Transformation Pipeline

Size: px
Start display at page:

Download "Transformation Pipeline"

Transcription

1 Transformation Pipeline Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space

2 Coordinate system A coordinate system is used to unambiguously represent a point It contains a reference point (the origin) and three linearly independent vectors (the basis) v3 v2 O v1

3 Screen Coordinate System Glut OpenGL (0,0) 0)

4 Screen Coordinate System - 2D Regular Cartesian Grid - Origin (0,0) at lower left corner (OpenGL convention) - Horizontal axis x Vertical axis y - Pixels are defined at the grid intersections (0,0) - This coordinate system is defined relative to the display window origin (OpenGL: the lower left corner of the window) (2,2) y x

5 Local Coordinate System Screen coordinate system is not very useful for displaying 3D objects You also do not necessarily know where the object is going to be placed in the end in the 3D world Solution: define the positions of the vertices relative to its own center Local coordinate system z y z y x x

6 Simple OpenGL code OpenGL 1.1 convention, the goal here is to show you the idea void display() { glclearcolor(0,0,1,1);,, glclear(gl_color_buffer_bit); glcolor4f(1,1,0,1); //glcolor* have been deprecated in OpenGL 3 glbegin(gl_triangles); //glbegin/end have been deprecated in OpenGL 3 glcolor4f(1,1,0,1); l 4f(1101) glvertex4f(vertices[0], vertices[1], vertices[2], vertices[3]); glvertex4f(vertices[4], vertices[5], vertices[6], vertices[7]); glvertex4f(vertices[8], vertices[9], vertices[10], vertices[11]); glcolor4f(1,0,0,1); glvertex4f(vertices[12], vertices[13], vertices[14], vertices[15]); glvertex4f(vertices[16], vertices[17], vertices[18], vertices[19]); glvertex4f(vertices[20], vertices[21], vertices[22], vertices[23]); glend(); float vertices[] = {-0.5, -0.5, 0.0, 1.0, // first triangle -0.5, 0.5, 0.0, 1.0, , 0.5, , , , 0.5, 0.0, 1.0, // second triangle 0.5, -0.5, 0.0, 1.0, -0.5, -0.5, 0.0, 1.0}; glutswapbuffers(); }

7 World Coordinate System Local coordinates along do not allow you to specify where the object will be placed position, size, orientation Transformations need to be performed to position the object in the world coordinate system This is done through an arbitrary number of affine s (translation, rotation, scaling) applied to each vertex or =

8 Modeling Transformation The from local to world coordinates The matrix used is called modeling matrix A modeling is a sequence of translations, rotations, scalings (in arbitrary order) matrices multiplied together More detail to come in the next lecture

9 Transformation Pipeline Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space

10 Simple OpenGL code void display() { glclearcolor(0,0,1,1); OpenGL 1.1 convention, the goal here is to show you the idea glclear(gl_color_buffer_bit); glcolor4f(1,1,0,1); //glcolor* have been deprecated in OpenGL 3 glmatrixmode(gl_modelview); glloadidentity(); glrotatef(45, 0,0,1); float vertices[] = {-0.5, -0.5, 0.0, 1.0, // first triangle -0.5, 0.5, 0.0, 1.0, , 0.5, , , , 0.5, 0.0, 1.0, // second triangle 0.5, -0.5, 0.0, 1.0, -0.5, -0.5, 0.0, 1.0}; More detail about what happens behind the scene will be explained glbegin(gl_triangles); //glbegin/end have been deprecated in OpenGL 3 glcolor4f(1,1,0,1); glvertex4f(vertices[0], vertices[1], vertices[2], vertices[3]); glvertex4f(vertices[4], e ti e vertices[5], e vertices[6], e vertices[7]); e glvertex4f(vertices[8], vertices[9], vertices[10], vertices[11]); glcolor4f(1,0,0,1); glvertex4f(vertices[12], vertices[13], vertices[14], vertices[15]); glvertex4f(vertices[16], vertices[17], vertices[18], vertices[19]); glvertex4f(vertices[20], vertices[21], vertices[22], vertices[23]); glend(); glutswapbuffers(); }

11 Viewing Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space

12 Viewing Transformation Convert from the world coordinate system to the camera (eye) coordinate system The camera position is the origin i Derive the basis from the direction and orientation of fthe camera This makes the later s easier y world z v coi x u n Eye coordinate frame

13 Viewing Transformation Head tilt: Rotate your head by Just rotate the object about the eye space z axis - Mw2e = y v u n (ex,ey,ez) ey ez) x z

14 ModelView Transformation Modeling and Viewing s concatenated together M L2E (or, GL_MODELVIEW matrix) = void display() { glclear(gl_color_buffer_bit); glmatrixmode(gl_modelview); glloadidentity(); glulookat(0,0,1,0,0,0,0,1,0); display_all(); // your display routine } = M glloadidentity(); L2E fixed function pipeline OpenGL

15 Viewing Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space

16 Projection Transformation Projection map the object from 3D space to 2D screen z y z y x x Perspective: gluperspective() Parallel: glortho()

17 Projection Transformation Maps (projects) everything in the visible volume into a canonical view volume (xmax, ymax, -far) (1, 1, -1) (xmin, ymin, -near) glortho(xmin, xmax, ymin, ymax, near, far) (-1, -1, 1) Canonical View Volume

18 Projection Transformation Maps (projects) everything in the visible volume into a canonical view volume (1, 1, -1) y z x (-1, -1, 1) (-1, -1) Z=1 z= -1 Canonical View Volume gluperspective(fovy, aspect, near, far)

19 Projection Transformation Projection Matrix glfrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

20 Viewing Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space

21 Viewport The rectangular region in the screen for displaying the graphical objects defined in the world window Defined in the screen coordinate system V_T glviewport(int left, int bottom, int (right-left), int (top-bottom)); V_B call this function before drawing V_L V_R (calling glbegin() and glend() )

Computer Graphics. Chapter 7 2D Geometric Transformations

Computer Graphics. Chapter 7 2D Geometric Transformations Computer Graphics Chapter 7 2D Geometric Transformations Chapter 7 Two-Dimensional Geometric Transformations Part III. OpenGL Functions for Two-Dimensional Geometric Transformations OpenGL Geometric Transformation

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

3D Viewing Episode 2

3D Viewing Episode 2 3D Viewing Episode 2 1 Positioning and Orienting the Camera Recall that our projection calculations, whether orthographic or frustum/perspective, were made with the camera at (0, 0, 0) looking down the

More information

Drawing and Coordinate Systems

Drawing and Coordinate Systems Drawing and Coordinate Systems Coordinate Systems World Coordinate system World window Screen Coordinate system Viewport Window to viewport mapping Screen Coordinate System Glut OpenGL (0,0) 0) Screen

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection January 25, 2012 Jernej Barbic University of Southern California Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

3.1 Viewing and Projection

3.1 Viewing and Projection Fall 2017 CSCI 420: Computer Graphics 3.1 Viewing and Projection Hao Li http://cs420.hao-li.com 1 Recall: Affine Transformations Given a point [xyz] > form homogeneous coordinates [xyz1] > The transformed

More information

Drawing and Coordinate Systems

Drawing and Coordinate Systems Drawing and Coordinate Systems Coordinate Systems Screen Coordinate system World Coordinate system World window Viewport Window to viewport mapping Screen Coordinate System Glut OpenGL (0,0) Screen Coordinate

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Geri s Game, Pixar, 1997] January 26, 2011

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D Viewing and Projection Yong Cao Virginia Tech Objective We will develop methods to camera through scenes. We will develop mathematical tools to handle perspective projection.

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

Fundamental Types of Viewing

Fundamental Types of Viewing Viewings Fundamental Types of Viewing Perspective views finite COP (center of projection) Parallel views COP at infinity DOP (direction of projection) perspective view parallel view Classical Viewing Specific

More information

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation

More information

Precept 2 Aleksey Boyko February 18, 2011

Precept 2 Aleksey Boyko February 18, 2011 Precept 2 Aleksey Boyko February 18, 2011 Getting started Initialization Drawing Transformations Cameras Animation Input Keyboard Mouse Joystick? Textures Lights Programmable pipeline elements (shaders)

More information

CS559: Computer Graphics. Lecture 12: OpenGL Transformation Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 12: OpenGL Transformation Li Zhang Spring 2008 CS559: Computer Graphics Lecture 2: OpenGL Transformation Li Zhang Spring 28 Today Transformation in OpenGL Reading Chapter 3 Last time Primitive Details glpolygonmode(glenum face, GLenum mode); face:

More information

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification 蔡侑庭 (Yu-Ting Tsai) Department of Computer Science National Chiao Tung University, Taiwan Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification OpenGL Programming Guide, Chap. 3 & Appendix F 2 OpenGL

More information

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics.

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics. Overview (1): Getting Started Setting up OpenGL/GLUT on Windows/Visual Studio COSC 4431/5331 Computer Graphics Thursday January 22, 2004 Overview Introduction Camera analogy Matrix operations and OpenGL

More information

Computer graphics MN1

Computer graphics MN1 Computer graphics MN1 http://www.opengl.org Todays lecture What is OpenGL? How do I use it? Rendering pipeline Points, vertices, lines,, polygons Matrices and transformations Lighting and shading Code

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Lecture 5: Viewing. CSE Computer Graphics (Fall 2010)

Lecture 5: Viewing. CSE Computer Graphics (Fall 2010) Lecture 5: Viewing CSE 40166 Computer Graphics (Fall 2010) Review: from 3D world to 2D pixels 1. Transformations are represented by matrix multiplication. o Modeling o Viewing o Projection 2. Clipping

More information

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7 Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.~4.7 Chap 3 View Pipeline, Comp. Graphics (U) CGGM Lab., CS Dept., NCTU Jung Hong Chuang Outline View parameters

More information

API for creating a display window and using keyboard/mouse interations. See RayWindow.cpp to see how these are used for Assignment3

API for creating a display window and using keyboard/mouse interations. See RayWindow.cpp to see how these are used for Assignment3 OpenGL Introduction Introduction OpenGL OpenGL is an API for computer graphics. Hardware-independent Windowing or getting input is not included in the API Low-level Only knows about triangles (kind of,

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

1 (Practice 1) Introduction to OpenGL

1 (Practice 1) Introduction to OpenGL 1 (Practice 1) Introduction to OpenGL This first practical is intended to get you used to OpenGL command. It is mostly a copy/paste work. Try to do it smartly by tweaking and messing around with parameters,

More information

OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL

OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL OpenGL: Open Graphics Library Introduction to OpenGL Part II CS 351-50 Graphics API ( Application Programming Interface) Software library Layer between programmer and graphics hardware (and other software

More information

Lecture 4 of 41. Lab 1a: OpenGL Basics

Lecture 4 of 41. Lab 1a: OpenGL Basics Lab 1a: OpenGL Basics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://snipurl.com/1y5gc Course web site: http://www.kddresearch.org/courses/cis636 Instructor

More information

3D computer graphics: geometric modeling of objects in the computer and rendering them

3D computer graphics: geometric modeling of objects in the computer and rendering them SE313: Computer Graphics and Visual Programming Computer Graphics Notes Gazihan Alankus, Spring 2012 Computer Graphics 3D computer graphics: geometric modeling of objects in the computer and rendering

More information

Graphics Programming

Graphics Programming Graphics Programming 3 rd Week, 2011 OpenGL API (1) API (application programming interface) Interface between an application program and a graphics system Application Program OpenGL API Graphics Library

More information

Modeling Transform. Chapter 4 Geometric Transformations. Overview. Instancing. Specify transformation for objects 李同益

Modeling Transform. Chapter 4 Geometric Transformations. Overview. Instancing. Specify transformation for objects 李同益 Modeling Transform Chapter 4 Geometric Transformations 李同益 Specify transformation for objects Allow definitions of objects in own coordinate systems Allow use of object definition multiple times in a scene

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #5: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Friday: homework 1 due at 2pm Upload to TritonEd

More information

Programming with OpenGL Part 2: Complete Programs Computer Graphics I, Fall

Programming with OpenGL Part 2: Complete Programs Computer Graphics I, Fall Programming with OpenGL Part 2: Complete Programs 91.427 Computer Graphics I, Fall 2008 1 1 Objectives Refine first program Alter default values Introduce standard program structure Simple viewing 2-D

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 2 due Friday, October 11

More information

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky 7. 3D Viewing Projection: why is projection necessary? 1 7. 3D Viewing Projection: why is projection necessary? Because the display surface is 2D 2 7.1 Projections Perspective projection 3 7.1 Projections

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming OpenGL 3D Drawing 2 3D Graphics Projections Getting 3D to 2D 3D scene 2D image 3 Projections Orthographic

More information

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S COMP27112 Û ˆF Ŝ Computer Graphics and Image Processing ˆʹ U ˆ ʹ F C E 5: iewing 1: The camera ˆʹ S Toby.Howard@manchester.ac.uk 1 Introduction In part 1 of our study of iewing, we ll look at iewing in

More information

Windows and Viewports. Windows and Viewports. Windows and Viewports. Windows and Viewports. CSC 706 Computer Graphics

Windows and Viewports. Windows and Viewports. Windows and Viewports. Windows and Viewports. CSC 706 Computer Graphics CSC 706 Computer Graphics World World Window, Screen Window and Viewport Setting Window and Viewport automatically Tiling Previously we looked at an OpenGL window where x and y were plotted as positive

More information

Viewing and Projection

Viewing and Projection 15-462 Computer Graphics I Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Angel, Ch. 5.2-5.4] January 30, 2003 [Red

More information

Prof. Feng Liu. Fall /19/2016

Prof. Feng Liu. Fall /19/2016 Prof. Feng Liu Fall 26 http://www.cs.pdx.edu/~fliu/courses/cs447/ /9/26 Last time More 2D Transformations Homogeneous Coordinates 3D Transformations The Viewing Pipeline 2 Today Perspective projection

More information

OpenGL Tutorial. Ceng 477 Introduction to Computer Graphics

OpenGL Tutorial. Ceng 477 Introduction to Computer Graphics OpenGL Tutorial Ceng 477 Introduction to Computer Graphics Adapted from: http://www.cs.princeton.edu/courses/archive/spr06/cos426/assn3/opengl_tutorial.ppt OpenGL IS an API OpenGL IS nothing more than

More information

Scene Graphs. CS4620/5620: Lecture 7. Announcements. HW 1 out. PA 1 will be out on Wed

Scene Graphs. CS4620/5620: Lecture 7. Announcements. HW 1 out. PA 1 will be out on Wed CS4620/5620: Lecture 7 Scene Graphs 1 Announcements HW 1 out PA 1 will be out on Wed Next week practicum will have an office hour type session on Open GL 2 Example Can represent drawing with flat list

More information

Viewing COMPSCI 464. Image Credits: Encarta and

Viewing COMPSCI 464. Image Credits: Encarta and Viewing COMPSCI 464 Image Credits: Encarta and http://www.sackville.ednet.ns.ca/art/grade/drawing/perspective4.html Graphics Pipeline Graphics hardware employs a sequence of coordinate systems The location

More information

// double buffering and RGB glutinitdisplaymode(glut_double GLUT_RGBA); // your own initializations

// double buffering and RGB glutinitdisplaymode(glut_double GLUT_RGBA); // your own initializations #include int main(int argc, char** argv) { glutinit(&argc, argv); Typical OpenGL/GLUT Main Program // GLUT, GLU, and OpenGL defs // program arguments // initialize glut and gl // double buffering

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

CSCI E-74. Simulation and Gaming

CSCI E-74. Simulation and Gaming CSCI E-74 Virtual and Augmented Reality for Simulation and Gaming Fall term 2017 Gianluca De Novi, PhD Lesson 3 General Introduction to OpenGL APIs and TRS Perspective Simulation Perspective simulation

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

Fachhochschule Regensburg, Germany, February 15, 2017

Fachhochschule Regensburg, Germany, February 15, 2017 s Operations Fachhochschule Regensburg, Germany, February 15, 2017 s Motivating Example s Operations To take a photograph of a scene: Set up your tripod and point camera at the scene (Viewing ) Position

More information

Graphics Hardware and OpenGL

Graphics Hardware and OpenGL Graphics Hardware and OpenGL Ubi Soft, Prince of Persia: The Sands of Time What does graphics hardware have to do fast? Camera Views Different views of an object in the world 1 Camera Views Lines from

More information

Translation. 3D Transformations. Rotation about z axis. Scaling. CS 4620 Lecture 8. 3 Cornell CS4620 Fall 2009!Lecture 8

Translation. 3D Transformations. Rotation about z axis. Scaling. CS 4620 Lecture 8. 3 Cornell CS4620 Fall 2009!Lecture 8 Translation 3D Transformations CS 4620 Lecture 8 1 2 Scaling Rotation about z axis 3 4 Rotation about x axis Rotation about y axis 5 6 Transformations in OpenGL Stack-based manipulation of model-view transformation,

More information

3D Viewing Episode 2

3D Viewing Episode 2 3D Viewing Episode 2 1 Positioning and Orienting the Camera Recall that our projection calculations, whether orthographic or frustum/perspective, were made with the camera at (0, 0, 0) looking down the

More information

OpenGL: Setup 3D World

OpenGL: Setup 3D World CT4510: Computer Graphics OpenGL: Setup 3D World BOCHANG MOON Prerequisite for 3D World Understanding on basic mathematical background, transformations, and spaces Pixels, raster image, ector, matrix,

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

Programming using OpenGL: A first Introduction

Programming using OpenGL: A first Introduction Programming using OpenGL: A first Introduction CMPT 361 Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller 1 Today Overview GL, GLU, GLUT, and GLUI First example OpenGL functions and

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 470 Computer Graphics Transformations of Objects CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 1 Transformations of objects - 2D CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 2 Using

More information

Interaction. CSCI 480 Computer Graphics Lecture 3

Interaction. CSCI 480 Computer Graphics Lecture 3 CSCI 480 Computer Graphics Lecture 3 Interaction January 18, 2012 Jernej Barbic University of Southern California Client/Server Model Callbacks Double Buffering Hidden Surface Removal Simple Transformations

More information

CS418 OpenGL & GLUT Programming Tutorial (I) Presented by : Wei-Wen Feng 1/30/2008

CS418 OpenGL & GLUT Programming Tutorial (I) Presented by : Wei-Wen Feng 1/30/2008 CS418 OpenGL & GLUT Programming Tutorial (I) Presented by : Wei-Wen Feng 1/30/2008 2008/2/3 Slide 2 I Am Your TA Name : Wei-Wen Wen Feng 4th Year Graduate Student in Graphics I will be Holding discussion/tutorial

More information

2/3/16. Interaction. Triangles (Clarification) Choice of Programming Language. Buffer Objects. The CPU-GPU bus. CSCI 420 Computer Graphics Lecture 3

2/3/16. Interaction. Triangles (Clarification) Choice of Programming Language. Buffer Objects. The CPU-GPU bus. CSCI 420 Computer Graphics Lecture 3 CSCI 420 Computer Graphics Lecture 3 Interaction Jernej Barbic University of Southern California [Angel Ch. 2] Triangles (Clarification) Can be any shape or size Well-shaped triangles have advantages for

More information

Advanced Computer Graphics (CS & SE )

Advanced Computer Graphics (CS & SE ) Advanced Computer Graphics (CS & SE 233.420) Topics Covered Picking Pipeline Viewing and Transformations Rendering Modes OpenGL can render in one of three modes selected by glrendermode(mode) GL_RENDER

More information

CMSC 425: Lecture 4 More about OpenGL and GLUT Tuesday, Feb 5, 2013

CMSC 425: Lecture 4 More about OpenGL and GLUT Tuesday, Feb 5, 2013 CMSC 425: Lecture 4 More about OpenGL and GLUT Tuesday, Feb 5, 2013 Reading: See any standard reference on OpenGL or GLUT. Basic Drawing: In the previous lecture, we showed how to create a window in GLUT,

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

Transformations (Rotations with Quaternions) October 24, 2005

Transformations (Rotations with Quaternions) October 24, 2005 Computer Graphics Transformations (Rotations with Quaternions) October 4, 5 Virtual Trackball (/3) Using the mouse position to control rotation about two axes Supporting continuous rotations of objects

More information

Interaction. CSCI 420 Computer Graphics Lecture 3

Interaction. CSCI 420 Computer Graphics Lecture 3 CSCI 420 Computer Graphics Lecture 3 Interaction Jernej Barbic University of Southern California Client/Server Model Callbacks Double Buffering Hidden Surface Removal Simple Transformations [Angel Ch.

More information

Computer Viewing Computer Graphics I, Fall 2008

Computer Viewing Computer Graphics I, Fall 2008 Computer Viewing 1 Objectives Introduce mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing APIs 2 Computer Viewing Three aspects of viewing process All implemented in

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

Introduction to 3D Graphics with OpenGL. Z-Buffer Hidden Surface Removal. Binghamton University. EngiNet. Thomas J. Watson

Introduction to 3D Graphics with OpenGL. Z-Buffer Hidden Surface Removal. Binghamton University. EngiNet. Thomas J. Watson Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

CS354 Computer Graphics Viewing and Modeling

CS354 Computer Graphics Viewing and Modeling Slide Credit: Donald S. Fussell CS354 Computer Graphics Viewing and Modeling Qixing Huang February 21th 2018 Computer Viewing There are three aspects of the viewing process, all of which are implemented

More information

Introduction to OpenGL Transformations, Viewing and Lighting. Ali Bigdelou

Introduction to OpenGL Transformations, Viewing and Lighting. Ali Bigdelou Introduction to OpenGL Transformations, Viewing and Lighting Ali Bigdelou Modeling From Points to Polygonal Objects Vertices (points) are positioned in the virtual 3D scene Connect points to form polygons

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

Computer Graphics (Basic OpenGL)

Computer Graphics (Basic OpenGL) Computer Graphics (Basic OpenGL) Thilo Kielmann Fall 2008 Vrije Universiteit, Amsterdam kielmann@cs.vu.nl http://www.cs.vu.nl/ graphics/ Computer Graphics (Basic OpenGL, Input and Interaction), ((57))

More information

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker CMSC427 Transformations II: Viewing Credit: some slides from Dr. Zwicker What next? GIVEN THE TOOLS OF The standard rigid and affine transformations Their representation with matrices and homogeneous coordinates

More information

C OMPUTER G RAPHICS Thursday

C OMPUTER G RAPHICS Thursday C OMPUTER G RAPHICS 2017.04.27 Thursday Professor s original PPT http://calab.hanyang.ac.kr/ Courses Computer Graphics practice3.pdf TA s current PPT not uploaded yet GRAPHICS PIPELINE What is Graphics

More information

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Ulf Assarsson Department of Computer Engineering Chalmers University of Technology 1. I am located in room 4115 in EDIT-huset 2. Email: 3. Phone: 031-772 1775 (office) 4. Course assistant: Tomas Akenine-Mőller

More information

Order of Transformations

Order of Transformations Order of Transformations Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p Note

More information

What is Clipping? Why do we Clip? Lecture 9 Comp 236 Spring Clipping is an important optimization

What is Clipping? Why do we Clip? Lecture 9 Comp 236 Spring Clipping is an important optimization Clipping, Culling, Picking & Selection Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling Picking Selection Programming Assignment #2 Lecture 9 Comp 236 Spring 2005 What is Clipping?

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

UNIT 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS-1

UNIT 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS-1 UNIT 4 GEOMETRIC OBJECTS AND TRANSFORMATIONS-1 1. Explain the complete procedure of converting a world object frame into camera or eye frame, using the model view matrix. (Jun2012) 10M Ans: World Space

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3)

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3) Computer Graphics (Fall 2008) COMS 4160, Lecture 9: OpenGL 1 http://www.cs.columbia.edu/~cs4160 To Do Start thinking (now) about HW 3. Milestones are due soon. Course Course 3D Graphics Pipeline 3D Graphics

More information

GL_MODELVIEW transformation

GL_MODELVIEW transformation lecture 3 view transformations model transformations GL_MODELVIEW transformation view transformations: How do we map from world coordinates to camera/view/eye coordinates? model transformations: How do

More information

Exercise Max. Points Total 90

Exercise Max. Points Total 90 University of California San Diego Department of Computer Science CSE167: Introduction to Computer Graphics Fall Quarter 2014 Midterm Examination #1 Thursday, October 30 th, 2014 Instructor: Dr. Jürgen

More information

OpenGL refresher. Advanced Computer Graphics 2012

OpenGL refresher. Advanced Computer Graphics 2012 Advanced Computer Graphics 2012 What you will see today Outline General OpenGL introduction Setting up: GLUT and GLEW Elementary rendering Transformations in OpenGL Texture mapping Programmable shading

More information

CSC 470 Computer Graphics. Three Dimensional Viewing

CSC 470 Computer Graphics. Three Dimensional Viewing CSC 470 Computer Graphics Three Dimensional Viewing 1 Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Projections Producing Stereo Views 2 Introduction

More information

CSCI 4620/8626. The 2D Viewing Pipeline

CSCI 4620/8626. The 2D Viewing Pipeline CSCI 4620/8626 Computer Graphics Two-Dimensional Viewing (Chapter 8) Last update: 2016-03-3 The 2D Viewing Pipeline Given a 2D scene, we select the part of it that we wish to see (render, display) using

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 47 Computer Graphics Three Dimensional Viewing Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Producing Stereo Views 1 2 Introduction We have already

More information

Basic Graphics Programming

Basic Graphics Programming CSCI 480 Computer Graphics Lecture 2 Basic Graphics Programming January 11, 2012 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s12/ Graphics Pipeline OpenGL API

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Teacher Assistant : Tamir Grossinger Reception hours: by - Building 37 / office -102 Assignments: 4 programing using

Teacher Assistant : Tamir Grossinger   Reception hours: by  - Building 37 / office -102 Assignments: 4 programing using Teacher Assistant : Tamir Grossinger email: tamirgr@gmail.com Reception hours: by email - Building 37 / office -102 Assignments: 4 programing using C++ 1 theoretical You can find everything you need in

More information

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Classical and Computer Viewing. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Classical and Computer Viewing Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Planar Geometric Projections Standard projections project onto a plane Projectors

More information

Graphics Pipeline & APIs

Graphics Pipeline & APIs Graphics Pipeline & APIs CPU Vertex Processing Rasterization Fragment Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

More information

window World space (Object space)

window World space (Object space) Lecture. D Transformations 1 Reading Required: ffl Hearn and Baker, Sections.1.,.,.1.,. Optional: ffl Foley et al., Chapter.1. ffl David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

Interaction Computer Graphics I Lecture 3

Interaction Computer Graphics I Lecture 3 15-462 Computer Graphics I Lecture 3 Interaction Client/Server Model Callbacks Double Buffering Hidden Surface Removal Simple Transformations January 21, 2003 [Angel Ch. 3] Frank Pfenning Carnegie Mellon

More information

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 3D Viewing With acknowledge to: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Classical Viewing Viewing plane projectors Classical

More information

11/1/13. Basic Graphics Programming. Teaching Assistant. What is OpenGL. Course Producer. Where is OpenGL used. Graphics library (API)

11/1/13. Basic Graphics Programming. Teaching Assistant. What is OpenGL. Course Producer. Where is OpenGL used. Graphics library (API) CSCI 420 Computer Graphics Lecture 2 Basic Graphics Programming Teaching Assistant Yijing Li Office hours TBA Jernej Barbic University of Southern California Graphics Pipeline OpenGL API Primitives: Lines,

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

CS 543: Computer Graphics Lecture 6 (Part I): 3D Viewing and Camera Control. Emmanuel Agu

CS 543: Computer Graphics Lecture 6 (Part I): 3D Viewing and Camera Control. Emmanuel Agu CS 543: Computer Graphics Lecture 6 (Part I): 3D Viewing and Camera Control Emmanuel Agu 3D Viewing Similar to taking a photograph Control the lens of the camera Project the object from 3D world to 2D

More information