# CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling

Save this PDF as:

Size: px
Start display at page:

Download "CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling"

## Transcription

1 CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

2 Announcements Project 4 due tomorrow Project 5 discussion on Monday Midterm: Problem 5 a): no point deduction if R not normalized 2

3 Bounding Volumes Simple shape that completely encloses an object Generally a box or sphere We use spheres Easiest to work with But hard to calculate tight fits Intersect bounding volume with view frustum instead of each primitive 3

4 Bounding Box How to cull objects consisting of may polygons? Cull bounding box Rectangular box, parallel to object space coordinate planes Box is smallest box containing the entire object 4 Image: SGI OpenGL Optimizer Programmer's Guide

5 View Frustum Culling Frustum defined by 6 planes Each plane divides space into outside, inside Check each object against each plane Outside, inside, intersecting If outside all planes Outside the frustum If inside all planes Inside the frustum Else partly inside and partly out Efficiency View frustum 5

6 Distance to Plane A plane is described by a point p on the plane and a unit normal n Find the (perpendicular) distance from point x to the plane r n x p 6

7 Distance to Plane The distance is the length of the projection of x-p onto n uuuuuuu r r dist = x p n ( ) r n x uuuuu p r x p 7

8 Distance to Plane The distance has a sign positive on the side of the plane the normal points to negative on the opposite side zero exactly on the plane Divides 3D space into two infinite half-spaces uuuuuuu r r r dist(x) = ( x p) n n Positive p 8 Negative

9 Distance to Plane Simplification d is independent of x d is distance from the origin to the plane We can represent a plane with just d and n 9

10 Frustum With Signed Planes Normal of each plane points outside outside means positive distance inside means negative distance 10

11 Test Sphere and Plane For sphere with radius r and origin x, test the distance to the origin, and see if it is beyond the radius Three cases: dist(x)>r completely above dist(x)<-r completely below -r<dist(x)<r intersects r n Positive Negative 11

12 Culling Summary Pre-compute the normal n and value d for each of the six planes. Given a sphere with center x and radius r For each plane: if dist(x) > r: sphere is outside! (no need to continue loop) add 1 to count if dist(x)<-r If we made it through the loop, check the count: if the count is 6, the sphere is completely inside otherwise the sphere intersects the frustum (can use a flag instead of a count) 12

13 Culling Groups of Objects Want to be able to cull the whole group quickly But if the group is partly in and partly out, want to be able to cull individual objects 13

14 Hierarchical Bounding Volumes Given hierarchy of objects Bounding volume of each node encloses the bounding volumes of all its children Start by testing the outermost bounding volume If it is entirely outside, don t draw the group at all If it is entirely inside, draw the whole group 14

15 Hierarchical Culling If the bounding volume is partly inside and partly outside Test each child s bounding volume individually If the child is in, draw it; if it s out cull it; if it s partly in and partly out, recurse. If recursion reaches a leaf node, draw it normally 15

16 Video Math for Game Developers - Frustum Culling 16

17 Culling Goal: Discard geometry that does not need to be drawn to speed up rendering Types of culling: View frustum culling Occlusion culling Small object culling Backface culling Degenerate culling 17

18 Occlusion Culling Geometry hidden behind occluder cannot be seen Many complex algorithms exist to identify occluded geometry Images: SGI OpenGL Optimizer Programmer's Guide 18

19 Video Umbra 3 Occlusion Culling explained 19

20 Small Object Culling Object projects to less than a specified size Cull objects whose screen-space bounding box is less than a threshold number of pixels 20

21 Backface Culling Consider triangles as one-sided, i.e., only visible from the front Closed objects If the back of the triangle is facing the camera, it is not visible Gain efficiency by not drawing it (culling) Roughly 50% of triangles in a scene are back facing 21

22 Backface Culling Convention: Triangle is front facing if vertices are ordered counterclockwise p2 p1 p0 p0 Front-facing OpenGL allows one- or two-sided triangles One-sided triangles: glenable(gl_cull_face); glcullface(gl_back) Two-sided triangles (no backface culling): gldisable(gl_cull_face) p1 Back-facing p2 22

23 Backface Culling Compute triangle normal after projection (homogeneous division) Third component of n negative: front-facing, otherwise back-facing Remember: projection matrix is such that homogeneous division flips sign of third component 23

24 Degenerate Culling Degenerate triangle has no area Vertices lie in a straight line Vertices at the exact same place Normal n=0 Source: Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues

25 Rendering Pipeline Primitives Modeling and Viewing Transformation Shading Projection Scan conversion, visibility Culling, Clipping Discard geometry that will not be visible 25 Image

26 Level-of-Detail Techniques Don t draw objects smaller than a threshold Small feature culling Popping artifacts Replace 3D objects by 2D impostors Textured planes representing the objects Adapt triangle count to projected size Impostor generation Original vs. impostor 26 Size dependent mesh reduction (Data: Stanford Armadillo)

27 Lecture Overview Polynomial Curves Introduction Polynomial functions Bézier Curves Introduction Drawing Bézier curves Piecewise Bézier curves 27

28 Modeling Creating 3D objects How to construct complex surfaces? Goal Specify objects with control points Objects should be visually pleasing (smooth) Start with curves, then generalize to surfaces Next: What can curves be used for? 28

29 Curves Surface of revolution 29

30 Curves Extruded/swept surfaces 30

31 Curves Animation Provide a track for objects Use as camera path 31

### CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

### CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #13: Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 4 due Monday Nov 27 at 2pm Next Tuesday:

### Clipping & Culling. Lecture 11 Spring Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling

Clipping & Culling Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling Lecture 11 Spring 2015 What is Clipping? Clipping is a procedure for spatially partitioning geometric primitives,

### CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

### Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Clipping 1 Objectives Clipping lines First of implementation algorithms Clipping polygons (next lecture) Focus on pipeline plus a few classic algorithms 2 Clipping 2D against clipping window 3D against

### CSE 167: Lecture #17: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Lecture #17: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Important dates: Final project outline

### Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

### Hidden Surface Elimination Raytracing. Pre-lecture business. Outline for today. Review Quiz. Image-Space vs. Object-Space

Hidden Surface Elimination Raytracing Pre-lecture business Get going on pp4 Submit exam questions by Sunday CS148: Intro to CG Instructor: Dan Morris TA: Sean Walker August 2, 2005 Remote folks: let us

### CSE 167: Lecture #15: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Introduction to Computer Graphics Lecture #15: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Monday, Nov 26: Midterm review in

### INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Visibility. Welcome!

INFOGR Computer Graphics J. Bikker - April-July 2016 - Lecture 11: Visibility Welcome! Smallest Ray Tracers: Executable 5692598 & 5683777: RTMini_minimal.exe 2803 bytes 5741858: ASM_CPU_Min_Exe 994 bytes

### CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

### CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-4400 Tel: (631)632-8450; Fax:

### CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #5: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Friday: homework 1 due at 2pm Upload to TritonEd

Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

### Spatial Data Structures

CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

### Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees

Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

### Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

### Spatial Data Structures

15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

### Triangle Rasterization

Triangle Rasterization Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/07/07 1 From last time Lines and planes Culling View frustum culling Back-face culling Occlusion culling

### CSE 167: Introduction to Computer Graphics Lecture #8: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #8: Textures Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due this Friday Midterm next Tuesday

### CSE 167: Introduction to Computer Graphics Lecture #9: Textures. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #9: Textures Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Added Tuesday office hours for Krishna: 11am-12

### Spatial Data Structures

Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

### CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

### Shadow Algorithms. CSE 781 Winter Han-Wei Shen

Shadow Algorithms CSE 781 Winter 2010 Han-Wei Shen Why Shadows? Makes 3D Graphics more believable Provides additional cues for the shapes and relative positions of objects in 3D What is shadow? Shadow:

### Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Today Course overview Course organization Vectors and Matrices 2 What is computer

### CSE 167: Lecture #8: Lighting. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Lecture #8: Lighting Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #4 due Friday, October 28 Introduction:

### CSE 167: Introduction to Computer Graphics Lecture #5: Visibility, OpenGL

CSE 167: Introduction to Computer Graphics Lecture #5: Visibility, OpenGL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Tomorrow: assignment 1 due Grading

### Hidden Surface Removal

Outline Introduction Hidden Surface Removal Hidden Surface Removal Simone Gasparini gasparini@elet.polimi.it Back face culling Depth sort Z-buffer Introduction Graphics pipeline Introduction Modeling Geom

### Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

### Robust Stencil Shadow Volumes. CEDEC 2001 Tokyo, Japan

Robust Stencil Shadow Volumes CEDEC 2001 Tokyo, Japan Mark J. Kilgard Graphics Software Engineer NVIDIA Corporation 2 Games Begin to Embrace Robust Shadows 3 John Carmack s new Doom engine leads the way

### 9. Visible-Surface Detection Methods

9. Visible-Surface Detection Methods More information about Modelling and Perspective Viewing: Before going to visible surface detection, we first review and discuss the followings: 1. Modelling Transformation:

### Overview: Ray Tracing & The Perspective Projection Pipeline

Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,

### CS 4620 Midterm, March 21, 2017

CS 460 Midterm, March 1, 017 This 90-minute exam has 4 questions worth a total of 100 points. Use the back of the pages if you need more space. Academic Integrity is expected of all students of Cornell

### CSCI 4620/8626. Coordinate Reference Frames

CSCI 4620/8626 Computer Graphics Graphics Output Primitives Last update: 2014-02-03 Coordinate Reference Frames To describe a picture, the world-coordinate reference frame (2D or 3D) must be selected.

### CSE 167: Introduction to Computer Graphics Lecture #3: Coordinate Systems

CSE 167: Introduction to Computer Graphics Lecture #3: Coordinate Systems Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2015 Announcements Project 2 due Friday at 1pm Homework

### graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

### Computer Graphics. - Rasterization - Philipp Slusallek

Computer Graphics - Rasterization - Philipp Slusallek Rasterization Definition Given some geometry (point, 2D line, circle, triangle, polygon, ), specify which pixels of a raster display each primitive

### Real-Time Graphics Architecture

Real-Time Graphics Architecture Kurt Akeley Pat Hanrahan http://www.graphics.stanford.edu/courses/cs448a-01-fall Geometry Outline Vertex and primitive operations System examples emphasis on clipping Primitive

### 15. Clipping. Projection Transformation. Projection Matrix. Perspective Division

15. Clipping Procedures for eliminating all parts of primitives outside of the specified view volume are referred to as clipping algorithms or simply clipping This takes place as part of the Projection

### 11 - Spatial Data Structures

11 - Spatial Data Structures cknowledgement: Marco Tarini Types of Queries Graphic applications often require spatial queries Find the k points closer to a specific point p (k-nearest Neighbours, knn)

### Modeling Objects. Modeling. Symbol-Instance Table. Instance Transformation. Each appearance of the object in the model is an instance

Modeling Objects Modeling Hierarchical Transformations Hierarchical Models Scene Graphs A prototype has a default size, position, and orientation You need to perform modeling transformations to position

### Computer Graphics. Lecture 9 Hidden Surface Removal. Taku Komura

Computer Graphics Lecture 9 Hidden Surface Removal Taku Komura 1 Why Hidden Surface Removal? A correct rendering requires correct visibility calculations When multiple opaque polygons cover the same screen

### Animation & Rendering

7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

### CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:

### Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

### Clipping Algorithms; 8-5. Computer Graphics. Spring CS4815

Computer Graphics Spring 2016-2017 Outline Clipping Algorithms; 8-5 1 Clipping Algorithms; 8-5 Announcements Mid-term: Week07?? Clipping: Introduction It is common for a region to be defined so that only

### CSE Intro to Computer Graphics. ANSWER KEY: Midterm Examination. November 18, Instructor: Sam Buss, UC San Diego

CSE 167 - Intro to Computer Graphics ANSWER KEY: Midterm Examination November 18, 2003 Instructor: Sam Buss, UC San Diego Write your name or initials on every page before beginning the exam. You have 75

### 4: Polygons and pixels

COMP711 Computer Graphics and Image Processing 4: Polygons and pixels Toby.Howard@manchester.ac.uk 1 Introduction We ll look at Properties of polygons: convexity, winding, faces, normals Scan conversion

### Computer Graphics. Prof. Feng Liu. Fall /21/2016

Computer Graphics Prof. Feng Liu Fall 2016 http://www.cs.pdx.edu/~fliu/courses/cs447/ 11/21/2016 Last time Polygon Mesh and Modeling 2 Today Modeling Technologies Final Exam: 12:30-2:00, December 7, 2016

### Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline CS559 Fall 2016 Lectures 10 & 11 October 10th & 12th, 2016 1. Put a 3D primitive in the World Modeling 2. Figure out what color it should be 3. Position relative to the

### COMP3421. Introduction to 3D Graphics

COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

### Points and lines, Line drawing algorithms. Circle generating algorithms, Midpoint circle Parallel version of these algorithms

Jahangirabad Institute Of Technology Assistant Prof. Ankur Srivastava COMPUTER GRAPHICS Semester IV, 2016 MASTER SCHEDULE Unit-I Unit-II Class 1,2,3,4 Mon, Jan19,Tue20,Sat23,Mon 25 Class 5 Wed, Jan 27

### Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

### Werner Purgathofer

Einführung in Visual Computing 186.822 Visible Surface Detection Werner Purgathofer Visibility in the Rendering Pipeline scene objects in object space object capture/creation ti modeling viewing projection

### Rasterization Overview

Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

### COMP environment mapping Mar. 12, r = 2n(n v) v

Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,

### RSX Best Practices. Mark Cerny, Cerny Games David Simpson, Naughty Dog Jon Olick, Naughty Dog

RSX Best Practices Mark Cerny, Cerny Games David Simpson, Naughty Dog Jon Olick, Naughty Dog RSX Best Practices About libgcm Using the SPUs with the RSX Brief overview of GCM Replay December 7 th, 2004

### 3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

### What is Clipping? Why do we Clip? Lecture 9 Comp 236 Spring Clipping is an important optimization

Clipping, Culling, Picking & Selection Trivial Rejection Outcode Clipping Plane-at-a-time Clipping Backface Culling Picking Selection Programming Assignment #2 Lecture 9 Comp 236 Spring 2005 What is Clipping?

### Topic 0. Introduction: What Is Computer Graphics? CSC 418/2504: Computer Graphics EF432. Today s Topics. What is Computer Graphics?

EF432 Introduction to spagetti and meatballs CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~karan/courses/418/ Instructors: L0101, W 12-2pm

### Performance OpenGL Programming (for whatever reason)

Performance OpenGL Programming (for whatever reason) Mike Bailey Oregon State University Performance Bottlenecks In general there are four places a graphics system can become bottlenecked: 1. The computer

### C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

### Two-Dimensional Viewing. Chapter 6

Two-Dimensional Viewing Chapter 6 Viewing Pipeline Two-Dimensional Viewing Two dimensional viewing transformation From world coordinate scene description to device (screen) coordinates Normalization and

### Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts

Visible Surface Detection Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Two approaches: 1. Object space methods 2. Image

### PowerVR Hardware. Architecture Overview for Developers

Public Imagination Technologies PowerVR Hardware Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

### Lesson 01 Polygon Basics 17. Lesson 02 Modeling a Body 27. Lesson 03 Modeling a Head 63. Lesson 04 Polygon Texturing 87. Lesson 05 NURBS Basics 117

Table of Contents Project 01 Lesson 01 Polygon Basics 17 Lesson 02 Modeling a Body 27 Lesson 03 Modeling a Head 63 Lesson 04 Polygon Texturing 87 Project 02 Lesson 05 NURBS Basics 117 Lesson 06 Modeling

### CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

### CS535 Fall Department of Computer Science Purdue University

Culling CS535 Fall 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Types of culling View frustum culling Visibility culling e.g., backface culling, portal tlculling,

### Determination (Penentuan Permukaan Tampak)

Visible Surface Determination (Penentuan Permukaan Tampak) Visible Surface Determination 1/26 Outline Definisi VSD Tiga Kelas Algoritma VSD Kelas : Conservative Spatial Subdivison Bounding Volume Back

### Software Engineering. ò Look up Design Patterns. ò Code Refactoring. ò Code Documentation? ò One of the lessons to learn for good design:

Software Engineering ò Look up Design Patterns ò Code Refactoring ò Code Documentation? ò One of the lessons to learn for good design: ò Coupling: the amount of interconnectedness between classes ò Cohesion:

### The Importance of Matrices in the DirectX API. by adding support in the programming language for frequently used calculations.

Hermann Chong Dr. King Linear Algebra Applications 28 November 2001 The Importance of Matrices in the DirectX API In the world of 3D gaming, there are two APIs (Application Program Interface) that reign

### Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

### Visible-Surface Detection 1. 2IV60 Computer graphics set 11: Hidden Surfaces. Visible-Surface Detection 3. Visible-Surface Detection 2

Visible-urface Detection IV60 omputer graphics set : Hidden urfaces Problem: Given a scene and a projection, what can we see? Jack van Wijk TU/e Visible-urface Detection Terminology: Visible-surface detection

### OUTLINE. Hierarchical Models Z-Fighting Primitives Besides Triangles Back Face Culling

MATRIX STACKS OUTLINE Hierarchical Models Z-Fighting Primitives Besides Triangles Back Face Culling HIERARCHICAL MODELS Building scenes where objects move in relation to each other rather than independently

### Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

### CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

### The Rendering Pipeline (1)

The Rendering Pipeline (1) Alessandro Martinelli alessandro.martinelli@unipv.it 30 settembre 2014 The Rendering Pipeline (1) Rendering Architecture First Rendering Pipeline Second Pipeline: Illumination

### The Rendering Pipeline

The Rendering Pipeline Framebuffers Framebuffer is the interface between the device and the computer s notion of an image A memory array in which the computer stores an image On most computers, separate

### ACT SparkNotes Test Prep: Plane Geometry

ACT SparkNotes Test Prep: Plane Geometry Plane Geometry Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test If you ve taken

### CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

### Could you make the XNA functions yourself?

1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

### Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

### Deferred Rendering Due: Wednesday November 15 at 10pm

CMSC 23700 Autumn 2017 Introduction to Computer Graphics Project 4 November 2, 2017 Deferred Rendering Due: Wednesday November 15 at 10pm 1 Summary This assignment uses the same application architecture

### A Three Dimensional Image Cache for Virtual Reality

A Three Dimensional Image Cache for Virtual Reality Gernot Schaufler and Wolfgang Stürzlinger GUP, Johannes Kepler Universität Linz, Altenbergerstr.69, A- Linz, Austria/Europe schaufler@gup.uni-linz.ac.at

### Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

### Lecture 13: Reyes Architecture and Implementation. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)

Lecture 13: Reyes Architecture and Implementation Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) A gallery of images rendered using Reyes Image credit: Lucasfilm (Adventures

### Scanline Rendering 1 1/42

Scanline Rendering 1 1/42 Scanline Renderer Think of it as setting up a virtual environment/world that mimics the real world but cheats a bit for efficiency, using what we know about light and our eye

### FRUSTUM AND OCCLUSION CULLING IN A QUADTREE-BASED TERRAIN RENDERER

FRUSTUM AND OCCLUSION CULLING IN A QUADTREE-BASED TERRAIN RENDERER Nathaniel Reed Extended Essay Computer Science February 2, 2004 ABSTRACT In computer graphics, two important methods of hidden surface

### Deferred Splatting. Gaël GUENNEBAUD Loïc BARTHE Mathias PAULIN IRIT UPS CNRS TOULOUSE FRANCE.

Deferred Splatting Gaël GUENNEBAUD Loïc BARTHE Mathias PAULIN IRIT UPS CNRS TOULOUSE FRANCE http://www.irit.fr/~gael.guennebaud Plan Complex Scenes: Triangles or Points? High Quality Splatting: Really

### Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

### Computer Graphics 1. Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010

Computer Graphics 1 Chapter 7 (June 17th, 2010, 2-4pm): Shading and rendering 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons

### Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

### CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 2: Graphics Pipeline Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices - raster displays show images as a rectangular array

### 3D Rendering Pipeline (for direct illumination)

Clipping 3D Rendering Pipeline (for direct illumination) 3D Primitives 3D Modeling Coordinates Modeling Transformation Lighting 3D Camera Coordinates Projection Transformation Clipping 2D Screen Coordinates

### OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL

OpenGL: Open Graphics Library Introduction to OpenGL Part II CS 351-50 Graphics API ( Application Programming Interface) Software library Layer between programmer and graphics hardware (and other software

### Clipping and Scan Conversion

15-462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.3-7.6, 7.8-7.9] March 19, 2002 Frank