DETC SLAM USING 3D RECONSTRUCTION VIA A VISUAL RGB & RGB-D SENSORY INPUT

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "DETC SLAM USING 3D RECONSTRUCTION VIA A VISUAL RGB & RGB-D SENSORY INPUT"

Transcription

1 Poceedings of the ASME 211 Intenational Design Engineeing Technical Confeences & Computes and Infomation in Engineeing Confeence IDETC/CIE 211 August 28-31, 211, Washington, DC, USA DETC SAM USING 3D ECONSTUCTION VIA A VISUA GB & GB-D SENSOY INPUT Helge A. Wudemann * PhD Candidate King s College ondon ondon, United Kingdom ei Cui Postdoctoal Fellow King s College ondon ondon, United Kingdom Evangelos Geogiou * PhD Candidate King s College ondon ondon, United Kingdom Jian S. Dai Pofesso of Mechanisms and obotics King s College ondon ondon, United Kingdom *joint fist authos with equal contibution to this pape ABSTACT This pape investigates simultaneous localization and mapping (SAM poblem by exploiting the Micosoft Kinect senso aay and an autonomous mobile obot capable of self-localization. The combination of them coves the majo featues of SAM including mapping, sensing, locating, and modeling. The Kinect senso aay povides a dual camea output of GB, using a CMOS camea, and GB-D, using a depth camea. The sensos will be mounted on the KCBOT, an autonomous nonholonomic two wheel maneuveable mobile obot. The mobile obot platfom has the ability to self-localize and pefom navigation maneuves to tavese to set taget points using intelligent pocesses. The taget point fo this opeation is a fixed coodinate position, which will be the goal fo the mobile obot to each, taking into consideation the obstacles in the envionment which will be epesented in a 3D spatial model. Extacting the images fom the senso afte a calibation outine, a 3D econstuction of the tavesable envionment is poduced fo the mobile obot to navigate. Using the constucted 3D model the autonomous mobile obot follows a polynomial-based nonholonomic tajectoy with obstacle avoidance. The expeimental esults demonstate the cost effectiveness of this off the shelf senso aay. The esults show the effectiveness to poduce a 3D econstuction of an envionment and the feasibility of using the Micosoft Kinect senso fo mapping, sensing, locating, and modeling, that enables the implementation of SAM on this type of platfom. 1. INTODUCTION Ove the past 3 yeas, eseaches have been developing multiple solutions of visual-based mobile obots that ae able to navigate within an unknown indoo and outdoo envionment. Only duing the last decade, this wide aea has been focused on function diven navigation such as impoving the living standad and inceasing the independency of blind people. In this egad, concepts of obstacle avoidance and location as well as path planning using vision have been poposed by [1]. Anothe aea of application is secuity: In [2], the WITH mobile obot [3] is pesented fo detection of theat by evaluating unexpected objects and faces. The lagest field apat fom militay use is uban seach and escue obots [4] [5]. Mobile obot systems aimed at this secto should be obust and available at athe low costs. Futhemoe, tagets ae often not only identifiable via vision but via noise. Mobile obot navigation has been of majo inteest since the 198s. The development duing this peiod is summaized the development in [6]. This suvey concentates on indoo and outdoo navigation. These ae divided into thee goups: Mapbased systems depend on pe-defined geometic models o topological maps of the envionment, wheeas mapless navigation ae systems that ecognize objects found in the space o tack those objects by geneating motions based on visual 1 Copyight 211 by ASME

2 obsevations. Map-building-based navigation is an intemediate way whee sensos constuct thei own geometic o topological models of the envionment fo navigation. A simple, but obust and efficient algoithm fo a mobile obot path planning is discussed in [7]. Hee, a path is taught and eplayed in indoo and outdoo envionments. The system navigates by compaing featue coodinates qualitatively. Obstacle avoidance and global localization is pat of the autho s futue wok. Indoo navigation using 2-dimensional vision systems can be anothe way to exploe the envionment. ie et al. [8] pesents a two-stages-technique: Duing the offline pat the suounding is constucted with the ao-black-wellized paticle filte. A location ecognition algoithm then allocates featues to the pe-built map in ode to move autonomously within the aea. A simila appoach is used in [9]: Images ae taken by a monocula camea, segmented, filteed by an edge algoithm, and modeled as a topological gaph, whee a cetain position of the mobile obot is equivalent to a node. Hwang and Shih [1] use two chage-couple-device (CCD cameas contolled by two stepping motos each to navigate a ca-like wheeled obot. The cameas ae mounted ovehead and the obot is tagged with two landmaks. Duing indoo expeiments images ae locating the mobile obot using the landmaks and obstacles. Steeo cameas ae popula techniques fo mobile obot navigation, some vision cameas ae also expanded to an omnidiectional system [11] [12] [13]. In [14] a steeo visual system is mounted on an autonomous ai vehicle fo navigation afte having tested this technique on a gound obot. The main contibution of this pape is to self-localize and estimate the change in position ove time. A futhe step [15] descibes an online steeo camea algoithm fo econstuction of uban envionments. The sequence is as follows: Using a point cloud a 3D model is econstucted, the envionment divided into tavesable gound egions, and a local safety map is built. This plot supplies infomation about safe and unsafe aeas that is essential fo the obotic system to navigate autonomously. In [16] a method is pesented fo obstacle avoidance and path planning in an indoo envionment. Using a steeo camea mounted on a humanoid obot, the system ecognizes the floo and detects obstacles via plane extaction without any a pioi infomation of the suounding space. The disadvantage of this method is that the envionment needs to contain enough textue. In [17], the eseaches also use steeo vision guidance fo a humanoid obot. The main goal is to make this obot walking up stais and cawling undeneath obstacles. This is achieved by using scan-line gouping in ode to segment planes in the envionment. The key contibution of this pape is the extaction of height infomation that is used fo path planning and navigation. Howeve, it is mentioned that the success of steeo camea systems significantly depends on the level of textue since steeo vision elies on the hoizontal dispaity in ode to ceate 3D images. Anothe way of getting a 3D econstucted map of an envionment is apply a 3D lase senso with a hemispheical field [18] o use an I senso in combination with a single camea [19]. These last two sensos ae esponsible fo a diffeent pat of the mobile obot navigation system: The vision camea is used fo planning the closest path to the taget, wheeas the I sensos will help to avoid static and dynamic obstacles. The goal will be hit as the path is divided into intemediate steps. Figue 1. THE KINECT SENSO & THE KCBOT This pape integates the Micosoft Kinect to the simultaneous localization and mapping (SAM technique using not only 2D data (GB images but also depth infomation (GB-D. Futhe, this system aims autonomously fo a pe-defined audio signal. Without any a pioi knowledge about the suounding envionment, the mobile obot taveses its own planned path and navigates to the souce. Followed by a section that descibes the vision device and calibation, the pape intoduces the autonomous mobile obot KCBOT, as depicted in Fig. 1. Next, an algoithm fo polynomial-based nonholonomic path planning and obstacle avoidance is pesented. Expeimental esults pove the stability and obustness of this appoach. 2. GB & GB-D VISUA IMAGE CAPTUE The GB and GB-D captuing device was launched in the UK ealy Novembe 21. The vision devices, that ae located on a hoizontal line, ae connected to a small base with a motoized tilt mechanism. The Kinect TM consists of an GB camea, depth senso and multi-aay micophone (Fig. 1. This chapte descibes the functionality and ability of the device as well as the calibation. 2.1 The Micosoft Kinect Senso The GB images obtained by the colo CMOS camea have 8-bit esolution (64 48 pixels. An extacted GB image can be seen in Fig. 2(a. The CMOS senso that will eceive the I light fom the tansmitte povides input fo the depth map with 11-bit esolution (32 24 pixels. Howeve in 2 Copyight 211 by ASME

3 this pape an 8-bit esolution (64 48 pixels will be extacted (Fig. 2(b. The pinciple of the Kinect senso is as follows: Between the I tansmitte, sending out stuctued light, and eceive is a small angle. Also, the I senso should be povided with a band-pass filte in ode to captue the I light only. Using tiangulation the depth can be ecalculated d.91 GB (5.26 and fo the I senso: M I nt i nsi, cgb D (6 1 (a (b.2 d GB D.54 (7.48 Figue 2. (a GB AND (b BG-D IMAGE CAPTUE Fig. 2 (a and (b pesent the GB and GB-D images captued by the senso, espectively. 2.2 Senso Calibation The two CMOS cameas ae calibated using the widely known pinhole camea model. egading the extinsic paametes, the GB camea will be used as the wold coodinate fame, so that the depth senso needs to be tanslated by -25mm in y-diection. The intinsic matix M Intinsic is descibed by the focal length f x and f y and the pinciple point p x and p y, so that eveything adds up to the following camea matix: f p x x M f p In tin sic y y (1 1 In ode to conside non-linea effects, the intinsic matix has to be multiplied with the adial distotion vecto d : d ( x y d ( x y d ( x y 1 x y z d ( x y d ( x y d ( x y 1 d x y z (2 1 x X / Z y Y / Z whee, X, Y and Z is a point in the camea efeence fame. Fo the GB camea, the intinsic paametes ae: ( M I nt i nsi, cgb (4 1 Figue 3. GB IMAGE WITH INTINSIC CAIBATION The GB-D image shows a cetain GB colo sequence going fom close to deep. As z inceases, the ode is as follows: Magenta (1,, 1, Blue (,, 1, Cyan (, 1, 1, Geen (, 1,, Yellow (1, 1,, ed (1,,, whee, B,1. This can be witten in cylindical-coodinate epesentations by calculating the hue, satuation and lightness value in the HSV colo space. The thee equations ae given by [2]:, if G B G B 6, if max (, max (, min (, H B 6 2, if max (, G max (, min (, G 6 4, if max (, B max (, min (, S, if G B max(, min(,, othewise max(, (8 (9 V max(, (1 3 Copyight 211 by ASME

4 (c Sample 3 5 (d Sample 4 Figue 5. FOU SAMPES FO DISTANCE CACUATION Table 1. GB-D SAMPE DISTANCE ESTIMATION Figue 4. QUADATIC INTEPOATION BETWEEN DISTANCE AND HUE VAUE Fig. 4 plots the distance d = [7,17] in [cm] against the hue value H in [ ]. Unlike a linea appoximation, a quadatic equation descibes the atio between the distance and the hue value moe accuate: 2 d.3 2 H H (11 Having Equation (11 allows fo the computation of distance based on quadatic elationship to Hue. 2.3 HSV-Distance esults Since the I depth senso is calibated fo a distance between 7cm and 17cm, tests ae taken within this inteval. Fou samples can be seen in Fig. 9. The obstacle in the middle of the image is located d=8, 95, 11 and 162cm fom the Kinect TM. Table 1 shows the tanslation fom the GB colo space to the HSV colo space. As mentioned befoe, the hue value is of special inteest because this is elated to the distance d by the quadatic Equation (11. Using this intepolation, the distance can be calculated. Compaed with the measued distance, these is an aveage eo of 1.1%. Sample G B Hue in [ ] Distance d in [cm] Implementing the calibated quadatic distance equation fo d, Equation (11, Table 1 and Fig. 5 (a, (b, (c, and (d pesent the expected distance valuation of the tacked obstacle D econstuction using a GB & GB-D Senso Fom the 3D data gained fom the GD and GB-D senso, it is possible to geneate a point cloud. The point cloud includes a desciption of the alignment of sufaces specified by a 3-tuple in ode to econstuct a polygonal mesh. These points ae efeed to as vetices if they ae to be used as cones. Futhemoe, the data supplies infomation about the GB values fo each point. Fig. 6(a shows a view along the positive x-axis. It can be clealy distinguished between the backgound and obstacle. In Fig. 6(b this view has been pitched by 45. (a (b Figue 6. 3D ECONSTUCTION (a FONT VIEW AND (b OTATED BY 45 The pocessed 3D econstuction, Fig. 6 (a and (b, povides the mobile obot with an envionment map fo path planning. (a Sample 1 (b Sample 2 3 THE KCBOT: AN AUTONOMOUS MOBIE OBOT The KCBOT [21] is a non-holonomic two wheeled mobile obot. The mobile obot is built aound the specifications fo Micomouse obot and the obocup competition. These specifications contibute to the mobile obot s fom facto and size. This mobile obot holds a complex 4 Copyight 211 by ASME

5 electonic system to suppot on-line path planning, selflocalization, and even simultaneous localization and mapping (SAM, which is made possible by the onboad senso aay. Figue 7. THE KCBOT: A NONHOONOMIC MOBIE OBOT A suitable autonomous mobile obot is equied as a platfom fo the Micosoft Kinect senso. Fig. 7 pesents the KCBOT which is the platfom used to suppot the senso aay. 3.1 Mobile obot Configuation In the maneuveable classification of mobile obots [22], the vehicle is defined as being constained to move in the vehicle s fixed heading angle. Fo the vehicle to change maneuve configuation, it needs to otate about itself. As the vehicle taveses on a two dimensional plane both left and ight wheels follow a path that moves aound the instantaneous cente of cuvatue at the same angle, which can be defined as ω, and thus the angula velocity of the left and ight wheel otation is deduced as follows: θ ω(icc 2 (12 θ ω(icc 2 (13 Whee is the distance between the centes of the two otating wheels and the paamete icc is the distance between the mid-point of the otating wheels and the instantaneous cente of cuvatue. Using the velocities Equations (12 and (13 of the otating left and ights wheels, θ and θ espectively, the instantaneous cente of cuvatue, icc and the cuvatue angle, ω can deived as follows: (θ θ icc (14 2 (θ θ (θ θ ω (15 Using Equations (14 and (15, two singulaities can be identified. When θ θ, the adius of instantaneous cente of cuvatue, icc tends towads infinity and this is the condition when the mobile obot is moving in a staight line. When θ θ, the mobile obot is otating about its own cente and the adius of instantaneous cente of cuvatue, icc, is null. When the wheels on the mobile obot otate, the quadatue shaft encode etuns a counte tick value; the otation diection of the otating wheel is given by positive o negative value etuned by the encode. Using the numbes of tick counts etuned, the distance tavelled by the otating left and ight wheel can be deduced in the following way: ticks πd d (16 es ticks πd d (17 es Whee ticks and ticks depicts the numbe of encode pulses counted by left and ight wheel encodes, espectively, since the last sampling, and whee D is defined as the diamete of the wheels. With esolution of the left and ight shaft encodes es and es, espectively, it is possible to detemine the distance tavelled by the left and ight otating wheel, d and d. This calculation is epesented in Equations ( Self-localization via a Dual Shaft Encode Configuation By using the quadatue shaft encodes that accumulate the distance tavelled by the wheels, a fom of position can be deduced by deiving the mobile obot s x, y Catesian position and the maneuveable vehicle s oientation, with espect to time. The deivation stats by defining and consideing s(t and (t to be function of time, which epesents the velocity and oientation of the mobile obot, espectively. The velocity and oientation ae deived fom diffeentiating the position fom as follows: dx s( t.cos( ( t (18 dt dy s( t.sin( ( t (19 dt The change in oientation with espect to time which was defined in Equation (15 and can be descibed as follows: d l (2 dt When Equation (2 is integated, the mobile obot s angle oientation value (t with espect to time is achieved. The mobile obot s initial angle of oientation ( is witten as and is epesented as follows: b 5 Copyight 211 by ASME

6 ( t l ( t (21 b The velocity of the mobile obot is equal to the aveage speed of the two wheels and this can be incopoated into Equations (18 and (19, which is depicted as follows: dx l cos( ( t (22 dt 2 dy l.sin( ( t (23 dt 2 The next step is to integate equations (22 and (23 to the initial position of the mobile obot, which is depicted as follows: ( ( t l l x( t x sin sin( 2( b l ( ( t l l y( t y cos cos( 2( b l (24 (25 Equations (24 and (25 descibe the mobile obot s position, whee x( x and y( y ae the mobile obot s initial positions. The next step is to epesent Equations (21, (24 and (25 in tems of the distances that the left and ight wheels have tavesed, which ae defined by d and d. This can be achieved by substituting θ and θ (in Equations (21, (24 l and (25 fo d and d, espectively, and also dopping the time constant t to achieve the following: d d (26 2 ( d d ( d d t x( t x sin sin( (27 2( d d ( d d ( d d t y( t y cos cos( 2( d d b b (28 By implementing Equations (26 to (28, they povide a solution to the elative position of a maneuveable mobile obot. This might offe a possible solution to the selflocalization poblem but is subject to accumulative dift of the position and oientation with no method of e-alignment. The accuacy of this method is subject to the sampling ate of the data accumulation, such that if small position o oientation changes ae not ecoded then the position and oientation will be eoneous. 4. POYNOMIA-BASED NONHOONOMIC PATH PANNING AND OBSTACE AVOIDANCE This pat concentates on finding a path fo the KCBOT fom its initial configuation as descibed by (x, y, φ to a final one (x 1, y 1, φ 1. The nonholonomic constaint has to be satisfied and the thee dimensional final configuation space has to be eached with two contols only. The pape adopts a polynomial appoach to the path planning while obstacle avoidance is ealized by using the highe ode of the polynomials. The vetices and edges of the KCBOT as well as those of the obstacles ae enclosed in simple shapes such as cicles o squaes. To achieve the task of path planning detailed infomation about the tavesable space and location of potential obstacles is equied. Using the GB-D image a localization map is poduced fo the path planning and obstacle avoidance. 4.1 GB-D Image to 2D Envionment Mapping Befoe the autonomous mobile obot can complete any path planning o path following tasks, it equies sufficient infomation about the envionment that it will be tavesing. To povide the mobile obot with this infomation the detail fom the GB-D camea is used to make plot of the teain, plotting the un-obstucted space the mobile obot can utilize. Befoe the GB-D image can be used, the noise esolved as black pixels in the ange of #E4 E1 Ch to #FF FF FFh needs to be emoved fom the image. This is achieved by conveting the GB-D image to gay scale [23]. This pocess is caied out to potect natual colos in the #E4 E1 Ch to #FF FF FFh ange. In the GB colo model, a colo image can be epesented by the following intensity function: I GB ( F, FG, FB (29 Fom Equation (29, F is the intensity of the pixel (x,y in the ed channel, F is the intensity of pixel (x,y in the geen G channel, and F B is the intensity of pixel (x,y in the blue channel. Using only the bightness infomation the colo image can be tansfomed into a gay scale image [23]. I.333F.5 F. 1666F (3 GS Whee Equation (3 pesents the equation that convets a colo pixel to a gay scale pixel. (a G B (b Figue 8. GB-D (a TO GAY SCAE (b CONVESION 6 Copyight 211 by ASME

7 Afte the image has been conveted to gay scale, as depicted in Fig. 8, the black pixels ae filteed out of the image. Figue 9. GAY SCAE FITEED IMAGE Once the image has been stipped fom the black noise pixels, as depicted in Fig. 9, the colo detail is equied fo mapping the tavesable envionment. the two diven wheels do not slip sideways. The velocity of any point on the wheel axis is nomal to this axis. This leads to following constaint equation: xsin( ycos( (31 Whee epesents the width of the obot. The above equation is a nonholonomic constaint involving velocities and, as is well known, it cannot be integated analytically to esult in a constaint between the configuation vaiables of the platfom, namely, x, y, and φ. Also, the configuation space of this system is thee-dimensional while the velocity space is two-dimensional. The nonholonomic constaint can be witten in the fom of u xsin( y cos( v x cos( y sin( If we choose functions f and g as follows: f t, u g t, v du d (32 Figue 1. COO EMAPPING ON FITEED IMAGE The GB-D depth colo infomation fom Fig. 8 (a is emapped onto the gay scale filteed image; the esult is pesented in Fig. 1. Using the HSV [24] cylindical-coodinate epesentation of points in an GB colo model, the image is otated by 9, esulting in an image of a topological view of the tavesable space. (a Figue 11. EMAPPED GB-D FITEED IMAGE OTATION The otation of the GB-D image, Fig. 11 (a, esults in detailed localization mapping infomation, pesented in Fig. 11 (b, that the mobile obot can use fo path planning. 4.2 Obstacle Avoidance: A Polynomial Appoach Two independently diven wheels ae used to dive the mobile obot vehicle. It is assumed that the system moves at a low speed and the gound povides enough fiction foce. So (b and select the functions f and g to be fifth and thid ode time polynomials, we can obtain the tajectoy with obstacle avoidance. Details can be found in [25]. 6. CONCUSION & DISCUSSION This pape pesents the utilization of the Micosoft Kinect Senso to suppot the SAM methodology by exploiting the GB and GB-D images fo mapping, sensing, locating, and modeling. Befoe any image pocessing is possible the image inputs ae calibated to acquie the image in a pinhole model with intinsic calibation. Using a HSV cylindical-coodinate mapping space, a quadatic distance estimation model is pesented to esolve the estimation of a potential obstacles distance fom the senso. Using the GB and GB-D images a 3D econstuction method is pesented fo envionment modeling. The KCBOT, an autonomous nonholonomic maneuveable mobile obot, is used as a platfom fo the senso to captue the expeimental images. The mobile obot is self-localizing using the quadatue shaft encodes to esolve oientation and plana position. The mobile obot is povided with an envionment oveview map by the pesented GB-D image otation method. This mapping infomation is applied to the polynomial based obstacle avoidance and path planning appoach. The expeimental images demonstate the cost effectiveness of this off the shelf senso aay. The esults show the effectiveness to poduce a 3D econstuction of an envionment and the feasibility of using the Micosoft Kinect senso fo mapping, sensing, locating, and modeling, that enables the implementation of SAM on this type of platfom. 7 Copyight 211 by ASME

8 EFEENCES [1] Amutha, B., Ponnavaikko, M., Novembe 29, "Mobile Assistant as a Navigational Aid fo Blind Childen to identify andm," Intenational Jounal of ecent Tends in Engineeing, 2(3, pp [2] Godon, S., Pang, S., Nishioka,.,Kasabov, N., and Yamakawa, T., 29, "Vision Based Mobile obot fo Indoo Envionmental Secuity," Poc. 15th Intenational Confeence on Neual Infomation Pocessing of the Asia-Pacific Neual Netwok Assembly, Spinge-Velag, Belin Heidelbeg, pp [3] Moi, K., Sato, M., Sonoda, T., and Ishii,K., "Towad ealization of swam intelligence," Poc. 7th Postech-Kyutech Joint Wokshop on Neuoinfomatics. [4] Scholtz, J., Young, J., Duy, J.., and Yanco, H.A., "Evaluation of Human-obot Inteaction Awaeness in Seach and escue," Poc. 24 IEEE Intenational Confeence on obotics and Automation, pp [5] Davids, A., 22, "Uban Seach and escue obots: Fom Tagedy to Technology," IEEE INTEIGENT SYSTEMSHistoies and Futues, pp [6] DeSouza, N. G., and Kak, A.C., 22, "Vision fo Mobile obot Navigation: A Suvey," IEEE Tansactions on Patten Analysis and Machine Intelligence, 24(2, pp [7] Chen, Z., and Bichfield, S.T., "Qualitative Vision-Based Mobile obot Navigation," Poc. 26 IEEE Intenational Confeence on obotics and Automation, pp [8] i, M.-H., Hong, B.-., Cai, Z.-S., Piao, S.-H., and Huang, Q.-C., 27, "Novel indoo mobile obot navigation using monocula vision," Engineeing Applications of Atificial Intelligence, 21, pp [9] Santosh, D., Acha, S., and Jawaha, C.V., "Autonomous Image-based Exploation fo Mobile obot Navigation," Poc. 28 IEEE Intenational Confeence on obotics and Automation, pp [1] Hwang, C., and Shih, C., Mach 29, "A Distibuted Active-Vision Netwok-Space Appoach fo the Navigation of a Ca-ike Wheeled obot," IEEE Tansactions on Industial Electonics, 56(3, pp [11] Gaspa, J., Wintes, N., and Santos-Victo, J., 2, "Vision-Based Navigation and Envionmental epesentations with an Omnidiectional Camea," IEEE Tansactions on obotics and Automation, 16(6, pp [12] Adoni, G., Modonini, M., Cagnoni, C., Sgobissa, A., "Omnidiectional steeo systems fo obot navigation," Poc. 23 Confeence on Compute Vision and Patten ecognition Wokshop, pp [13] ui, W.. D., and Javis,., 21, "Eye-Full Towe: A GPU-based vaiable multibaseline omnidiectional steeovision system with automatic baseline selection fo outdoo mobile obot navigation," obotics and Autonomous Systems, 58, pp [14] Mejias,., Campoy, P., Mondagon, I., and Dohety, P., 3-5 Septembe 27, "Steeo Vision-Based Navigation fo an Autonomous Helicopte," 6th IFAC Symposium on Intelligent Autonomous Vehicle. [15] Muaka, A., and Kuipes, B., "A Steeo Vision Based Mapping Algoithm fo Detecting Inclines, Dop-offs, and Obstacles fo Safe ocal Navigation," Poc. 29 IEEE/SJ Intenational Confeence on Intelligent obots and Systems, pp [16] Sabe, K., Fukuchi, M., Gutmann, J.S., Ohashi, T., Kawamoto, K., and Yoshigahaa, T., "Obstacle Avoidance and Path Planning fo Humanoid obots using Steeo Vision," Poc. 24 IEEE Intenational Confeence on obotics and Automation, pp [17] Gutmann, J.-S., Fukuchi, M., and Fujita, M., 28, "3D Peception and Envionment Map Geneation fo Humanoid obot Navigation," The Intenational Jounal of obotics eseach, 27(1, pp [18] yde, J., and Hu, H., "3D ase ange Scanne with Hemispheical Field of View fo obot Navigation," Poc. 28 IEEE/ASME Intenational Confeence on Advanced Intelligent Mechatonics, pp [19] Singh, N. N., Chattejee, A., Chattejee, A., and akshit, A., 211, "A two-layeed subgoal based mobile obot navigation algoithm with vision system and I sensos," Measuement, in pess. [2] Smith, A.., "Colo gamut tansfom pais," Poc. 5th Annual Confeence on Compute Gaphics and Inteactive Techniques pp [21] Geogiou, E., 21, "The KCBOT Mobile obot," [22] Campion, G., Bastin, G., D Andea-Novel, B., 1996, "Stuctual Popeties and Classification of Kinematic and Dynamic Models of Wheeled Mobile obots," IEEE Tansactions on obotics and Automation, 12(2, pp [23] Kuma, T., and Vema, K., 21, "A Theoy Based on Convesion of GB image to Gay image," Intenational Jounal of Compute Applications, 7(2, pp [24] Joblove, G., and Geenbeg, D., "Colo spaces fo compute gaphics," Poc. 5th Annual Confeence on Compute Gaphics and Inteactive Techniques. [25] Papadopoulos, E., Poulakakis, I., and Papadimitiou, I., 22, "On Path Planning and Obstacle Avoidance fo Nonholonomic Platfoms with Manipulatos: A Polynomial Appoach," The Intenational Jounal of obotics eseach, 21(4, pp Copyight 211 by ASME

The KCLBOT: Exploiting RGB-D Sensor Inputs for Navigation Environment Building and Mobile Robot Localization

The KCLBOT: Exploiting RGB-D Sensor Inputs for Navigation Environment Building and Mobile Robot Localization The KCBOT: Exploiting GB-D Senso Inputs fo Navigation Envionment Building and Mobile obot ocalization egula Pape Evangelos Geogiou 1,*, Jian Dai 1 and Michael uck 1 1 King s College ondon *Coesponding

More information

Massachusetts Institute of Technology Department of Mechanical Engineering

Massachusetts Institute of Technology Department of Mechanical Engineering cm cm Poblem Massachusetts Institute of echnolog Depatment of Mechanical Engineeing. Intoduction to obotics Sample Poblems and Solutions fo the Mid-em Exam Figue shows a obotic vehicle having two poweed

More information

Fifth Wheel Modelling and Testing

Fifth Wheel Modelling and Testing Fifth heel Modelling and Testing en Masoy Mechanical Engineeing Depatment Floida Atlantic Univesity Boca aton, FL 4 Lois Malaptias IFMA Institut Fancais De Mechanique Advancee ampus De lemont Feand Les

More information

Journal of World s Electrical Engineering and Technology J. World. Elect. Eng. Tech. 1(1): 12-16, 2012

Journal of World s Electrical Engineering and Technology J. World. Elect. Eng. Tech. 1(1): 12-16, 2012 2011, Scienceline Publication www.science-line.com Jounal of Wold s Electical Engineeing and Technology J. Wold. Elect. Eng. Tech. 1(1): 12-16, 2012 JWEET An Efficient Algoithm fo Lip Segmentation in Colo

More information

Controlled Information Maximization for SOM Knowledge Induced Learning

Controlled Information Maximization for SOM Knowledge Induced Learning 3 Int'l Conf. Atificial Intelligence ICAI'5 Contolled Infomation Maximization fo SOM Knowledge Induced Leaning Ryotao Kamimua IT Education Cente and Gaduate School of Science and Technology, Tokai Univeisity

More information

Obstacle Avoidance of Autonomous Mobile Robot using Stereo Vision Sensor

Obstacle Avoidance of Autonomous Mobile Robot using Stereo Vision Sensor Obstacle Avoidance of Autonomous Mobile Robot using Steeo Vision Senso Masako Kumano Akihisa Ohya Shin ichi Yuta Intelligent Robot Laboatoy Univesity of Tsukuba, Ibaaki, 35-8573 Japan E-mail: {masako,

More information

Augmented Reality. Integrating Computer Graphics with Computer Vision Mihran Tuceryan. August 16, 1998 ICPR 98 1

Augmented Reality. Integrating Computer Graphics with Computer Vision Mihran Tuceryan. August 16, 1998 ICPR 98 1 Augmented Reality Integating Compute Gaphics with Compute Vision Mihan Tuceyan August 6, 998 ICPR 98 Definition XCombines eal and vitual wolds and objects XIt is inteactive and eal-time XThe inteaction

More information

Prof. Feng Liu. Fall /17/2016

Prof. Feng Liu. Fall /17/2016 Pof. Feng Liu Fall 26 http://www.cs.pdx.edu/~fliu/couses/cs447/ /7/26 Last time Compositing NPR 3D Gaphics Toolkits Tansfomations 2 Today 3D Tansfomations The Viewing Pipeline Mid-tem: in class, Nov. 2

More information

(a, b) x y r. For this problem, is a point in the - coordinate plane and is a positive number.

(a, b) x y r. For this problem, is a point in the - coordinate plane and is a positive number. Illustative G-C Simila cicles Alignments to Content Standads: G-C.A. Task (a, b) x y Fo this poblem, is a point in the - coodinate plane and is a positive numbe. a. Using a tanslation and a dilation, show

More information

IP Network Design by Modified Branch Exchange Method

IP Network Design by Modified Branch Exchange Method Received: June 7, 207 98 IP Netwok Design by Modified Banch Method Kaiat Jaoenat Natchamol Sichumoenattana 2* Faculty of Engineeing at Kamphaeng Saen, Kasetsat Univesity, Thailand 2 Faculty of Management

More information

View Synthesis using Depth Map for 3D Video

View Synthesis using Depth Map for 3D Video View Synthesis using Depth Map fo 3D Video Cheon Lee and Yo-Sung Ho Gwangju Institute of Science and Technology (GIST) 1 Oyong-dong, Buk-gu, Gwangju, 500-712, Republic of Koea E-mail: {leecheon, hoyo}@gist.ac.k

More information

Coordinate Systems. Ioannis Rekleitis

Coordinate Systems. Ioannis Rekleitis Coodinate Systems Ioannis ekleitis Position epesentation Position epesentation is: P p p p x y z P CS-417 Intoduction to obotics and Intelligent Systems Oientation epesentations Descibes the otation of

More information

MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION

MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION Intenational Achives of the Photogammety Remote Sensing and Spatial Infomation Sciences Volume XXXIX-B3 2012 XXII ISPRS Congess 25 August 01 Septembe 2012 Melboune Austalia MULTI-TEMPORAL AND MULTI-SENSOR

More information

Transmission Lines Modeling Based on Vector Fitting Algorithm and RLC Active/Passive Filter Design

Transmission Lines Modeling Based on Vector Fitting Algorithm and RLC Active/Passive Filter Design Tansmission Lines Modeling Based on Vecto Fitting Algoithm and RLC Active/Passive Filte Design Ahmed Qasim Tuki a,*, Nashien Fazilah Mailah b, Mohammad Lutfi Othman c, Ahmad H. Saby d Cente fo Advanced

More information

Detection and tracking of ships using a stereo vision system

Detection and tracking of ships using a stereo vision system Scientific Reseach and Essays Vol. 8(7), pp. 288-303, 18 Febuay, 2013 Available online at http://www.academicjounals.og/sre DOI: 10.5897/SRE12.318 ISSN 1992-2248 2013 Academic Jounals Full Length Reseach

More information

Ego-Motion Estimation on Range Images using High-Order Polynomial Expansion

Ego-Motion Estimation on Range Images using High-Order Polynomial Expansion Ego-Motion Estimation on Range Images using High-Ode Polynomial Expansion Bian Okon and Josh Haguess Space and Naval Wafae Systems Cente Pacific San Diego, CA, USA {bian.okon,joshua.haguess}@navy.mil Abstact

More information

3D inspection system for manufactured machine parts

3D inspection system for manufactured machine parts 3D inspection system fo manufactued machine pats D. Gacía a*, J. M. Sebastián a*, F. M. Sánchez a*, L. M. Jiménez b*, J. M. González a* a Dept. of System Engineeing and Automatic Contol. Polytechnic Univesity

More information

Topic -3 Image Enhancement

Topic -3 Image Enhancement Topic -3 Image Enhancement (Pat 1) DIP: Details Digital Image Pocessing Digital Image Chaacteistics Spatial Spectal Gay-level Histogam DFT DCT Pe-Pocessing Enhancement Restoation Point Pocessing Masking

More information

Haptic Glove. Chan-Su Lee. Abstract. This is a final report for the DIMACS grant of student-initiated project. I implemented Boundary

Haptic Glove. Chan-Su Lee. Abstract. This is a final report for the DIMACS grant of student-initiated project. I implemented Boundary Physically Accuate Haptic Rendeing of Elastic Object fo a Haptic Glove Chan-Su Lee Abstact This is a final epot fo the DIMACS gant of student-initiated poject. I implemented Bounday Element Method(BEM)

More information

CSE 165: 3D User Interaction

CSE 165: 3D User Interaction CSE 165: 3D Use Inteaction Lectue #6: Selection Instucto: Jugen Schulze, Ph.D. 2 Announcements Homewok Assignment #2 Due Fiday, Januay 23 d at 1:00pm 3 4 Selection and Manipulation 5 Why ae Selection and

More information

Image Enhancement in the Spatial Domain. Spatial Domain

Image Enhancement in the Spatial Domain. Spatial Domain 8-- Spatial Domain Image Enhancement in the Spatial Domain What is spatial domain The space whee all pixels fom an image In spatial domain we can epesent an image by f( whee x and y ae coodinates along

More information

Multi-azimuth Prestack Time Migration for General Anisotropic, Weakly Heterogeneous Media - Field Data Examples

Multi-azimuth Prestack Time Migration for General Anisotropic, Weakly Heterogeneous Media - Field Data Examples Multi-azimuth Pestack Time Migation fo Geneal Anisotopic, Weakly Heteogeneous Media - Field Data Examples S. Beaumont* (EOST/PGS) & W. Söllne (PGS) SUMMARY Multi-azimuth data acquisition has shown benefits

More information

Assessment of Track Sequence Optimization based on Recorded Field Operations

Assessment of Track Sequence Optimization based on Recorded Field Operations Assessment of Tack Sequence Optimization based on Recoded Field Opeations Matin A. F. Jensen 1,2,*, Claus G. Søensen 1, Dionysis Bochtis 1 1 Aahus Univesity, Faculty of Science and Technology, Depatment

More information

Extract Object Boundaries in Noisy Images using Level Set. Final Report

Extract Object Boundaries in Noisy Images using Level Set. Final Report Extact Object Boundaies in Noisy Images using Level Set by: Quming Zhou Final Repot Submitted to Pofesso Bian Evans EE381K Multidimensional Digital Signal Pocessing May 10, 003 Abstact Finding object contous

More information

= dv 3V (r + a 1) 3 r 3 f(r) = 1. = ( (r + r 2

= dv 3V (r + a 1) 3 r 3 f(r) = 1. = ( (r + r 2 Random Waypoint Model in n-dimensional Space Esa Hyytiä and Joma Vitamo Netwoking Laboatoy, Helsinki Univesity of Technology, Finland Abstact The andom waypoint model (RWP) is one of the most widely used

More information

PROBABILITY-BASED OPTIMAL PATH PLANNING FOR TWO-WHEELED MOBILE ROBOTS

PROBABILITY-BASED OPTIMAL PATH PLANNING FOR TWO-WHEELED MOBILE ROBOTS Poceedings of the ASME 215 Dynamic Systems and Contol Confeence DSCC215 Octobe 28-3, 215, Columbus, Ohio, USA DSCC215-999 PROBABILITY-BASED OPTIMAL PATH PLANNING FOR TWO-WHEELED MOBILE ROBOTS Jaeyeon Lee

More information

A VISION-BASED UNMANNED AERIAL VEHICLE NAVIGATION METHOD

A VISION-BASED UNMANNED AERIAL VEHICLE NAVIGATION METHOD st Intenational Confeence on Innovative Reseach and Maitime Applications of Space Technology IRMAST 5 A VISIO-BASED UMAED AERIAL VEHICLE AVIGATIO METHOD Paweł Budziakowski, Maek Pzyboski, Jakub Szulwic

More information

Dense pointclouds from combined nadir and oblique imagery by object-based semi-global multi-image matching

Dense pointclouds from combined nadir and oblique imagery by object-based semi-global multi-image matching Dense pointclouds fom combined nadi and oblique imagey by object-based semi-global multi-image matching Y X Thomas Luhmann, Folkma Bethmann & Heidi Hastedt Jade Univesity of Applied Sciences, Oldenbug,

More information

Cellular Neural Network Based PTV

Cellular Neural Network Based PTV 3th Int Symp on Applications of Lase Techniques to Fluid Mechanics Lisbon, Potugal, 6-9 June, 006 Cellula Neual Netwok Based PT Kazuo Ohmi, Achyut Sapkota : Depatment of Infomation Systems Engineeing,

More information

Hand Tracking and Gesture Recognition for Human-Computer Interaction

Hand Tracking and Gesture Recognition for Human-Computer Interaction Electonic Lettes on Compute Vision and Image Analysis 5(3):96-104, 2005 Hand Tacking and Gestue Recognition fo Human-Compute Inteaction Cistina Manesa, Javie Vaona, Ramon Mas and Fancisco J. Peales Unidad

More information

On Error Estimation in Runge-Kutta Methods

On Error Estimation in Runge-Kutta Methods Leonado Jounal of Sciences ISSN 1583-0233 Issue 18, Januay-June 2011 p. 1-10 On Eo Estimation in Runge-Kutta Methods Ochoche ABRAHAM 1,*, Gbolahan BOLARIN 2 1 Depatment of Infomation Technology, 2 Depatment

More information

XFVHDL: A Tool for the Synthesis of Fuzzy Logic Controllers

XFVHDL: A Tool for the Synthesis of Fuzzy Logic Controllers XFVHDL: A Tool fo the Synthesis of Fuzzy Logic Contolles E. Lago, C. J. Jiménez, D. R. López, S. Sánchez-Solano and A. Baiga Instituto de Micoelectónica de Sevilla. Cento Nacional de Micoelectónica, Edificio

More information

SYSTEM LEVEL REUSE METRICS FOR OBJECT ORIENTED SOFTWARE : AN ALTERNATIVE APPROACH

SYSTEM LEVEL REUSE METRICS FOR OBJECT ORIENTED SOFTWARE : AN ALTERNATIVE APPROACH I J C A 7(), 202 pp. 49-53 SYSTEM LEVEL REUSE METRICS FOR OBJECT ORIENTED SOFTWARE : AN ALTERNATIVE APPROACH Sushil Goel and 2 Rajesh Vema Associate Pofesso, Depatment of Compute Science, Dyal Singh College,

More information

ANALYSIS TOOL AND COMPUTER SIMULATION OF A DOUBLE LOBED HYPERBOLIC OMNIDIRECTIONAL CATADIOPTRIC VISION SYSTEM

ANALYSIS TOOL AND COMPUTER SIMULATION OF A DOUBLE LOBED HYPERBOLIC OMNIDIRECTIONAL CATADIOPTRIC VISION SYSTEM Copyight 04 y ABCM ANALYSIS TOOL AND COMPUTER SIMULATION OF A DOUBLE LOBED HYPERBOLIC OMNIDIRECTIONAL CATADIOPTRIC VISION SYSTEM Macello Mainho Rieio, macello@un. José Mauício S. T. da Motta, jmmotta@un.

More information

Real-Time Speech-Driven Face Animation. Pengyu Hong, Zhen Wen, Tom Huang. Beckman Institute for Advanced Science and Technology

Real-Time Speech-Driven Face Animation. Pengyu Hong, Zhen Wen, Tom Huang. Beckman Institute for Advanced Science and Technology Real-Time Speech-Diven Face Animation Pengyu Hong, Zhen Wen, Tom Huang Beckman Institute fo Advanced Science and Technology Univesity of Illinois at Ubana-Champaign, Ubana, IL 61801, USA Abstact This chapte

More information

Several algorithms exist to extract edges from point. system. the line is computed using a least squares method.

Several algorithms exist to extract edges from point. system. the line is computed using a least squares method. Fast Mapping using the Log-Hough Tansfomation B. Giesle, R. Gaf, R. Dillmann Institute fo Pocess Contol and Robotics (IPR) Univesity of Kalsuhe D-7618 Kalsuhe, Gemany fgieslejgafjdillmanng@ia.uka.de C.F.R.

More information

Point-Biserial Correlation Analysis of Fuzzy Attributes

Point-Biserial Correlation Analysis of Fuzzy Attributes Appl Math Inf Sci 6 No S pp 439S-444S (0 Applied Mathematics & Infomation Sciences An Intenational Jounal @ 0 NSP Natual Sciences Publishing o Point-iseial oelation Analysis of Fuzzy Attibutes Hao-En hueh

More information

LIDAR SYSTEM CALIBRATION USING OVERLAPPING STRIPS

LIDAR SYSTEM CALIBRATION USING OVERLAPPING STRIPS LIDR SYSTEM CLIRTION USIN OVERLPPIN STRIPS Calibação do sistema LiDR utilizando faias sobepostas KI IN N 1 YMN F. HI 1 MURICIO MÜLLER 2 1 Dept. of eomatics Engineeing, Univesity of Calgay, 25 Univesity

More information

Accurate Diffraction Efficiency Control for Multiplexed Volume Holographic Gratings. Xuliang Han, Gicherl Kim, and Ray T. Chen

Accurate Diffraction Efficiency Control for Multiplexed Volume Holographic Gratings. Xuliang Han, Gicherl Kim, and Ray T. Chen Accuate Diffaction Efficiency Contol fo Multiplexed Volume Hologaphic Gatings Xuliang Han, Gichel Kim, and Ray T. Chen Micoelectonic Reseach Cente Depatment of Electical and Compute Engineeing Univesity

More information

Wearable inertial sensors for arm motion tracking in home-based rehabilitation

Wearable inertial sensors for arm motion tracking in home-based rehabilitation Book Title Book Editos IOS Pess, 005 Weaable inetial sensos fo am motion tacking in home-based ehabilitation Huiyu Zhou a,, Huosheng Hu a and Nigel Hais b a Univesity of Essex, Colcheste, CO4 3SQ, UK b

More information

SCR R&D and control development combining GT-SUITE and TNO models. GTI user-conference

SCR R&D and control development combining GT-SUITE and TNO models. GTI user-conference SCR R&D and contol development combining G-SUIE and NO models GI use-confeence Contents Intoduction: Bidging the gap fom R&D to ECU implementation Contol development at NO Implementation of NO models in

More information

High performance CUDA based CNN image processor

High performance CUDA based CNN image processor High pefomance UDA based NN image pocesso GEORGE VALENTIN STOIA, RADU DOGARU, ELENA RISTINA STOIA Depatment of Applied Electonics and Infomation Engineeing Univesity Politehnica of Buchaest -3, Iuliu Maniu

More information

Robust Object Detection at Regions of Interest with an Application in Ball Recognition

Robust Object Detection at Regions of Interest with an Application in Ball Recognition Robust Object Detection at Regions of Inteest with an Application in Ball Recognition Saa Miti, Simone Fintop, Kai Pevölz, Hatmut Sumann Faunhofe Institute fo Autonomous Intelligent Systems (AIS) Schloss

More information

Simulation and Performance Evaluation of Network on Chip Architectures and Algorithms using CINSIM

Simulation and Performance Evaluation of Network on Chip Architectures and Algorithms using CINSIM J. Basic. Appl. Sci. Res., 1(10)1594-1602, 2011 2011, TextRoad Publication ISSN 2090-424X Jounal of Basic and Applied Scientific Reseach www.textoad.com Simulation and Pefomance Evaluation of Netwok on

More information

INFORMATION DISSEMINATION DELAY IN VEHICLE-TO-VEHICLE COMMUNICATION NETWORKS IN A TRAFFIC STREAM

INFORMATION DISSEMINATION DELAY IN VEHICLE-TO-VEHICLE COMMUNICATION NETWORKS IN A TRAFFIC STREAM INFORMATION DISSEMINATION DELAY IN VEHICLE-TO-VEHICLE COMMUNICATION NETWORKS IN A TRAFFIC STREAM LiLi Du Depatment of Civil, Achitectual, and Envionmental Engineeing Illinois Institute of Technology 3300

More information

AN ARTIFICIAL NEURAL NETWORK -BASED ROTATION CORRECTION METHOD FOR 3D-MEASUREMENT USING A SINGLE PERSPECTIVE VIEW

AN ARTIFICIAL NEURAL NETWORK -BASED ROTATION CORRECTION METHOD FOR 3D-MEASUREMENT USING A SINGLE PERSPECTIVE VIEW Ma 8, 9 and 30, 1997 Le Ceusot, Bougogne, FRANCE AN ARIFICIAL NEURAL NEWORK -BASED ROAION CORRECION MEHOD FOR 3D-MEASUREMEN USING A SINGLE PERSPECIVE VIEW Kauko Väinämö, Juha Röning Depatment of Electical

More information

INTERACTIVE RELATIVE ORIENTATION BETWEEN TERRESTRIAL IMAGES AND AIRBORNE LASER SCANNING DATA

INTERACTIVE RELATIVE ORIENTATION BETWEEN TERRESTRIAL IMAGES AND AIRBORNE LASER SCANNING DATA INTERACTIVE RELATIVE ORIENTATION BETWEEN TERRESTRIAL IMAGES AND AIRBORNE LASER SCANNING DATA Peti Rönnholm *, Hannu Hyyppä, Pettei Pöntinen, Henik Haggén Institute of Photogammety and Remote Sensing, Helsinki

More information

Introduction to Medical Imaging. Cone-Beam CT. Introduction. Available cone-beam reconstruction methods: Our discussion:

Introduction to Medical Imaging. Cone-Beam CT. Introduction. Available cone-beam reconstruction methods: Our discussion: Intoduction Intoduction to Medical Imaging Cone-Beam CT Klaus Muelle Available cone-beam econstuction methods: exact appoximate Ou discussion: exact (now) appoximate (next) The Radon tansfom and its invese

More information

3D Periodic Human Motion Reconstruction from 2D Motion Sequences

3D Periodic Human Motion Reconstruction from 2D Motion Sequences 3D Peiodic Human Motion Reconstuction fom D Motion Sequences Zonghua Zhang and Nikolaus F. Toje BioMotionLab, Depatment of Psychology Queen s Univesity, Canada zhang, toje@psyc.queensu.ca Abstact In this

More information

Effects of Model Complexity on Generalization Performance of Convolutional Neural Networks

Effects of Model Complexity on Generalization Performance of Convolutional Neural Networks Effects of Model Complexity on Genealization Pefomance of Convolutional Neual Netwoks Tae-Jun Kim 1, Dongsu Zhang 2, and Joon Shik Kim 3 1 Seoul National Univesity, Seoul 151-742, Koea, E-mail: tjkim@bi.snu.ac.k

More information

Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method

Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method Jiaqi Luo e-mail: jiaqil@uci.edu Juntao Xiong Feng Liu e-mail: fliu@uci.edu Depatment of Mechanical and Aeospace Engineeing, Univesity of Califonia, Ivine, Ivine, CA 92697-3975 Ivan McBean Alstom Powe

More information

Approximating Euclidean Distance Transform with Simple Operations in Cellular Processor Arrays

Approximating Euclidean Distance Transform with Simple Operations in Cellular Processor Arrays 00 th Intenational Wokshop on Cellula Nanoscale Netwoks and thei Applications (CNNA) Appoximating Euclidean Distance Tansfom with Simple Opeations in Cellula Pocesso Aas Samad Razmjooei and Piot Dudek

More information

Parametric Scattering Models for Bistatic Synthetic Aperture Radar

Parametric Scattering Models for Bistatic Synthetic Aperture Radar Paametic Scatteing Models fo Bistatic Synthetic Apetue Rada Julie Ann Jackson Student Membe, Bian D. Rigling Membe, Randolph L. Moses Senio Membe The Ohio State Univesity, Dept. of Electical and Compute

More information

A Real-Time Foveated Senso with Ovelapping Receptive Fields Mac Bolduc and Matin D. Levine Cente fo Intelligent Machines McGill Univesity, 3480 Univesity St., Monteal, Quebec, Canada H3A 2A7 email: fbolduc,levineg@cim.mcgill.edu

More information

DEADLOCK AVOIDANCE IN BATCH PROCESSES. M. Tittus K. Åkesson

DEADLOCK AVOIDANCE IN BATCH PROCESSES. M. Tittus K. Åkesson DEADLOCK AVOIDANCE IN BATCH PROCESSES M. Tittus K. Åkesson Univesity College Boås, Sweden, e-mail: Michael.Tittus@hb.se Chalmes Univesity of Technology, Gothenbug, Sweden, e-mail: ka@s2.chalmes.se Abstact:

More information

Any modern computer system will incorporate (at least) two levels of storage:

Any modern computer system will incorporate (at least) two levels of storage: 1 Any moden compute system will incopoate (at least) two levels of stoage: pimay stoage: andom access memoy (RAM) typical capacity 32MB to 1GB cost pe MB $3. typical access time 5ns to 6ns bust tansfe

More information

UCLA Papers. Title. Permalink. Authors. Publication Date. Localized Edge Detection in Sensor Fields. https://escholarship.org/uc/item/3fj6g58j

UCLA Papers. Title. Permalink. Authors. Publication Date. Localized Edge Detection in Sensor Fields. https://escholarship.org/uc/item/3fj6g58j UCLA Papes Title Localized Edge Detection in Senso Fields Pemalink https://escholashipog/uc/item/3fj6g58j Authos K Chintalapudi Govindan Publication Date 3-- Pee eviewed escholashipog Poweed by the Califonia

More information

Generalized Grey Target Decision Method Based on Decision Makers Indifference Attribute Value Preferences

Generalized Grey Target Decision Method Based on Decision Makers Indifference Attribute Value Preferences Ameican Jounal of ata ining and Knowledge iscovey 27; 2(4): 2-8 http://www.sciencepublishinggoup.com//admkd doi:.648/.admkd.2724.2 Genealized Gey Taget ecision ethod Based on ecision akes Indiffeence Attibute

More information

The EigenRumor Algorithm for Ranking Blogs

The EigenRumor Algorithm for Ranking Blogs he EigenRumo Algoithm fo Ranking Blogs Ko Fujimua N Cybe Solutions Laboatoies N Copoation akafumi Inoue N Cybe Solutions Laboatoies N Copoation Masayuki Sugisaki N Resonant Inc. ABSRAC he advent of easy

More information

A METHOD FOR INTERACTIVE ORIENTATION OF DIGITAL IMAGES USING BACKPROJECTION OF 3D DATA

A METHOD FOR INTERACTIVE ORIENTATION OF DIGITAL IMAGES USING BACKPROJECTION OF 3D DATA The Photogammetic Jounal of Finland, Vol. 18, No. 2, 23 A METHOD FOR INTERACTIVE ORIENTATION OF DIGITAL IMAGES USING BACKPROJECTION OF 3D DATA Peti Rönnholm 1, Hannu Hyyppä 1, Pettei Pöntinen 1, Henik

More information

Multiview plus depth video coding with temporal prediction view synthesis

Multiview plus depth video coding with temporal prediction view synthesis 1 Multiview plus depth video coding with tempoal pediction view synthesis Andei I. Puica, Elie G. Moa, Beatice Pesquet-Popescu, Fellow, IEEE, Maco Cagnazzo, Senio Membe, IEEE and Bogdan Ionescu, Senio

More information

Kenong Wu and Martin D. Levine. McGill University, Montreal, Quebec, Canada, H3A 2A7. The work reported in this paper is also boundarybased

Kenong Wu and Martin D. Levine. McGill University, Montreal, Quebec, Canada, H3A 2A7. The work reported in this paper is also boundarybased 3D PART EGMENTATION UING IMULATED ELECTRICAL CHARGE DITRIBUTION Kenong Wu and Matin D. Levine Cente fo Intelligent Machines & Dept. of Electical Engineeing McGill Univesity, Monteal, Quebec, Canada, H3A

More information

AN ANALYSIS OF COORDINATED AND NON-COORDINATED MEDIUM ACCESS CONTROL PROTOCOLS UNDER CHANNEL NOISE

AN ANALYSIS OF COORDINATED AND NON-COORDINATED MEDIUM ACCESS CONTROL PROTOCOLS UNDER CHANNEL NOISE AN ANALYSIS OF COORDINATED AND NON-COORDINATED MEDIUM ACCESS CONTROL PROTOCOLS UNDER CHANNEL NOISE Tolga Numanoglu, Bulent Tavli, and Wendi Heinzelman Depatment of Electical and Compute Engineeing Univesity

More information

Point Similarity Measures Based on MRF Modeling of Difference Images for Spline-Based 2D-3D Rigid Registration of X-ray Fluoroscopy to CT Images

Point Similarity Measures Based on MRF Modeling of Difference Images for Spline-Based 2D-3D Rigid Registration of X-ray Fluoroscopy to CT Images Point Similaity Measues Based on MRF Modeling of Diffeence Images fo Spline-Based D-D Rigid Registation of X-ay Fluooscopy to CT Images Guoyan Zheng, Xuan Zhang, Slavica Jonić,, Philippe Thévenaz, Michael

More information

Full-Polarimetric Analysis of MERIC Air Targets Data

Full-Polarimetric Analysis of MERIC Air Targets Data ABSTRACT Full-Polaimetic Analysis of MERIC Ai Tagets Data C. Titin-Schnaide, P. Bouad ONERA Chemin de la Hunièe et des Joncheettes 91120 Palaiseau Fance Cecile.Titin-Schnaide@onea.f, Philippe.Bouad@onea.f

More information

A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH: AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT5-HRS STEREO IMAGERY

A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH: AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT5-HRS STEREO IMAGERY A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH: AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT5-HRS STEREO IMAGERY M. Pieot-Deseillign N. Papaoditis MATIS laboato Institut Géogaphique

More information

An Optimised Density Based Clustering Algorithm

An Optimised Density Based Clustering Algorithm Intenational Jounal of Compute Applications (0975 8887) Volume 6 No.9, Septembe 010 An Optimised Density Based Clusteing Algoithm J. Hencil Pete Depatment of Compute Science St. Xavie s College, Palayamkottai,

More information

A Unified Approach to Moving Object Detection in 2D and 3D Scenes

A Unified Approach to Moving Object Detection in 2D and 3D Scenes IEEE RANSACIONS ON PAERN ANALYSIS AND MACINE INELLIGENCE, VOL. 0, NO. 6, JUNE 998 577 A Unified Appoach to Moving Object Detection in D and 3D Scenes Michal Iani and P. Anandan Abstact he detection of

More information

FINITE ELEMENT MODEL UPDATING OF AN EXPERIMENTAL VEHICLE MODEL USING MEASURED MODAL CHARACTERISTICS

FINITE ELEMENT MODEL UPDATING OF AN EXPERIMENTAL VEHICLE MODEL USING MEASURED MODAL CHARACTERISTICS COMPDYN 009 ECCOMAS Thematic Confeence on Computational Methods in Stuctual Dynamics and Eathquake Engineeing M. Papadakakis, N.D. Lagaos, M. Fagiadakis (eds.) Rhodes, Geece, 4 June 009 FINITE ELEMENT

More information

Address for Correspondence 1 P.G. Student (Computer and Communication), 2 Associate Professor

Address for Correspondence 1 P.G. Student (Computer and Communication), 2 Associate Professor Reseach Aticle BIOMETRIC AUTHENTICATION USING NEAR INFRARED IMAGES OF PALM DORSAL VEIN PATTERNS M.Rajalakshmi 1, R.Rengaaj 2 Addess fo Coespondence 1 P.G. Student (Compute and Communication), 2 Associate

More information

Prediction of Time Series Using RBF Neural Networks: A New Approach of Clustering

Prediction of Time Series Using RBF Neural Networks: A New Approach of Clustering 138 The Intenational Aab Jounal of Infomation Technology, Vol. 6,. 2, Apil 2009 Pediction of Time Seies Using RBF Neual Netwoks: A New Appoach of Clusteing Mohammed Awad 2, Hécto Pomaes 1, Ignacio Rojas

More information

EQUATIONS can at times be tedious to understand

EQUATIONS can at times be tedious to understand DIGITAL IMAGE PROCESSING COURSE PROJECT, JUNE 2013 1 Augmented Reality Equation Plotte Salman Naqvi, Uzai Sikoa Digital Image Pocessing EE 368/ CS 232 Abstact Gaphical Visualization of an equation can

More information

Threat assessment for avoiding collisions with turning vehicles

Threat assessment for avoiding collisions with turning vehicles Theat assessment fo avoiding collisions with tuning vehicles Mattias Bännstöm, Eik Coelingh and Jonas Sjöbeg Abstact This pape pesents a method fo estimating how the dive of a vehicle can use steeing,

More information

Finite element model

Finite element model Loughboough Univesity Institutional Repositoy Finite element model updating of an expeimental vehicle model using measued modal chaacteistics This item was submitted to Loughboough Univesity's Institutional

More information

In ancient western art, compositions

In ancient western art, compositions Featue Aticle Digital Route Panoamas Route panoama is a new image medium fo digitally achiving and visualizing scenes along a oute. It s suitable fo egistation, tansmission, and visualization of oute scenes.

More information

Free Viewpoint Action Recognition using Motion History Volumes

Free Viewpoint Action Recognition using Motion History Volumes Fee Viewpoint Action Recognition using Motion Histoy Volumes Daniel Weinland 1, Remi Ronfad, Edmond Boye Peception-GRAVIR, INRIA Rhone-Alpes, 38334 Montbonnot Saint Matin, Fance. Abstact Action ecognition

More information

Signal integrity analysis and physically based circuit extraction of a mounted

Signal integrity analysis and physically based circuit extraction of a mounted emc design & softwae Signal integity analysis and physically based cicuit extaction of a mounted SMA connecto A poposed geneal appoach is given fo the definition of an equivalent cicuit with SMAs mounted

More information

Experimental and numerical simulation of the flow over a spillway

Experimental and numerical simulation of the flow over a spillway Euopean Wate 57: 253-260, 2017. 2017 E.W. Publications Expeimental and numeical simulation of the flow ove a spillway A. Seafeim *, L. Avgeis, V. Hissanthou and K. Bellos Depatment of Civil Engineeing,

More information

AXON 2 A visual object recognition system for non-rigid objects

AXON 2 A visual object recognition system for non-rigid objects AXON 2 A visual object ecognition system fo non-igid objects PABLO ALVARADO, PEER DÖRFLER, JOCHEN WICKEL Depatment of echnical Compute Science RWH Aachen, Gemany alvaado doefle,wickel @techinfo.wth-aachen.de

More information

Ranking Visualizations of Correlation Using Weber s Law

Ranking Visualizations of Correlation Using Weber s Law Ranking Visualizations of Coelation Using Webe s Law Lane Haison, Fumeng Yang, Steven Fanconei, Remco Chang Abstact Despite yeas of eseach yielding systems and guidelines to aid visualization design, pactitiones

More information

Conversion Functions for Symmetric Key Ciphers

Conversion Functions for Symmetric Key Ciphers Jounal of Infomation Assuance and Secuity 2 (2006) 41 50 Convesion Functions fo Symmetic Key Ciphes Deba L. Cook and Angelos D. Keomytis Depatment of Compute Science Columbia Univesity, mail code 0401

More information

Intelligent telerobotic assistance for enhancing manipulation capabilities of persons with disabilities

Intelligent telerobotic assistance for enhancing manipulation capabilities of persons with disabilities Univesity of South Floida Schola Commons Gaduate Theses and Dissetations Gaduate School 4 Intelligent teleobotic assistance fo enhancing manipulation capabilities of pesons with disabilities Wentao, Yu

More information

Using Data Flow Diagrams for Supporting Task Models

Using Data Flow Diagrams for Supporting Task Models in Companion Poc. of 5 th Euogaphics Wokshop on Design, Specification, Veification of Inteactive Systems DSV-IS 98 (Abingdon, 3-5 June 1998), P. Makopoulos & P. Johnson (Eds.), Spinge-Velag, Belin, 1998.

More information

Visual Servoing from Deep Neural Networks

Visual Servoing from Deep Neural Networks Visual Sevoing fom Deep Neual Netwoks Quentin Bateux 1, Eic Machand 1, Jügen Leitne 2, Fançois Chaumette 3, Pete Coke 2 Abstact We pesent a deep neual netwok-based method to pefom high-pecision, obust

More information

Extracting Articulation Models from CAD Models of Parts with Curved Surfaces

Extracting Articulation Models from CAD Models of Parts with Curved Surfaces Extacting Aticulation Models fom CAD Models of Pats with Cuved Sufaces Rajaishi Sinha 1,*, Satyanda K. Gupta 2, Chistiaan J.J. Paedis 1, Padeep K. Khosla 1 1 Institute fo Complex Engineeed Systems, Canegie

More information

Prioritized Traffic Recovery over GMPLS Networks

Prioritized Traffic Recovery over GMPLS Networks Pioitized Taffic Recovey ove GMPLS Netwoks 2005 IEEE. Pesonal use of this mateial is pemitted. Pemission fom IEEE mu be obtained fo all othe uses in any cuent o futue media including epinting/epublishing

More information

Erasure-Coding Based Routing for Opportunistic Networks

Erasure-Coding Based Routing for Opportunistic Networks Easue-Coding Based Routing fo Oppotunistic Netwoks Yong Wang, Sushant Jain, Magaet Matonosi, Kevin Fall Pinceton Univesity, Univesity of Washington, Intel Reseach Bekeley ABSTRACT Routing in Delay Toleant

More information

Communication vs Distributed Computation: an alternative trade-off curve

Communication vs Distributed Computation: an alternative trade-off curve Communication vs Distibuted Computation: an altenative tade-off cuve Yahya H. Ezzeldin, Mohammed amoose, Chistina Fagouli Univesity of Califonia, Los Angeles, CA 90095, USA, Email: {yahya.ezzeldin, mkamoose,

More information

Two-Dimensional Coding for Advanced Recording

Two-Dimensional Coding for Advanced Recording Two-Dimensional Coding fo Advanced Recoding N. Singla, J. A. O Sullivan, Y. Wu, and R. S. Indec Washington Univesity Saint Louis, Missoui s Motivation: Aeal Density Pefomance: match medium, senso, pocessing

More information

A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH: AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT5-HRS STEREO IMAGERY

A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH: AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT5-HRS STEREO IMAGERY M. Pieot-Deseillign N. Papaoditis. A multiesolution and optimization-based image matching appoach: An application to suface econstuction fom SPOT5-HRS steeo imagey. In IAPRS vol XXXVI-1/W41 in ISPRS Wokshop

More information

Interference-Aware Multicast for Wireless Multihop Networks

Interference-Aware Multicast for Wireless Multihop Networks Intefeence-Awae Multicast fo Wieless Multihop Netwoks Daniel Letpatchya School of Electical and Compute Engineeing Geogia Institute of Technology Atlanta, Geogia 30332 0250 Douglas M. Blough School of

More information

Using the PiP model for fast calculation of vibration from a railway tunnel in a multi-layered half-space

Using the PiP model for fast calculation of vibration from a railway tunnel in a multi-layered half-space Using the PiP model fo fast calculation of vibation fom a ailway tunnel in a multi-layeed half-space M.F.M. Hussein a, H.E.M. Hunt b, L. Rikse c, S. Gupta c, G. Degande c, J.P. Talbot d, S. Fancois c,

More information

Fuzzy Logic Resource Management and Coevolutionary Game-based Optimization

Fuzzy Logic Resource Management and Coevolutionary Game-based Optimization Naval Reseach Laboatoy Washington, DC 20375-5320 NRL/FR/5741--01-10001 Fuzzy Logic Resouce Management and Coevolutionay Game-based Optimization JAMES F. SMITH III ROBERT D. RHYNE II Suface EW Systems Banch

More information

Using SPEC SFS with the SNIA Emerald Program for EPA Energy Star Data Center Storage Program Vernon Miller IBM Nick Principe Dell EMC

Using SPEC SFS with the SNIA Emerald Program for EPA Energy Star Data Center Storage Program Vernon Miller IBM Nick Principe Dell EMC Using SPEC SFS with the SNIA Emeald Pogam fo EPA Enegy Sta Data Cente Stoage Pogam Venon Mille IBM Nick Pincipe Dell EMC v6 Agenda Backgound on SNIA Emeald/Enegy Sta fo block Intoduce NAS/File test addition;

More information

Hierarchical Region Mean-Based Image Segmentation

Hierarchical Region Mean-Based Image Segmentation Hieachical Region Mean-Based Image Segmentation Slawo Wesolkowski and Paul Fieguth Systems Design Engineeing Univesity of Wateloo Wateloo, Ontaio, Canada, N2L-3G1 s.wesolkowski@ieee.og, pfieguth@uwateloo.ca

More information

Modeling Spatially Correlated Data in Sensor Networks

Modeling Spatially Correlated Data in Sensor Networks Modeling Spatially Coelated Data in Senso Netwoks Apoova Jindal and Konstantinos Psounis Univesity of Southen Califonia The physical phenomena monitoed by senso netwoks, e.g. foest tempeatue, wate contamination,

More information

Evaluation of Partial Path Queries on XML data

Evaluation of Partial Path Queries on XML data Evaluation of Patial Path Queies on XML data Stefanos Souldatos Dept of EE & CE, NTUA stef@dblab.ntua.g Theodoe Dalamagas Dept of EE & CE, NTUA dalamag@dblab.ntua.g Xiaoying Wu Dept. of CS, NJIT xw43@njit.edu

More information

TCBAC: An Access Control Model for Remote Calibration System

TCBAC: An Access Control Model for Remote Calibration System JOURNAL OF SOFTWARE, VOL. 8, NO., DECEMBER 03 339 TCBAC: An Access Contol Model fo Remote Calibation System Zhuokui Wu School of Mechanical & Automotive Engineeing, South China Univesity of Technology,

More information

An Energy-Efficient Approach for Provenance Transmission in Wireless Sensor Networks

An Energy-Efficient Approach for Provenance Transmission in Wireless Sensor Networks An Enegy-Efficient Appoach fo Povenance Tansmission in Wieless Senso Netwoks S. M. Iftekhaul Alam Pudue Univesity alams@pudue.edu Sonia Fahmy Pudue Univesity fahmy@cs.pudue.edu Abstact Assessing the tustwothiness

More information

Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors

Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors Estimation of the Knee Flexion-Extension Angle Duing Dynamic Spot Motions Using Body-won Inetial Sensos Caolin Jakob caolin.jakob@medtech.stud.unielangen.de Patick Kugle patick.kugle@cs.fau.de Felix Hebensteit,

More information