assignment Sheet IV (Due 24-Nov-2017) Assignment 13 Find parameterizations of two curves that join in a C 1 - and curvaturecontinuous fashion but that are not C 2 -continuous. Assignment 14 Compute the equation of the plane that is tangential to the graph of the function f(x, y) := e x2 y 2 in the point P := (1, 1, 1/e 2 ). Assignment 15 Let β : [ π, 0] R 3 and γ : [0, π] R 3 be defined as follows: β(t) := ( 1 + cos t, sin t, t) γ(t) := (2 2 cos t, 2 sin t, 2t) (1) Prove that β, γ meet in a G 1 -continuous way but that they are not C 1 -continuous. (2) Find an equivalent reparameterization δ of γ such that β and δ are C 1 -continuous at the joint. Assignment 16 Prove directly without resorting to (the proofs of) Lem. 83, Lem. 84 or Thm. 86! that B 0,2 (x), B 1,2 (x) and B 2,2 (x) are linearly independent.

5 Homework Assignment Sheet V (Due 01-Dec-2017) Assignment 17 Show directly (without resorting to the general theorem on derivatives of Bernstein basis polynomials) that B k,n(x) = n ( B k 1,n 1 (x) B k,n 1 (x) ) for all k, n N 0 with k n. Assignment 18 Prove or disprove: If a control polygon is symmetric about the y-axis then also the Bézier curve defined by this control polygon is symmetric about the y-axis. (You are welcome to consider only Bézier curves of either odd or even degree, as you prefer.) Assignment 19 Show that a line may intersect the control polygon of a Bézier curve without actually intersecting the Bézier curve itself. Assignment 20 Let B be the Bézier curve defined by the four control points p 0 := (0, 0) p 1 := (25, 50) p 2 := (50, 0) p 3 := ( 50, 25). Run de Casteljau s algorithm manually to compute B( 3 /5).

6 Homework Assignment Sheet VI (Due 15-Dec-2017) Assignment 21 Consider the curve α: R R 2 with α(t) := (3t + 3t 2, 1 + 4t 3 ) and compute a Bézier curve B such that B = α [0,1]. Assignment 22 Consider a Bézier curve B n defined by the control points p 0 := ( 2, 0), p 1 = p 2 =... = p n 1 := (0, 2) and p n := (2, 0). Let h(a, B) := sup a A (inf b B d(a, b)) for two non-empty subsets A, B of R 2, where d(a, b) denotes the standard Euclidean distance of a, b R 2. We denote the control polygon formed by p 0, p 1,..., p n by P n. Derive a formula (in dependence of n) for h(p n, B n ). Assignment 23 Consider a quadratic polynomial p: R R. Prove directly by establishing the three properties stated in Thm. 94, and without resorting to Lem. 95 or the like that f : R 2 R with ( ) x1 + x 2 f(x 1, x 2 ) := 2p p(x 1) 1 2 p(x 2) forms a polar form of p. Assignment 24 Consider a quadratic polynomial p: R R. Prove explicitly without simply citing Thm. 94, or resorting to Lem. 95 or the like that there exists a unique polar form for p. (You may use Ass. 23, even if you did not solve it.)

7 Homework Assignment Sheet VII (Due 22-Dec-2017) Assignment 25 We consider the bi-infinite knot vector τ := (t i ) i Z with t i := i for all i Z. Compute N 3,2 (t) and use this result to compute N 3,2(t) and N 3,2(t). What do we get as curvature of the graph (t, N 3,2 (t)) for t := 9 and t := 3? 2 Assignment 26 Consider a bi-infinite knot vector. Verify explicitly (without resorting to Lem. 121) that N i,k(t) = k k N i,k 1 (t) N i+1,k 1 (t) t i+k t i t i+k+1 t i+1 for k := 2, all i Z and all t ]t i, t i+1 [. Assignment 27 Let c R be arbitrary but fixed, and consider two bi-infinite knot vectors τ := (..., t 2, t 1, t 0, t 1, t 2,...) and τ := (..., t 2, t 1, t 0, t 1, t 2,...) with t j = t j + c for all j Z. Prove that N i,k,τ (t) = N i,k,τ (t + c) for all i Z and all k N 0. Assignment 28 Consider the (infinite) knot vector τ := (t 0, t 1, t 2, t 3, t 4,...) with t 0 := 0, t 1 := 1, t 2 = t 3 := 2 and t j := j 1 for all j N \ {1, 2, 3}. Identify all (permissible) values for i N 0 such that N i,1,τ (t) is not continuous.

8 Homework Assignment Sheet VIII (Due 12-Jan-2018) Assignment 29 Is a B-spline curve necessarily convex if its control polygon is convex? (We call a closed curve convex if it is simple and if the region bounded by the curve is convex; an open curve is convex if the closed curve formed by the original open curve and the straight-line segment between its start and end point is convex.) Assignment 30 Consider a quadratic B-spline P with three control points p 0, p 1, p 2 and knot vector τ := (0, 0, 0, 1, 1, 1). Prove explicitly that P is a Bézier curve. Assignment 31 Consider the clamped degree-two B-spline curve P defined by the control points ( ) ( ) ( ) ( ) ( ) ( ) ,,,,, and the knot vector τ := (0, 0, 0, 1 /4, 1 /2, 3 /4, 1, 1, 1). Does P pass through the point q := ( ) 1/2 1/2? Could we get different results for other clamped (possibly non-uniform) knot vectors instead of τ? Assignment 32 Consider the knot vector τ := (t 0, t 1, t 2, t 3, t 4, t 5, t 6, t 7, t 8, t 9 ), with t 0 = t 1 = t 2 < t 3 < t 4 = t 5 < t 6 < t 7 = t 8 = t 9. Prove explicitly (without resorting to Lem. 139) that P(t 4 ) = p 3 for a B-spline curve P of degree two and p 0,..., p 6 as control points.

9 Homework Assignment Sheet IX (Due 19-Jan-2018) Assignment 33 Let P be a B-spline curve of degree k with control points p 0, p 1,..., p n and knot vector τ := (t 0, t 1,..., t n+k+1 ). Let i, j N 0 with i n and j k. Let a N 0 such that t [t a, t a+1 [ for some arbitrary but fixed t [t k, t n+1 [. Prove that p i,j (t), as defined by de Boor s Algorithm (Thm. 140), is irrelevant for obtaining P(t) unless j {0, 1,..., k} and i {a k + j, a k + j + 1,..., a}. Assignment 34 Consider a clamped cubic B-spline curve P with uniform knot vector τ over the parameter range [0, 1] and control points p 0, p 1,..., p 6. Express P( 2 ) in terms of 5 p 0, p 1,..., p 6. (No need to recursively substitute into and simplify the resulting expression for P( 2).) 5 Assignment 35 Consider a clamped cubic B-spline curve P with uniform knot vector τ over the parameter range [0, 1] and control points p 0, p 1,..., p 7. Insert the new knot t := 1 into τ. 2 That is, compute a new knot vector and new control points such that the shape of P remains unchanged despite of the knot insertion. Assignment 36 Let n, m N and k, k N 0 with k n and k m. Furthermore, let σ := (s 0, s 1,..., s n+k +1) and τ := (t 0, t 1,..., t m+k +1) be two knot vectors. Let S be the B- spline surface relative to σ and τ with control net (p i,j ) n,m i,j=0, and let y R with 0 < y < 1. We assume that p i,j has i as its x-coordinate and j as its y-coordinate, for 0 i n and n m 0 j m. What is the intersection of S with a plane Π that is parallel to the xz-plane and that contains the point (0, y, 0)?

10 Homework Assignment Sheet X (Due 26-Jan-2018) Assignment 37 Use homogeneous coordinates and the projective plane to study the intersection of two lines, and compare this to the standard homogeneous coordinates. (Remember, the equation of a line in inhomogeneous coordinates is given by a x + b y + c = 0, for some a, b, c R.) What do you get for the intersection in (a) homogeneous coordinates, (b) inhomogeneous coordinates if the lines are (1) parallel, (2) not parallel? What do you get for the equation of the line passing through two points p 1, p 2 (in homogeneous coordinates)? Assignment 38 For a function f i : R 2 R in inhomogeneous coordinates, we obtain a function f h : R 2 (R \ {0}) R in homogeneous coordinates as f h (x, y, w) := f i ( x, y ). Prove: w w (1) If f i (x, y) = 0 is a bivariate polynomial equation, then f h (x, y, w) = 0 is a trivariate polynomial equation such that all monomials have the same degree. (2) The equation f i (x, y) = 0 has at least one solution if and only if f h (x, y, w) = 0 has infinitely many solutions. Assignment 39 Prove explicitly (without resorting to the interpretation of a NURBS curve as a B-spline curve in one dimensions higher) that a NURBS curve of degree k relative to a clamped knot vector τ := (t 0, t 1,..., t n+k+1 ) and control points p 0, p 1,..., p n starts in p 0, no matter which positive weights w 0, w 1,..., w n are chosen. Assignment 40 Can the relocation of one control point of a NURBS curve be compensated by an adjustment of some weights? Show that there exists NURBS curves for which even the modification of all weights does not suffice to compensate the relocation of one control point.

11 Homework Assignment Sheet XI (Due 02-Feb-2018) Assignment 41 Does the Hausdorff distance H form a metric on the set of all non-empty sub-sets of a metric space X? Assignment 42 Let I := [0, 1] and β, γ : I R n be two Bézier curves. Which of the following three claims is true? (1) H(β(I), γ(i)) Fr(β, γ). (2) H(β(I), γ(i)) Fr(β, γ). (3) neither (1) nor (2) need be correct. Assignment 43 For some n N 0, let q 0, q 1,..., q n be n + 1 points in R 2 and denote their coordinates by (x 0, y 0 ), (x 1, y 1 ),..., (x n, y n ). We assume that x i x j for all 0 i < j n. Prove directly (without resorting to Lagrange interpolation or the like): There exists exactly one polynomial p(x) of the form p(x) := a 0 + a 1 (x x 0 ) + a 2 (x x 0 )(x x 1 ) a n (x x 0 )(x x 1 )... (x x n 1 ), with a 0, a 1,..., a n R, such that p(x i ) = y i for all 0 i n. Assignment 44 For some n N 0, let q 0, q 1,..., q n be n + 1 points in R 2 and denote their coordinates by (x 0, y 0 ), (x 1, y 1 ),..., (x n, y n ). We assume that x i x j for all 0 i < j n. In the lecture I claimed that there exists exactly one polynomial p of degree n such that p(x i ) = y i for all 0 i < j n. Lagrange interpolation (Corr. 168) or Ass. 43 show that such a polynomial does indeed always exist. Prove directly that this polynomial is unique if its degree is allowed to be at most n.

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves. Brian Curless CSE 457 Spring 2016 Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Need for Parametric Equations

Need for Parametric Equations Curves and Surfaces Curves and Surfaces Need for Parametric Equations Affine Combinations Bernstein Polynomials Bezier Curves and Surfaces Continuity when joining curves B Spline Curves and Surfaces Need

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Design considerations

Design considerations Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Know it. Control points. B Spline surfaces. Implicit surfaces

Know it. Control points. B Spline surfaces. Implicit surfaces Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Figure 5.1: Spline and ducks.

Figure 5.1: Spline and ducks. Chapter 5 B-SPLINE CURVES Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is a sequence of curve segments that are connected together to form a single continuous

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

and the crooked shall be made straight, and the rough ways shall be made smooth; Luke 3:5

and the crooked shall be made straight, and the rough ways shall be made smooth; Luke 3:5 ecture 8: Knot Insertion Algorithms for B-Spline Curves and Surfaces and the crooked shall be made straight, and the rough ways shall be made smooth; uke 3:5. Motivation B-spline methods have several advantages

More information

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines CS 475 / CS 675 - Computer Graphics Modelling Curves 3 - Bézier Splines n P t = i=0 No local control. B i J n,i t with 0 t 1 J n,i t = n i t i 1 t n i Degree restricted by the control polygon. http://www.cs.mtu.edu/~shene/courses/cs3621/notes/spline/bezier/bezier-move-ct-pt.html

More information

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable Rida T. Farouki Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable With 204 Figures and 15 Tables 4y Springer Contents 1 Introduction 1 1.1 The Lure of Analytic Geometry 1 1.2 Symbiosis of

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required:

Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required: Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Parametric curves CSE 457 Winter 2014 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric

More information

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville Curves and Surfaces Shireen Elhabian and Aly A. Farag University of Louisville February 21 A smile is a curve that sets everything straight Phyllis Diller (American comedienne and actress, born 1917) Outline

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn School of Mathematical Sciences Tel Aviv University Michael S. Floater Department of Informatics University of

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i.

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i. Bézier Splines CS 475 / CS 675 Computer Graphics Lecture 14 : Modelling Curves 3 n P t = B i J n,i t with 0 t 1 J n, i t = i=0 n i t i 1 t n i No local control. Degree restricted by the control polygon.

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

An Introduction to B-Spline Curves

An Introduction to B-Spline Curves An Introduction to B-Spline Curves Thomas W. Sederberg March 14, 2005 1 B-Spline Curves Most shapes are simply too complicated to define using a single Bézier curve. A spline curve is a sequence of curve

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Important Properties of B-spline Basis Functions

Important Properties of B-spline Basis Functions Important Properties of B-spline Basis Functions P2.1 N i,p (u) = 0 if u is outside the interval [u i, u i+p+1 ) (local support property). For example, note that N 1,3 is a combination of N 1,0, N 2,0,

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana University of Groningen Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Lecture 9: Introduction to Spline Curves

Lecture 9: Introduction to Spline Curves Lecture 9: Introduction to Spline Curves Splines are used in graphics to represent smooth curves and surfaces. They use a small set of control points (knots) and a function that generates a curve through

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Geometry Design Algorithms Fathi El-Yafi Project and Software Development Manager Engineering Simulation 1 Geometry: Overview Geometry Basics Definitions Data Semantic Topology Mathematics

More information

Knot Insertion and Reparametrization of Interval B-spline Curves

Knot Insertion and Reparametrization of Interval B-spline Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:14 No:05 1 Knot Insertion and Reparametrization of Interval B-spline Curves O. Ismail, Senior Member, IEEE Abstract

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Spring 2013) Surface Simplification: Goals (Garland)

To Do. Resources. Algorithm Outline. Simplifications. Advanced Computer Graphics (Spring 2013) Surface Simplification: Goals (Garland) Advanced omputer Graphics (Spring 213) S 283, Lecture 6: Quadric Error Metrics Ravi Ramamoorthi To Do Assignment 1, Due Feb 22. Should have made some serious progress by end of week This lecture reviews

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn Michael S. Floater Kai Hormann Abstract. We present a new four-point subdivision scheme that generates C 2 curves.

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Advanced Graphics. Beziers, B-splines, and NURBS. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Beziers, B-splines, and NURBS. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Beziers, B-splines, and NURBS Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd Bezier splines, B-Splines, and NURBS Expensive products

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

43rd International Mathematical Olympiad

43rd International Mathematical Olympiad 43rd International Mathematical Olympiad Glasgow, United Kingdom, July 2002 1 Let n be a positive integer let T be the set of points (x, y) in the plane where x and y are non-negative integers and x +

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

Gardener s spline curve

Gardener s spline curve Annales Mathematicae et Informaticae 47 (017) pp. 109 118 http://ami.uni-eszterhazy.hu Gardener s spline curve Imre Juhász Department of Descriptive Geometry University of Miskolc agtji@uni-miskolc.hu

More information

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions

Approximation of 3D-Parametric Functions by Bicubic B-spline Functions International Journal of Mathematical Modelling & Computations Vol. 02, No. 03, 2012, 211-220 Approximation of 3D-Parametric Functions by Bicubic B-spline Functions M. Amirfakhrian a, a Department of Mathematics,

More information

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications LECTURE #6 Geometric modeling for engineering applications Geometric Modelling for Engineering Applications Introduction to modeling Geometric modeling Curve representation Hermite curve Bezier curve B-spline

More information

Roadmap for tonight. What are Bezier curves (mathematically)? Programming Bezier curves (very high level view).

Roadmap for tonight. What are Bezier curves (mathematically)? Programming Bezier curves (very high level view). Roadmap for tonight Some background. What are Bezier curves (mathematically)? Characteristics of Bezier curves. Demo. Programming Bezier curves (very high level view). Why Bezier curves? Bezier curves

More information

Representing Curves Part II. Foley & Van Dam, Chapter 11

Representing Curves Part II. Foley & Van Dam, Chapter 11 Representing Curves Part II Foley & Van Dam, Chapter 11 Representing Curves Polynomial Splines Bezier Curves Cardinal Splines Uniform, non rational B-Splines Drawing Curves Applications of Bezier splines

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band.

Keyword: Quadratic Bézier Curve, Bisection Algorithm, Biarc, Biarc Method, Hausdorff Distances, Tolerance Band. Department of Computer Science Approximation Methods for Quadratic Bézier Curve, by Circular Arcs within a Tolerance Band Seminar aus Informatik Univ.-Prof. Dr. Wolfgang Pree Seyed Amir Hossein Siahposhha

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Figure 1: A positive crossing

Figure 1: A positive crossing Notes on Link Universality. Rich Schwartz: In his 1991 paper, Ramsey Theorems for Knots, Links, and Spatial Graphs, Seiya Negami proved a beautiful theorem about linearly embedded complete graphs. These

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

February 23 Math 2335 sec 51 Spring 2016

February 23 Math 2335 sec 51 Spring 2016 February 23 Math 2335 sec 51 Spring 2016 Section 4.1: Polynomial Interpolation Interpolation is the process of finding a curve or evaluating a function whose curve passes through a known set of points.

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Rational Bezier Surface

Rational Bezier Surface Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

More information

Further Graphics. Bezier Curves and Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Further Graphics. Bezier Curves and Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Further Graphics Bezier Curves and Surfaces Alex Benton, University of Cambridge alex@bentonian.com 1 Supported in part by Google UK, Ltd CAD, CAM, and a new motivation: shiny things Expensive products

More information

GREENWOOD PUBLIC SCHOOL DISTRICT Algebra III Pacing Guide FIRST NINE WEEKS

GREENWOOD PUBLIC SCHOOL DISTRICT Algebra III Pacing Guide FIRST NINE WEEKS GREENWOOD PUBLIC SCHOOL DISTRICT Algebra III FIRST NINE WEEKS Framework/ 1 Aug. 6 10 5 1 Sequences Express sequences and series using recursive and explicit formulas. 2 Aug. 13 17 5 1 Sequences Express

More information

B-spline Curves. Smoother than other curve forms

B-spline Curves. Smoother than other curve forms Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides?

Coloring. Radhika Gupta. Problem 1. What is the chromatic number of the arc graph of a polygonal disc of N sides? Coloring Radhika Gupta 1 Coloring of A N Let A N be the arc graph of a polygonal disc with N sides, N > 4 Problem 1 What is the chromatic number of the arc graph of a polygonal disc of N sides? Or we would

More information

Singularity Loci of Planar Parallel Manipulators with Revolute Joints

Singularity Loci of Planar Parallel Manipulators with Revolute Joints Singularity Loci of Planar Parallel Manipulators with Revolute Joints ILIAN A. BONEV AND CLÉMENT M. GOSSELIN Département de Génie Mécanique Université Laval Québec, Québec, Canada, G1K 7P4 Tel: (418) 656-3474,

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University MATH115 Polar Coordinate System and Paolo Lorenzo Bautista De La Salle University June 14, 2014 PLBautista (DLSU) MATH115 June 14, 2014 1 / 30 Polar Coordinates and PLBautista (DLSU) MATH115 June 14, 2014

More information

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK 1 An analysis of the problem: To get the curve constructed, how many knots are needed? Consider the following case: So, to interpolate (n +1) data points, one needs (n +7) knots,, for a uniform cubic B-spline

More information

Computer Graphics. Unit VI: Curves And Fractals. By Vaishali Kolhe

Computer Graphics. Unit VI: Curves And Fractals. By Vaishali Kolhe Computer Graphics Unit VI: Curves And Fractals Introduction Two approaches to generate curved line 1. Curve generation algorithm Ex. DDA Arc generation algorithm 2. Approximate curve by number of straight

More information

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University Bernstein-Bezier Splines on the Unit Sphere Victoria Baramidze Department of Mathematics Western Illinois University ABSTRACT I will introduce scattered data fitting problems on the sphere and discuss

More information

THE GROWTH OF LIMITS OF VERTEX REPLACEMENT RULES

THE GROWTH OF LIMITS OF VERTEX REPLACEMENT RULES THE GROWTH OF LIMITS OF VERTEX REPLACEMENT RULES JOSEPH PREVITE, MICHELLE PREVITE, AND MARY VANDERSCHOOT Abstract. In this paper, we give conditions to distinguish whether a vertex replacement rule given

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

More information