Purely Data-Driven Respiratory Motion Compensation Methods for 4D-CBCT Image Registration and Reconstruction

Size: px
Start display at page:

Download "Purely Data-Driven Respiratory Motion Compensation Methods for 4D-CBCT Image Registration and Reconstruction"

Transcription

1 2015 ANNUAL MAC-AAPM CONFERENCE: Purely Data-Driven Respiratory Motion Compensation Methods for 4D-CBCT Image Registration and Reconstruction M J Riblett 1, E Weiss 1, G E Christensen 2, and G D Hugo 1 1, 2 University of Iowa Baltimore, MD October 2 nd 2015

2 SUPPORT AND DISCLOSURES This work was supported by the National Cancer Institute of the National Institutes of Health under award number R01-CA The authors have no potential conflicts of interest to disclose for this study. 2 of 20

3 Rationale for Motion Compensation Motion Blurring Without Projection Binning (3D-CBCT) Streaking (View Aliasing) With Projection Binning (4D-CBCT) 3 of 20

4 Motion Compensation Methods Backproject-Deform Deform-Backproject Example: Li, 2006 Modified General Example: Template Rit, Reconstruct 4D-CBCT frames from a subset of the projection dataset binned according to a signal (i.e. respiration). 2. Compute an estimate of motion in each reconstructed frame and deform image. 1. Motion model is known upfront or computed prior to 4D-CBCT image reconstruction. 2. Full projection dataset is deformed based on motion model during reconstruction of each frame. 4 of 20

5 Motion Compensation Methods Backproject-Deform Example: Li, 2006 Matthew J. Riblett Example: Medical Physics Rit, 2009 Advantages: + Motion model can be created directly from 4D-CBCT dataset. + Day of treatment modeling. Modified General Advantages: Template Deform-Backproject + Uses full projection dataset for every frame reconstruction. + View aliasing artifact is reduced. Disadvantages: - Projection binning results in view aliasing artifact. - Registration (motion modeling) is challenging due to poor image quality. Disadvantages: - Requires an a priori motion model prior to reconstruction. - May fail to accommodate large variations in patient anatomy or motion over the course of treatment. 5 of 20

6 Purpose of Research To develop purely data-driven 4D-CBCT workflows combining both Matthew motion J. Riblett compensation Medical Physics methods to enhance image quality. Improved CBCT Image 1. Backproject-Deform Registration of 4D-CBCT 2. Deform-Backproject Projection-Warped Reconstruction Motion Model 6 of 20

7 Study Contributions Combination of Both Motion Compensation Methods Backproject-Deform: Build motion model (DVF) from groupwise registration of respiratory phase-correlated 4D-CBCT reconstruction. Deform-Backproject: Apply motion model to warp full projection data during subsequent motion-compensated 4D-CBCT reconstruction. Application of Groupwise Registration to 4D-CBCT Similar methods have demonstrated registration advantages for fanbeam CT, MR, and US. 7 of 20

8 Study Contributions Purely Data-Driven Methods Data-driven methods offer solutions robust to variations in patient anatomy Modified and motion General over Template the course of treatment. A priori motion modeling may be unable to handle large differences in patient anatomy or motion during treatment. Week 2 4D-CT Week 7 4D-CT 8 of 20

9 Groupwise Registration Conventional Registration Groupwise Registration I S2 T 2 T 3 ~ I T I S3 I S2 T G,2 T G,3 ~ I T I S3 I S1 T 1 T 4 I S4 I S1 T G,1 T G,4 I S4 Registrations between source and target frames occur independently, permitting frame-to-frame bias to manifest in the 4D transform. Registration to the target frame occurs simultaneously for all source frames mitigating frame-to-frame bias in the resulting 4D transform. 9 of 20

10 Developed Workflows Workflows can be subdivided by inclusion of one or both motion-compensation methods: Registration Only 1 Registration to Preselected Frame 2 Registration to Mean Frame Registration with Projection-Warping Reconstruction 3 Registration with Reconstruction of Preselected Frame 4 Registration with Reconstruction of Mean Frame 10 of 20

11 Data Sources and Implementation Eight Clinical Patient Datasets Long CBCT acquisitions (single rotation) projections per patient set. Respiratory Signal Extraction Amsterdam shroud as implemented in RTK*. (Zijp, 2004) Used for projection sorting and reconstruction. Registration Elastix Toolkit 4.7 (Klein, 2010; Shamonin, 2014) Insight Toolkit (ITK) (Yoo, 2002) Reconstruction RTK 1.0 (Rit, 2014; openrtk.org) 11 of 20

12 Free-Breathing 4D-CBCT Qualitative Results Registered to Preselected Frame Registered to Preselected Frame and MC-Reconstructed Free-Breathing Mean Registered to Mean Frame Registered to Mean Frame and MC-Reconstructed 12 of 20

13 Free-Breathing 4D-CBCT Qualitative Results Registered to Preselected Frame Registered to Preselected Frame and MC-Reconstructed Free-Breathing Mean Registered to Mean Frame Registered to Mean Frame and MC-Reconstructed 13 of 20

14 Free-Breathing 4D-CBCT Qualitative Results Registered to Preselected Frame Registered to Preselected Frame and MC-Reconstructed Free-Breathing Mean Registered to Mean Frame Registered to Mean Frame and MC-Reconstructed 14 of 20

15 Quantitative Results Statistical noise reduction relative to 4D-CBCT Initial CBCT Air Aorta Soft Tissue Air Free-Breathing Mean 64% (σ=13%) 54% (σ=20%) 41% (σ=16%) Mean Air Aorta Soft Tissue Reg. Only 63% (σ=12%) 51% (σ=20%) 34% (σ=11%) Reg./Recon. 68% (σ=15%) 55% (σ=22%) 36% (σ=13%) Preselected Air Aorta Soft Tissue Reg. Only 62% (σ=16%) 50% (σ=24%) 32% (σ=13%) Aorta Reg./Recon. 67% (σ=15%) 43% (σ=21%) 36% (σ=13%) 15 of 20

16 Normalized CBCT Intensities Quantitative Results Increase in edge sharpness (TIS) relative to 4D-CBCT Initial CBCT Free-Breathing Mean TIS Increase -3% (σ=56%) Mean Target Frame Reg. Only TIS Increase* 75% (σ=98%) Diaphragm Dome Profile Reg./Recon. 52% (σ=54%) Preselected Target Frame Reg. Only Reg./Recon. TIS Increase* 65% (σ=51%) 49% (σ=35%) Mean Initial 4D-CBCT Mean Frame, Reg+Recon Z-axis Coordinate [mm] 16 of 20

17 Existing Challenges Respiratory Signal Virginia Commonwealth A University Signal acquired from either RPM or Amsterdam Modified shroud General Template for projection sorting and/or reconstruction. Choice of parameters for Amsterdam shroud impact ability to extract signal. B Noise and Artifacts Deleterious image elements cause errors in registration: latches on to erroneous signal and guides transform. Projection-warped reconstruction using: A. accurate signal B. erroneous signal 17 of 20

18 Conclusions Mean v. Preselected Virginia Frame Commonwealth University Image quality improvement is similar for both methods. Current implementation offers computational advantage with preselected. Reconstruction Advantage Registration improves edge sharpness and noise. MC reconstruction improves edge sharpness and image noise while also mitigating appearance of some artifacts. Free-Breathing 4D-CBCT Registration + Reconstruction 18 of 20

19 Conclusions Respiratory Signal Critical Correct acquisition and interpretation of respiratory signal greatly impacts initial Modified and motion-compensated General Template reconstruction. A B Projection-Warped Reconstructions Data-driven Respiratory Signals 19 of 20

20 Future Directions Improve Signal Virginia Acquisition Commonwealth University Shroud generation, signal extraction, projection sorting, etc. Additional Iterations Currently single pass Multiple iterations may continue to improve. Refine Workflow Parameters B-spline grid spacing reduction, iterations, etc. Additional Patients Near-term: patients 64mm B-Spline Grid 16mm B-Spline Grid 20 of 20

21 Highlighted References Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. elastix: a toolbox for intensity based medical image registration. IEEE Transactions on Medical Imaging, 29 (1): ; January Metz CT, Klein S, Schaap M, van Walsum T, Niessen WJ. Nonrigid registration of dynamic medical imaging data using nd + t b-splines and a groupwise optimization approach. Medical Image Analysis, 15 (2): , April Li T, Schreibmann E, Yang Y, Xing L. Motion correction for improved target localization with on-board cone-beam computed tomography. Physics in Medicine and Biology, 51(2): 253, 2006 Rit S, Wolthaus JW, van Herk M, Sonke JJ. On-the-fly motion-compensated conebeam CT using an a priori model of the respiratory motion. Medical Physics, 36 (6): ; June Shamonin DP, Bron EE, Lelieveldt BPF, Smits M, Klein S, Staring M. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer s disease. Frontiers in Neuroinformatics, 7 (50): 1-15; January Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R. Engineering and algorithm design for an image processing API: a technical report on ITK the insight toolkit. Proc. of Medicine Meets Virtual Reality, Westwood J, ed., IOS Press Amsterdam: ; Zijp L, Sonke JJ, van Herk M. Extraction of the respiratory signal from sequential thorax cone-beam X-ray images. International Conference on the Use of Computers in Radiation Therapy (ICCR). Seoul, Republic of Korea: Jeong Publishing: ; 2004.

22 Special Thanks Dr. Geoffrey Hugo Advisor Dr. Elisabeth Weiss Collaborator Nicky Mahon Labmate Dr. Gary Christensen Collaborator Chris Guy Collaborator Eric Laugeman Labmate

23 Thanks for listening. ANY COMMENTS, QUESTIONS, OR SUGGESTIONS? Matthew J. Riblett:

24 Appendix I: PRACTICAL EXAMPLES OF CBCT COMPLICATIONS

25 Factors Affecting 4D CBCT Quality Undersampling and Reconstruction Artifacts Cupping and Virginia Streaking Commonwealth University View aliasing caused by frame-binning of projections and inherent undersampling in each frame.* Motion Related Degradation Averaging motion in 3D results in blurred boundaries and structures. Variable Gantry Motion and Flexing Variable image centroid Image blurring Increased X-ray Scattering Over CT ( SPR) Decreased voxel noise in individual projections Decreased contrast (CNR) Incorrect CT numbers (~30% error in MV CBCT)

26 MOTION EFFECTS Image: Delmon et al. (2011) Blurring of Masses Blurring of Vessels and Tissue Blurring of Diaphragm

27 UNDERSAMPLING Streaking (View Aliasing) Axial Sagittal

28 Practical Examples Example CT acquisition Projection Undersampling In CBCT

29 Practical Examples Example CT acquisition Motion-Averaged Blurring in CBCT

30 Other Examples Cupping Streaking Self-attenuation at center Variable gantry trajectory and scatter out of plane and CBCT flexing

31 Appendix II: EXISTING MOTION COMPENSATION METHODS

32 Sampling of Existing Motion Compensation Methods Authors Method Matthew J. Riblett Medical Findings Physics Limits Rit et al. (2009) A priori motion modeling with projection warping reconstruction Develops motion model from respiratory signal. DVF compensates for motion in 4D CBCT reconstruction. Requires a planning CT and an a priori motion model. Delmon et al. (2011) Sliding lung mask registration with mutual information metric Masks limit registration to sliding lung anatomy. Registration of frames results in DVF for projection warping during reconstruction. Requires masking of the lung anatomy which may require manual intervention. Metz et al. (2011) Groupwise-cyclic registration with temporal variance metric Implementation can register multiple temporal frames to reference and average frames. Has been applied to CT, MR, and US imaging. Not yet applied to CBCT. Images are transformed; not projection warping.

33 A priori Motion Model Method Rit et al. (2009) Acquires a 4D planning CT with respiratory signal. Offline model correlates signal to organ motion: forms 4D DVF. CBCT projections are acquired and respiratory signal extracted. 3D CBCT image is reconstructed using 4D DVF to warp projections.

34 Sliding Mask Method Delmon et al. (2011) Applies mutual information metric with series of sliding masks DVF is applied during CBCT reconstruction to correct projections. Results in an image with sharper vessels and tumor boundaries. Requires masks.

35 Groupwise Cyclic Method Metz et al. (2011): Computes cost metric as variance in the temporal dimension. Registers to an average phase instead of a reference phase. Imposes smooth cyclic motion constraint. Applied to CT, MR and US imaging. Input CT Image not to CBCT. Registered CT Image

36 Appendix III: PROPOSED WORKFLOW DIAGRAMS

37 Developed Workflows Initial 4D image Workflow parameters Registration(s) to target frame(s) DVF generation Reconstruction(s) of target frame(s) Registration Method Registration-Only Reg. and Reconstruction Mean Target Frame Preselected Target Frame Mean image of groupwise registered frame Mean image of groupwise registered frame Reconstructed image at mean target frame Reconstructed image at preselected target frame

38 Mean Frame Registration with(out) Reconstruction Methods Render an improved image of the patient at the 3D Modified mean General Template Goal frame of the respiratory cycle. Method Implement the groupwise registration with elastix VarianceOverLastDimension metric (VOLDM), and the reconstruction with RTK. Considerations Registers to automatically defined average temporal frame with no respiratory cycle weighting. Initial Average Frame FDK Motion Compensated

39 Preselected Frame Registration with(out) Reconstruction Methods Render an improved image of the patient at each Modified of the General Template Goal original frames of 4D image. Method Implement a series of groupwise 4D registrations with elastix mean squared differences (MSD) metric, and the reconstruction with RTK Considerations Registers original image to a set of pseudo-4d frames: 10 frames = 10 registrations. Initial Frame 0 FDK Motion Compensated

40 Hierarchical 4D Registration to 3D Frame - Registration to - Mean Frame - Initial Initial 4D Virginia Commonwealth Registration University Image Parameters Hierarchical Registration VOLDM and TBEP: Elastix and Transformix Registration with Adjusted Metric Parameters: Elastix & Transformix Acceptance Criteria 4D Transform to Average Phase Image A priori Parameters and Metrics Return Image and Transform Yes Accept Result No Adjust Registration Parameters

41 Registration with 3D MC Reconstruction - Reconstruction - of Mean Frame - Initial 4D Image Matthew Initial J. Riblett Medical Physics Projection Phase Registration Virginia Commonwealth Data Signal University Parameters Hierarchical Registration VOLDM and TBEP: Elastix and Transformix 3D Motion Compensated Reconstructions RTK or Simple RTK 3D 3D DVFs DVFs to to 4D DVFs Phase Phase to Phase [0 N] [0 N] [0 N] 3D Average Frame Recon. Acceptance Criteria Registration with Adjusted Metric Parameters: Elastix & Transformix Adjust Registration Parameters No Accept Image Return Image Yes A priori Parameters and Metrics

42 Registration with 4D MC Reconstruction - Reconstruction of 3D Frames - [0,N] and 4D Stacking - Initial 4D Image Initial Registration Parameters Projection Phase Virginia Data Commonwealth Signal University Hierarchical Registration Hierarchical Registrations MSD and TBEP: MSD and TBEP: Elastix and Transformix Elastix and Transformix 3D Motion Compensated Reconstructions RTK or Simple RTK 4D Stacking of Phase Images ribpy or Matlab 3D 3D DVFs DVFs to to 4D DVFs Phase Phase to Phase [0 N] [0 N] [0 N] Reconst. 3D Phase Images Stacked 4D- MC Image Acceptance Criteria Registration with Adjusted Metric Parameters: Elastix & Transformix Adjust Registration Parameters No Accept Image Yes Return Image A priori Parameters and Metrics

43 Development Steps Implementation Deliverable Component 1. VOLDM methods based on the 1. Python framework (ribpy) for work of Metz et al., and MSD image generation, manipulation, methods with Python Modified backend. General Template basic masking, and sampling. 2. Tested registration settings with clinical images parametrically. 3. Improved the methods performance with phantom model studies. 4. Reconstruct images with motion compensation: projection warping according to DVF 2. Parametric study tool for automatic review of registrations. 3. Geometric phantom generator for thorax modeling and known deformations. 4. Added HNC file I/O and flood field correction to in-house RTK deployment.

44 Observed Challenges Driving Data Quality of initial and motioncompensated images Modified are General Template subject to quality of acquired data (respiratory signal, projections, flood field, etc.) Static Anatomy Close proximity of static and mobile anatomy introduces challenges in registration. Computational Cost Registration and additional reconstruction carry nontrivial computational expense. 64mm B-Spline Grid 16mm B-Spline Grid

45 Appendix IV: PHANTOM MODELS

46 Simple Phantom Model

47 Simple Phantom Model

48 Geometric Anatomical Phantom

49 Appendix V: RESPIRATORY SIGNAL EXTRACTION

50 Respiratory Signal Extraction A B Projection-Warped Reconstructions (Motion-compensated per DVF) Data-driven Respiratory Signals (Amsterdam shroud-type signal)

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD 1 Outline q Introduction q Imaging performances in 4D-CBCT Image

More information

Estimating 3D Respiratory Motion from Orbiting Views

Estimating 3D Respiratory Motion from Orbiting Views Estimating 3D Respiratory Motion from Orbiting Views Rongping Zeng, Jeffrey A. Fessler, James M. Balter The University of Michigan Oct. 2005 Funding provided by NIH Grant P01 CA59827 Motivation Free-breathing

More information

Automatic Intrinsic Cardiac and Respiratory Gating from Cone-Beam CT Scans of the Thorax Region

Automatic Intrinsic Cardiac and Respiratory Gating from Cone-Beam CT Scans of the Thorax Region Automatic Intrinsic Cardiac and Respiratory Gating from Cone-Beam CT Scans of the Thorax Region Andreas Hahn 1, Sebastian Sauppe 1, Michael Lell 2, and Marc Kachelrieß 1 1 German Cancer Research Center

More information

Accounting for Large Geometric Changes During Radiotherapy. Disclosures. Current Generation DIR in RT 8/3/2016

Accounting for Large Geometric Changes During Radiotherapy. Disclosures. Current Generation DIR in RT 8/3/2016 Accounting for Large Geometric Changes During Radiotherapy Geoff Hugo, Ph.D. Department of Radiation Oncology Virginia Commonwealth University, Richmond, Virginia, USA Disclosures Research support: Philips

More information

Artefakt-resistente Bewegungsschätzung für die bewegungskompensierte CT

Artefakt-resistente Bewegungsschätzung für die bewegungskompensierte CT Artefakt-resistente Bewegungsschätzung für die bewegungskompensierte CT Marcus Brehm 1,2, Thorsten Heußer 1, Pascal Paysan 3, Markus Oehlhafen 3, and Marc Kachelrieß 1,2 1 German Cancer Research Center

More information

Respiratory Motion Estimation using a 3D Diaphragm Model

Respiratory Motion Estimation using a 3D Diaphragm Model Respiratory Motion Estimation using a 3D Diaphragm Model Marco Bögel 1,2, Christian Riess 1,2, Andreas Maier 1, Joachim Hornegger 1, Rebecca Fahrig 2 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg 2

More information

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data

Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Respiratory Motion Compensation for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data Christopher M Rank 1, Thorsten Heußer 1, Andreas Wetscherek 1, and Marc Kachelrieß 1 1 German Cancer

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon WHITE PAPER Introduction Introducing an image guidance system based on Cone Beam CT (CBCT) and a mask immobilization

More information

View Aliasing Artifacts Reduction Method Based on 4D Cone-Beam CT Reconstruction with Joint Projection Data

View Aliasing Artifacts Reduction Method Based on 4D Cone-Beam CT Reconstruction with Joint Projection Data June 2017, Xi'an 1 View Aliasing Artifacts Reduction Method Based on 4D Cone-Beam CT Reconstruction with Joint Projection Data Shaohua Zhi, Xuanqin Mou Abstract Although the quality of the phase-resolved

More information

Image Guidance and Beam Level Imaging in Digital Linacs

Image Guidance and Beam Level Imaging in Digital Linacs Image Guidance and Beam Level Imaging in Digital Linacs Ruijiang Li, Ph.D. Department of Radiation Oncology Stanford University School of Medicine 2014 AAPM Therapy Educational Course Disclosure Research

More information

Moving Metal Artifact Reduction for Cone-Beam CT (CBCT) Scans of the Thorax Region

Moving Metal Artifact Reduction for Cone-Beam CT (CBCT) Scans of the Thorax Region Moving Metal Artifact Reduction for Cone-Beam CT (CBCT) Scans of the Thorax Region Andreas Hahn 1,2, Sebastian Sauppe 1,2, Michael Knaup 1, and Marc Kachelrieß 1,2 1 German Cancer Research Center (DKFZ),

More information

7/31/ D Cone-Beam CT: Developments and Applications. Disclosure. Outline. I have received research funding from NIH and Varian Medical System.

7/31/ D Cone-Beam CT: Developments and Applications. Disclosure. Outline. I have received research funding from NIH and Varian Medical System. 4D Cone-Beam CT: Developments and Applications Lei Ren, PhD, DABR Department of Radiation Oncology Duke University Medical Center Disclosure I have received research funding from NIH and Varian Medical

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

Brilliance CT Big Bore.

Brilliance CT Big Bore. 1 2 2 There are two methods of RCCT acquisition in widespread clinical use: cine axial and helical. In RCCT with cine axial acquisition, repeat CT images are taken each couch position while recording respiration.

More information

Acknowledgments. High Performance Cone-Beam CT of Acute Traumatic Brain Injury

Acknowledgments. High Performance Cone-Beam CT of Acute Traumatic Brain Injury A. Sisniega et al. (presented at RSNA 214) High Performance Cone-Beam CT of Acute Traumatic Brain Injury A. Sisniega 1 W. Zbijewski 1, H. Dang 1, J. Xu 1 J. W. Stayman 1, J. Yorkston 2, N. Aygun 3 V. Koliatsos

More information

A Study of Medical Image Analysis System

A Study of Medical Image Analysis System Indian Journal of Science and Technology, Vol 8(25), DOI: 10.17485/ijst/2015/v8i25/80492, October 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Medical Image Analysis System Kim Tae-Eun

More information

Overview of Proposed TG-132 Recommendations

Overview of Proposed TG-132 Recommendations Overview of Proposed TG-132 Recommendations Kristy K Brock, Ph.D., DABR Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and Fusion Conflict

More information

UvA-DARE (Digital Academic Repository) Motion compensation for 4D PET/CT Kruis, M.F. Link to publication

UvA-DARE (Digital Academic Repository) Motion compensation for 4D PET/CT Kruis, M.F. Link to publication UvA-DARE (Digital Academic Repository) Motion compensation for 4D PET/CT Kruis, M.F. Link to publication Citation for published version (APA): Kruis, M. F. (2014). Motion compensation for 4D PET/CT General

More information

Financial disclosure. Onboard imaging modality for IGRT

Financial disclosure. Onboard imaging modality for IGRT Tetrahedron Beam Computed Tomography Based On Multi-Pixel X- Ray Source and Its Application in Image Guided Radiotherapy Tiezhi Zhang, Ph.D. Advanced X-ray imaging Lab Financial disclosure Patent royalty

More information

2005 IEEE Nuclear Science Symposium Conference Record M10-2

2005 IEEE Nuclear Science Symposium Conference Record M10-2 25 IEEE Nuclear Science Symposium Conference Record M1-2 Estimating 3D Respiratory Motion from Orbiting Views Rongping Zeng 1, Jeffrey A. Fessler 1, and James M. Balter 2 rzeng@eecs.umich.edu, fessler@eecs.umich.edu,

More information

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR)

Registration by continuous optimisation. Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration by continuous optimisation Stefan Klein Erasmus MC, the Netherlands Biomedical Imaging Group Rotterdam (BIGR) Registration = optimisation C t x t y 1 Registration = optimisation C t x t y

More information

Respiratory Motion Compensation for C-arm CT Liver Imaging

Respiratory Motion Compensation for C-arm CT Liver Imaging Respiratory Motion Compensation for C-arm CT Liver Imaging Aline Sindel 1, Marco Bögel 1,2, Andreas Maier 1,2, Rebecca Fahrig 3, Joachim Hornegger 1,2, Arnd Dörfler 4 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg

More information

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT Simulation Imaging Ingrid Reiser Dept. of Radiology The University of Chicago Optimization of CT imaging Goal: Achieve image quality that allows to perform the task at hand (diagnostic

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

Image Co-Registration II: TG132 Quality Assurance for Image Registration. Image Co-Registration II: TG132 Quality Assurance for Image Registration

Image Co-Registration II: TG132 Quality Assurance for Image Registration. Image Co-Registration II: TG132 Quality Assurance for Image Registration Image Co-Registration II: TG132 Quality Assurance for Image Registration Preliminary Recommendations from TG 132* Kristy Brock, Sasa Mutic, Todd McNutt, Hua Li, and Marc Kessler *Recommendations are NOT

More information

UvA-DARE (Digital Academic Repository) Motion compensation for 4D PET/CT Kruis, M.F. Link to publication

UvA-DARE (Digital Academic Repository) Motion compensation for 4D PET/CT Kruis, M.F. Link to publication UvA-DARE (Digital Academic Repository) Motion compensation for 4D PET/CT Kruis, M.F. Link to publication Citation for published version (APA): Kruis, M. F. (2014). Motion compensation for 4D PET/CT General

More information

Shading correction algorithm for cone-beam CT in radiotherapy: Extensive clinical validation of image quality improvement

Shading correction algorithm for cone-beam CT in radiotherapy: Extensive clinical validation of image quality improvement Shading correction algorithm for cone-beam CT in radiotherapy: Extensive clinical validation of image quality improvement K D Joshi a, T E Marchant b, a, and C J Moore b, a a Christie Medical Physics and

More information

Scatter Correction for Dual source Cone beam CT Using the Pre patient Grid. Yingxuan Chen. Graduate Program in Medical Physics Duke University

Scatter Correction for Dual source Cone beam CT Using the Pre patient Grid. Yingxuan Chen. Graduate Program in Medical Physics Duke University Scatter Correction for Dual source Cone beam CT Using the Pre patient Grid by Yingxuan Chen Graduate Program in Medical Physics Duke University Date: Approved: Lei Ren, Supervisor Fang Fang Yin, Chair

More information

Carestream s 2 nd Generation Metal Artifact Reduction Software (CMAR 2)

Carestream s 2 nd Generation Metal Artifact Reduction Software (CMAR 2) Carestream s 2 nd Generation Metal Artifact Reduction Software (CMAR 2) Author: Levon Vogelsang Introduction Cone beam computed tomography (CBCT), or cone beam CT technology, offers considerable promise

More information

Binning Without a Model for Cone-beam CT

Binning Without a Model for Cone-beam CT PETRIE et al.: BINNING WITHOUT A MODEL FOR CONE-BEAM CT 1 Binning Without a Model for Cone-beam CT Tracy Petrie 1 scstp@leeds.ac.uk Derek Magee 1 D.R.Magee@leeds.ac.uk Jonathan Sykes 2 Jonathan.Sykes@leedsth.nhs.uk

More information

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Protocol optimization

More information

Digital Tomosynthesis for Target Localization

Digital Tomosynthesis for Target Localization Digital Tomosynthesis for Target Localization Fang-Fang Yin, Devon Godfrey, Lei Ren Jacqueline Maurer, Jackie Q-L Wu Duke University Medical Center Acknowledgements Duke Radiation Oncology faculty and

More information

Implementation of Advanced Image Guided Radiation Therapy

Implementation of Advanced Image Guided Radiation Therapy Image Acquisition Course Outline Principles, characteristics& applications of the available modalities Image Processing in the T x room Image guided treatment delivery What can / can t we do in the room

More information

Motion-Compensated Mega-Voltage Cone Beam CT Using the Deformation Derived Directly From 2D Projection Images

Motion-Compensated Mega-Voltage Cone Beam CT Using the Deformation Derived Directly From 2D Projection Images IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 8, AUGUST 2013 1365 Motion-Compensated Mega-Voltage Cone Beam CT Using the Deformation Derived Directly From 2D Projection Images Mingqing Chen*, Kunlin

More information

4D visualisation of in-situ aluminium foam compression with lab-based motion compensated X-Ray micro-ct

4D visualisation of in-situ aluminium foam compression with lab-based motion compensated X-Ray micro-ct 4D visualisation of in-situ aluminium foam compression with lab-based motion compensated X-Ray micro-ct More info about this article: http://www.ndt.net/?id=20821 Thomas De Schryver 1, Jeroen Van Stappen²,

More information

The Near Future in Cardiac CT Image Reconstruction

The Near Future in Cardiac CT Image Reconstruction SCCT 2010 The Near Future in Cardiac CT Image Reconstruction Marc Kachelrieß Institute of Medical Physics (IMP) Friedrich-Alexander Alexander-University Erlangen-Nürnberg rnberg www.imp.uni-erlangen.de

More information

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA

Computed Tomography. Principles, Design, Artifacts, and Recent Advances. Jiang Hsieh THIRD EDITION. SPIE PRESS Bellingham, Washington USA Computed Tomography Principles, Design, Artifacts, and Recent Advances THIRD EDITION Jiang Hsieh SPIE PRESS Bellingham, Washington USA Table of Contents Preface Nomenclature and Abbreviations xi xv 1 Introduction

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Motion artifact detection in four-dimensional computed tomography images

Motion artifact detection in four-dimensional computed tomography images Motion artifact detection in four-dimensional computed tomography images G Bouilhol 1,, M Ayadi, R Pinho, S Rit 1, and D Sarrut 1, 1 University of Lyon, CREATIS; CNRS UMR 5; Inserm U144; INSA-Lyon; University

More information

A closer look at CT scanning

A closer look at CT scanning Vet Times The website for the veterinary profession https://www.vettimes.co.uk A closer look at CT scanning Author : Charissa Lee, Natalie Webster Categories : General, Vets Date : April 3, 2017 A basic

More information

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT

Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Projection and Reconstruction-Based Noise Filtering Methods in Cone Beam CT Benedikt Lorch 1, Martin Berger 1,2, Joachim Hornegger 1,2, Andreas Maier 1,2 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg

More information

A multi-atlas approach for prostate segmentation in MR images

A multi-atlas approach for prostate segmentation in MR images A multi-atlas approach for prostate segmentation in MR images Geert Litjens, Nico Karssemeijer, and Henkjan Huisman Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, Nijmegen,

More information

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING Reveal pathology Reveal the anatomic truth Steven R. Singer, DDS srs2@columbia.edu IDEAL DIAGNOSTIC IMAGING STUDY Provides desired diagnostic

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

BLUT : Fast and Low Memory B-spline Image Interpolation

BLUT : Fast and Low Memory B-spline Image Interpolation BLUT : Fast and Low Memory B-spline Image Interpolation David Sarrut a,b,c, Jef Vandemeulebroucke a,b,c a Université de Lyon, F-69622 Lyon, France. b Creatis, CNRS UMR 5220, F-69622, Villeurbanne, France.

More information

State-of-the-Art IGRT

State-of-the-Art IGRT in partnership with State-of-the-Art IGRT Exploring the Potential of High-Precision Dose Delivery and Real-Time Knowledge of the Target Volume Location Antje-Christin Knopf IOP Medical Physics Group Scientific

More information

Acknowledgments and financial disclosure

Acknowledgments and financial disclosure AAPM 2012 Annual Meeting Digital breast tomosynthesis: basic understanding of physics principles James T. Dobbins III, Ph.D., FAAPM Director, Medical Physics Graduate Program Ravin Advanced Imaging Laboratories

More information

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography

Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography Interactive Deformable Registration Visualization and Analysis of 4D Computed Tomography Burak Erem 1, Gregory C. Sharp 2, Ziji Wu 2, and David Kaeli 1 1 Department of Electrical and Computer Engineering,

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

Automated Quality Assurance for Image-Guided Radiation Therapy

Automated Quality Assurance for Image-Guided Radiation Therapy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 1, WINTER 2009 Automated Quality Assurance for Image-Guided Radiation Therapy Eduard Schreibmann, a Eric Elder, Tim Fox Department of Radiation

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation 5 10 15 20 25 30 35 Xun Jia Department of Radiation Oncology, University of California San Diego,

More information

Automatic Lung Surface Registration Using Selective Distance Measure in Temporal CT Scans

Automatic Lung Surface Registration Using Selective Distance Measure in Temporal CT Scans Automatic Lung Surface Registration Using Selective Distance Measure in Temporal CT Scans Helen Hong 1, Jeongjin Lee 2, Kyung Won Lee 3, and Yeong Gil Shin 2 1 School of Electrical Engineering and Computer

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D.

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D. Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment Huijun Xu, Ph.D. Acknowledgement and Disclosure Dr. Jeffrey Siebers Dr. DJ

More information

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR

Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR Intraoperative Prostate Tracking with Slice-to-Volume Registration in MR Sean Gill a, Purang Abolmaesumi a,b, Siddharth Vikal a, Parvin Mousavi a and Gabor Fichtinger a,b,* (a) School of Computing, Queen

More information

CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy

CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy Fourth International Workshop on Pulmonary Image Analysis -113- CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy Chen-Rui Chou 1, Brandon Frederick 2, Xiaoxiao Liu 4, Gig

More information

Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines

Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines Martha M. Coselmon, a) James M. Balter, Daniel L. McShan, and Marc L. Kessler Department

More information

Clinical Prospects and Technological Challenges for Multimodality Imaging Applications in Radiotherapy Treatment Planning

Clinical Prospects and Technological Challenges for Multimodality Imaging Applications in Radiotherapy Treatment Planning Clinical Prospects and Technological Challenges for Multimodality Imaging Applications in Radiotherapy Treatment Planning Issam El Naqa, PhD Assistant Professor Department of Radiation Oncology Washington

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties Steven Dolly 1, Eric Ehler 1, Yang Lou 2, Mark Anastasio 2, Hua Li 2 (1) University

More information

3D Voxel-Based Volumetric Image Registration with Volume-View Guidance

3D Voxel-Based Volumetric Image Registration with Volume-View Guidance 3D Voxel-Based Volumetric Image Registration with Volume-View Guidance Guang Li*, Huchen Xie, Holly Ning, Deborah Citrin, Jacek Copala, Barbara Arora, Norman Coleman, Kevin Camphausen, and Robert Miller

More information

GPU-based fast gamma index calcuation

GPU-based fast gamma index calcuation 1 GPU-based fast gamma index calcuation 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xuejun Gu, Xun Jia, and Steve B. Jiang Center for Advanced Radiotherapy Technologies

More information

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies g Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies Presented by Adam Kesner, Ph.D., DABR Assistant Professor, Division of Radiological Sciences,

More information

Automated segmentation methods for liver analysis in oncology applications

Automated segmentation methods for liver analysis in oncology applications University of Szeged Department of Image Processing and Computer Graphics Automated segmentation methods for liver analysis in oncology applications Ph. D. Thesis László Ruskó Thesis Advisor Dr. Antal

More information

Self-Calibration of Cone-Beam CT Using 3D-2D Image Registration

Self-Calibration of Cone-Beam CT Using 3D-2D Image Registration Self-Calibration of Cone-Beam CT Using 3D-2D Image Registration Sarah Ouadah 1 J. Webster Stayman 1 Grace Jianan Gang 1 Ali Uneri 2 Tina Ehtiati 3 Jeffrey H. Siewerdsen 1,2 1. Department of Biomedical

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT 3 ADVANCING CANCER TREATMENT SUPPORTING CLINICS WORLDWIDE RaySearch is advancing cancer treatment through pioneering software. We believe software has un limited potential, and that it is now the driving

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

Nonrigid Registration with Adaptive, Content-Based Filtering of the Deformation Field

Nonrigid Registration with Adaptive, Content-Based Filtering of the Deformation Field Nonrigid Registration with Adaptive, Content-Based Filtering of the Deformation Field Marius Staring*, Stefan Klein and Josien P.W. Pluim Image Sciences Institute, University Medical Center Utrecht, P.O.

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

Philips SPECT/CT Systems

Philips SPECT/CT Systems Philips SPECT/CT Systems Ling Shao, PhD Director, Imaging Physics & System Analysis Nuclear Medicine, Philips Healthcare June 14, 2008 *Presented SNM08 Categorical Seminar - Quantitative SPECT and PET

More information

Scene-Based Segmentation of Multiple Muscles from MRI in MITK

Scene-Based Segmentation of Multiple Muscles from MRI in MITK Scene-Based Segmentation of Multiple Muscles from MRI in MITK Yan Geng 1, Sebastian Ullrich 2, Oliver Grottke 3, Rolf Rossaint 3, Torsten Kuhlen 2, Thomas M. Deserno 1 1 Department of Medical Informatics,

More information

Robust Lung Ventilation Assessment

Robust Lung Ventilation Assessment Fifth International Workshop on Pulmonary Image Analysis -75- Robust Lung Ventilation Assessment Sven Kabus 1, Tobias Klinder 1, Tokihiro Yamamoto 2, Paul J. Keall 3, Billy W. Loo, Jr. 4, and Cristian

More information

Atlas Based Segmentation of the prostate in MR images

Atlas Based Segmentation of the prostate in MR images Atlas Based Segmentation of the prostate in MR images Albert Gubern-Merida and Robert Marti Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain {agubern,marly}@eia.udg.edu Abstract.

More information

icatvision Quick Reference

icatvision Quick Reference icatvision Quick Reference Navigating the i-cat Interface This guide shows how to: View reconstructed images Use main features and tools to optimize an image. REMINDER Images are displayed as if you are

More information

Reduction of motion artefacts in on-board cone beam CT by warping of projection images

Reduction of motion artefacts in on-board cone beam CT by warping of projection images Reduction of motion artefacts in on-board cone beam CT by warping of projection images T E Marchant 1, G J Price 1, B J Matuszewski 2 and C J Moore 1. 1 North Western Medical Physics, The Christie NHS

More information

Lag correction model and ghosting analysis for an indirect-conversion flat-panel imager

Lag correction model and ghosting analysis for an indirect-conversion flat-panel imager JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 3, SUMMER 2007 Lag correction model and ghosting analysis for an indirect-conversion flat-panel imager Noor Mail, Peter O Brien, and Geordi

More information

CT Basics Principles of Spiral CT Dose. Always Thinking Ahead.

CT Basics Principles of Spiral CT Dose. Always Thinking Ahead. 1 CT Basics Principles of Spiral CT Dose 2 Who invented CT? 1963 - Alan Cormack developed a mathematical method of reconstructing images from x-ray projections Sir Godfrey Hounsfield worked for the Central

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT The RayPlan treatment planning system makes proven, innovative RayStation technology accessible to clinics that need a cost-effective and streamlined solution. Fast, efficient and straightforward to use,

More information

RapidMind. Accelerating Medical Imaging. May 13, 2009

RapidMind. Accelerating Medical Imaging. May 13, 2009 RapidMind Accelerating Medical Imaging May 13, 2009 Outline Medical imaging software challenges Case studies Elastography, registration, breast cancer screening Platform System overview Detailed example:

More information

Super-resolution Reconstruction of Fetal Brain MRI

Super-resolution Reconstruction of Fetal Brain MRI Super-resolution Reconstruction of Fetal Brain MRI Ali Gholipour and Simon K. Warfield Computational Radiology Laboratory Children s Hospital Boston, Harvard Medical School Worshop on Image Analysis for

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

Virtual Phantoms for IGRT QA

Virtual Phantoms for IGRT QA TM Virtual Phantoms for IGRT QA Why ImSimQA? ImSimQA was developed to overcome the limitations of physical phantoms for testing modern medical imaging and radiation therapy software systems, when there

More information

QIBA PET Amyloid BC March 11, Agenda

QIBA PET Amyloid BC March 11, Agenda QIBA PET Amyloid BC March 11, 2016 - Agenda 1. QIBA Round 6 Funding a. Deadlines b. What projects can be funded, what cannot c. Discussion of projects Mechanical phantom and DRO Paul & John? Any Profile

More information

Iterative sorting for four-dimensional CT images based on internal anatomy motion

Iterative sorting for four-dimensional CT images based on internal anatomy motion Iterative sorting for four-dimensional CT images based on internal anatomy motion Rongping Zeng a and Jeffrey A. Fessler b Electrical Engineering and Computer Science Department, University of Michigan,

More information

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging

Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Refraction Corrected Transmission Ultrasound Computed Tomography for Application in Breast Imaging Joint Research With Trond Varslot Marcel Jackowski Shengying Li and Klaus Mueller Ultrasound Detection

More information

Non-Parametric Bayesian Registration (NParBR) on CT Lungs Data - EMPIRE10 Challenge

Non-Parametric Bayesian Registration (NParBR) on CT Lungs Data - EMPIRE10 Challenge Non-Parametric Bayesian Registration (NParBR) on CT Lungs Data - EMPIRE10 Challenge David Pilutti 1, Maddalena Strumia 1, Stathis Hadjidemetriou 2 1 University Medical Center Freiburg, 79106 Freiburg,

More information

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland Metal Artifact Reduction CT Techniques R S S S Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland N. 1 v o 4 1 0 2. Postoperative CT Metal Implants CT is accurate for assessment

More information

Visualisation : Lecture 1. So what is visualisation? Visualisation

Visualisation : Lecture 1. So what is visualisation? Visualisation So what is visualisation? UG4 / M.Sc. Course 2006 toby.breckon@ed.ac.uk Computer Vision Lab. Institute for Perception, Action & Behaviour Introducing 1 Application of interactive 3D computer graphics to

More information

FOREWORD TO THE SPECIAL ISSUE ON MOTION DETECTION AND COMPENSATION

FOREWORD TO THE SPECIAL ISSUE ON MOTION DETECTION AND COMPENSATION Philips J. Res. 51 (1998) 197-201 FOREWORD TO THE SPECIAL ISSUE ON MOTION DETECTION AND COMPENSATION This special issue of Philips Journalof Research includes a number of papers presented at a Philips

More information

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy Towards deformable registration for augmented reality in robotic assisted partial nephrectomy Supervisor: Elena De Momi, PhD Co-supervisor: Dott. Ing. Sara Moccia Author: Anna Morelli, 853814 Academic

More information

The POPI-model, a point-validated pixel-based breathing thorax model

The POPI-model, a point-validated pixel-based breathing thorax model The POPI-model, a point-validated pixel-based breathing thorax model Jef Vandemeulebroucke David Sarrut Patrick Clarysse January 15, 2005 Abstract We wish to put at the disposal of the scientific community

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

Convolution-Based Truncation Correction for C-Arm CT using Scattered Radiation

Convolution-Based Truncation Correction for C-Arm CT using Scattered Radiation Convolution-Based Truncation Correction for C-Arm CT using Scattered Radiation Bastian Bier 1, Chris Schwemmer 1,2, Andreas Maier 1,3, Hannes G. Hofmann 1, Yan Xia 1, Joachim Hornegger 1,2, Tobias Struffert

More information

Utilizing Salient Region Features for 3D Multi-Modality Medical Image Registration

Utilizing Salient Region Features for 3D Multi-Modality Medical Image Registration Utilizing Salient Region Features for 3D Multi-Modality Medical Image Registration Dieter Hahn 1, Gabriele Wolz 2, Yiyong Sun 3, Frank Sauer 3, Joachim Hornegger 1, Torsten Kuwert 2 and Chenyang Xu 3 1

More information

Op#miza#on of an On- Board Imaging System for Rapid Radiotherapy. Erica Kemmerling, Meng Wu, He Yang, and Rebecca Fahrig

Op#miza#on of an On- Board Imaging System for Rapid Radiotherapy. Erica Kemmerling, Meng Wu, He Yang, and Rebecca Fahrig Op#miza#on of an On- Board Imaging System for Rapid Radiotherapy Erica Kemmerling, Meng Wu, He Yang, and Rebecca Fahrig Problem: mo#on during treatment Two overlapping thorax views during normal breathing

More information

Tissue preserving deformable image registration for 4DCT pulmonary images

Tissue preserving deformable image registration for 4DCT pulmonary images University of Iowa Iowa Research Online Theses and Dissertations Summer 2016 Tissue preserving deformable image registration for 4DCT pulmonary images Bowen Zhao University of Iowa Copyright 2016 Bowen

More information