Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Size: px
Start display at page:

Download "Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science."

Transcription

1 Professor William Hoff Dept of Electrical Engineering &Computer Science 1

2 Stereo Vision 2

3 Inferring 3D from 2D Model based pose estimation single (calibrated) camera Stereo vision Known model -> Can determine the pose of the model two (calibrated) cameras Arbitrary scene -> Can determine the positions of points in the scene Relative pose between cameras is also known 3

4 Stereo Vision A way of getting depth (3-D) information about a scene from two (or more) 2-D images Used by humans and animals, now computers Computational stereo vision Studied extensively in the last 25 years Difficult; still being researched Some commercial systems available Good references Scharstein and Szeliski, A Taxonomy and Evaluation of Dense Two- Frame Stereo Correspondence Algorithms. International Journal of Computer Vision, 47(1-3), extensive website with evaluations of algorithms, test data, code 4

5 Example Left image Right image Davi Geiger Reconstructed surface with image texture 5

6 Example Notice how different parts of the two images align, for different values of the horizontal shift (disparity) Iright = im2double(imread('pentagonright.png')); Ileft = im2double(imread('pentagonleft.png')); % Disparity is d = xleft-xright % So Ileft(x,y) = Iright(x+d,y) for d=-20:20 d Idiff = abs(ileft(:, 21:end-20) - Iright(:, d+21:d+end-20)); imshow(idiff, []); pause end 6

7 Stereo Displays Stereograms were popular in the early 1900 s A special viewer was needed to display two different images to the left and right eyes 7

8 Stereo Displays 3D movies were popular in the 1950 s The left and right images were displayed as red and blue 8

9 Stereo Displays Current technology for 3D movies and computer displays is to use polarized glasses The viewer wears eyeglasses which contain circular polarizers of opposite handedness 1/01/3ds-to-feature-3d-movies/ 9

10 Stereo Principle If you know intrinsic parameters of each camera the relative pose between the cameras If you measure An image point in the left camera The corresponding point in the right camera Each image point corresponds to a ray emanating from that camera You can intersect the rays (triangulate) to find the absolute point position 10

11 Stereo Geometry Simple Case Assume image planes are coplanar There is only a translation in the X direction between the two coordinate frames b is the baseline distance between the cameras x X L L f, Z L x R f X Z R R Z X L L Z R X Z R b P(X L,Y L,Z L ) d x L x R Disparity d = x L - x R f x L X R f b Z X R b Z X R Z f f b Z b d Z L Left camera x L X L b Z R x R X R Right camera 11

12 Goal: a complete disparity map Disparity is the difference in position of corresponding points between the left and right images 12

13 Reconstruction Error Given the uncertainty in pixel projection of the point, what is the error in depth? Obviously the error in depth (DZ) will depend on: Z, b, f Dx L, Dx R Let s find the expected value of the error, and the variance of the error From 13

14 Reconstruction Error First, find the error in disparity Dd, from the error of locating the feature in each image, Dx L and Dx R d x L x R Taking the total derivative of each side d( d) d( x ) d( x ) Dd Dx L L Dx R R Assuming Dx L, Dx R are independent and zero mean and E Var Var Dd EDx EDx 0 Dd E Dd L 2 ED d Dd E Dx Dx E E R L R EDx L 2DxLDxR DxR 2 2 Dx L 2EDx LDxR EDx R 2 2 Dx ED L x R 2 So s d 2 = s L 2 + s R 2 14

15 Reconstruction Error Next, we take the total derivative of Z=fb/d If the only uncertainty is in the disparity d b DZ f 2 d The mean error is Z = E[DZ] Dd The variance of the error is s Z 2 = E [(DZ- Z ) 2 ] 15

16 Example A stereo vision system estimates the disparity of a point as d=10 pixels What is the depth (Z) of the point, if f = 500 pixels and b = 10 cm? What is the uncertainty (standard deviation) of the depth, if the standard deviation of locating a feature in each image = 1 pixel? How to handle uncertainty in both disparity and focal length? 16

17 Geometry - general case Cameras not aligned, but we still know relative pose Assuming f=1, we have p xl xr y, p y 1 1 L L R R In principle, you can find P by intersecting the rays O L p L and O R p R However, they may not intersect Instead, find the midpoint of the segment perpendicular to the two rays Z L X L Left camera p L Z R Right camera p R X R P(X L,Y L,Z L ) 17

18 Triangulation (continued) The projection of P onto the left image is Z L p L = M L P The projection of P onto the right image is where Z R p R = M R P p L P p R M L r r r t M R t r31 r32 r33 t z x R R R r21 r22 r23 ty L Lorg 18

19 Triangulation (continued) Note that p L and M L P are parallel, so their cross product should be zero Similarly for p R and M R P Point P should satisfy both p p L R MP L MP R 0 0 p L P p R This is a system of four equations; can solve for the three unknowns (X L, Y L, Z L ) using least squares Method also works for more than two cameras 19

20 Stereo Process Extract features from the left and right images Match the left and right image features, to get their disparity in position (the correspondence problem ) Use stereo disparity to compute depth (the reconstruction problem) The correspondence problem is the most difficult 20

21 Characteristics of Human Stereo Vision Matching features must appear similar in the left and right images For example, we can t fuse a left stereo image with a negative of the right image 21

22 Characteristics of Human Stereo Vision Can only fuse objects within a limited range of depth around the fixation distance Vergence eye movements are needed to fuse objects over larger range of depths 22

23 Panum's fusional area is the range of depths for which binocular fusion can occur (without changing vergence angles) It s actually quite small we are able to perceive a wide range of depths because we are changing vergence angles Panum s Fusional Area 23

24 Characteristics of Human Stereo Vision Cells in visual cortex are selective for stereo disparity Neurons that are selective for a larger disparity range have larger receptive fields zero disparity: at fixation distance near: in front of point of fixation far: behind point of fixation 24

25 Characteristics of Human Stereo Vision Can fuse random-dot stereograms Bela Julesz, 1971 Shows Stereo system can function independently We can match simple features Highlights the ambiguity of the matching process 25

26 Example Make a random dot stereogram L = rand(400,400); R = L; % Shift center portion by 50 pixels R(100:300, 150:350) = L(100:300, 100:300); % Fill in part that moved R(100:300, 100:149) = rand(201, 50); 26

27 Correspondence Problem Most difficult part of stereo vision For every point in the left image, there are many possible matches in the right image Locally, many points look similar -> matches are ambiguous We can use the (known) geometry of the cameras to help limit the search for matches The most important constraint is the epipolar constraint We can limit the search for a match to be along a certain line in the other image 27

28 Epipolar Constraint With aligned cameras, search for corresponding point is 1D along corresponding row of other camera. 28

29 Epipolar constraint for non baseline stereo computation If cameras are not aligned, a 1D search can still be determined for the corresponding point. P1, C1, C2 determine a plane that cuts image I2 in a line: P2 will be on that line. 29

30 Rectification If relative camera pose is known, it is possible to rectify the images effectively rotate both cameras so that they are looking perpendicular to the line joining the camera centers Original image pair overlaid with several epipolar lines These means that epipolar lines will be horizontal, and matching algorithms will be more efficient From Richard Szeliski, : Algorithms and Applications, Springer, 2010 Images rectified so that epipolar lines are horizontal and in vertical correspondence 30

31 Correspondence Problem Even using the epipolar constraint, there are many possible matches Worst case scenarios A white board (no features) A checkered wallpaper (ambiguous matches) The problem is under constrained To solve, we need to impose assumptions about the real world: Disparity limits Appearance Uniqueness Ordering Smoothness 31

32 Disparity limits Assume that valid disparities are within certain limits Constrains search Why usually true? When is it violated? 32

33 Appearance Assume features should have similar appearance in the left and right images Why usually true? When is it violated? 33

34 Uniqueness Assume that a point in the left image can have at most one match in the right image Why usually true? When is it violated? x L x R b Left camera X L X R Right camera 34

35 Ordering Assume features should be in the same left to right order in each image Why usually true? When is it violated? 35

36 Smoothness Assume objects have mostly smooth surfaces, meaning that disparities should vary smoothly (e.g., have a low second derivative) Why usually true? When is it violated? 36

37 Methods for Correspondence Match points based on local similarity between images Two general approaches Correlation-based approaches Matches image patches using correlation Assumes only a translational difference between the two local patches (no rotation, or differences in appearance due to perspective) A good assumption if patch covers a single surface, and surface is far away compared to baseline between cameras Works well for scenes with lots of texture Feature-based approaches Matches edges, lines, or corners Gives a sparse reconstruction May be better for scenes with little texture 37

38 Correlation Approach Select a range of disparities to search For each patch in the left image, compute cross correlation score for every point along the epipolar line Find maximum correlation score along that line 38

39 Parameters: Matlab demo Size of template patch Horizontal disparity search window Vertical disparity search window % Simple stereo system using cross correlation clear all close all Left Right % Constants W=16; DH = 50; DV = 8; % size of cross-correlation template is (2W+1 x 2W+1) % disparity horizontal search limit is -DH.. DH % disparity vertical search limit is -DV.. +DV Template Search area Ileft = imread('left.png'); Iright = imread('right.png'); figure(1), imshow(ileft, []), title('left image'); figure(2), imshow(iright, []), title('right image'); pause; % Calculate disparity at a set of discrete points xborder = W+DH+1; yborder = W+DV+1; xtsize = W+DH; % horizontal template size is 2*xTsize+1 ytsize = W+DV; % vertical template size is 2*yTsize+1 Template patch from left Correlation scores Search region in right Correlation scores (peak in red) 39

40 Matlab demo (continued) npts = 0; % number of found disparity points for x=xborder:w:size(ileft,2)-xborder for y=yborder:w:size(ileft,1)-yborder % Extract a template from the left image centered at x,y figure(1), hold on, plot(x, y, 'rd'), hold off; T = imcrop(ileft, [x-w y-w 2*W 2*W]); %figure(3), imshow(t, []), title('template'); % Search for match in the right image, in a region centered at x,y % and of dimensions DW wide by DH high. IR = imcrop(iright, [x-xtsize y-ytsize 2*xTsize 2*yTsize]); %figure(4), imshow(ir, []), title('search area'); % The correlation score image is the size of IR, expanded by W in % each direction. ccscores = normxcorr2(t,ir); %figure(5), imshow(ccscores, []), title('correlation scores'); % Get the location of the peak in the correlation score image [max_score, maxindex] = max(ccscores(:)); [ypeak, xpeak] = ind2sub(size(ccscores),maxindex); hold on, plot(xpeak, ypeak, 'rd'), hold off; % If score too low, ignore this point if max_score < 0.85 continue; end Scan through left image Extract a template patch from the left Do normalized crosscorrelation to match to the right Accept a match if score is greater than a threshold 40

41 Matlab demo (continued) Extract peak location, save disparity value Plot all points when done % These are the coordinates of the peak in the search image ypeak = ypeak - W; xpeak = xpeak - W; %figure(4), hold on, plot(xpeak, ypeak, 'rd'), hold off; % These are the coordinates in the full sized right image xpeak = xpeak + (x-xtsize); ypeak = ypeak + (y-ytsize); figure(2), hold on, plot(xpeak, ypeak, 'rd'), hold off; % Save the point in a list, along with its disparity npts = npts+1; xpt(npts) = x; ypt(npts) = y; dpt(npts) = xpeak-x; % disparity is xright-xleft end end %pause figure, plot3(xpt, ypt, dpt, 'd'); 41

42 Area-based matching Window size tradeoff Larger windows are more unique Smaller windows less likely to cross discontinuities Similarity measures CC (cross-correlation) SSD (sum of squared differences) SSD is equivalent to CC SAD (sum of absolute differences) 42

43 Additional notes Stereo vision website Example commercial system 43

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Stereo Vision 2 Inferring 3D from 2D Model based pose estimation single (calibrated) camera > Can

More information

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few...

There are many cues in monocular vision which suggests that vision in stereo starts very early from two similar 2D images. Lets see a few... STEREO VISION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their own

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry CS 6320, Spring 2013 Guest Lecture Marcel Prastawa adapted from Pollefeys, Shah, and Zisserman Single view computer vision Projective actions of cameras Camera callibration Photometric

More information

Correspondence and Stereopsis. Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri]

Correspondence and Stereopsis. Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri] Correspondence and Stereopsis Original notes by W. Correa. Figures from [Forsyth & Ponce] and [Trucco & Verri] Introduction Disparity: Informally: difference between two pictures Allows us to gain a strong

More information

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views?

Recap: Features and filters. Recap: Grouping & fitting. Now: Multiple views 10/29/2008. Epipolar geometry & stereo vision. Why multiple views? Recap: Features and filters Epipolar geometry & stereo vision Tuesday, Oct 21 Kristen Grauman UT-Austin Transforming and describing images; textures, colors, edges Recap: Grouping & fitting Now: Multiple

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely, Zhengqi Li Stereo Single image stereogram, by Niklas Een Mark Twain at Pool Table", no date, UCR Museum of Photography Stereo Given two images from different viewpoints

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Stereo. Shadows: Occlusions: 3D (Depth) from 2D. Depth Cues. Viewing Stereo Stereograms Autostereograms Depth from Stereo

Stereo. Shadows: Occlusions: 3D (Depth) from 2D. Depth Cues. Viewing Stereo Stereograms Autostereograms Depth from Stereo Stereo Viewing Stereo Stereograms Autostereograms Depth from Stereo 3D (Depth) from 2D 3D information is lost by projection. How do we recover 3D information? Image 3D Model Depth Cues Shadows: Occlusions:

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

Robert Collins CSE486, Penn State Lecture 08: Introduction to Stereo

Robert Collins CSE486, Penn State Lecture 08: Introduction to Stereo Lecture 08: Introduction to Stereo Reading: T&V Section 7.1 Stereo Vision Inferring depth from images taken at the same time by two or more cameras. Basic Perspective Projection Scene Point Perspective

More information

Lecture 14: Computer Vision

Lecture 14: Computer Vision CS/b: Artificial Intelligence II Prof. Olga Veksler Lecture : Computer Vision D shape from Images Stereo Reconstruction Many Slides are from Steve Seitz (UW), S. Narasimhan Outline Cues for D shape perception

More information

lecture 10 - depth from blur, binocular stereo

lecture 10 - depth from blur, binocular stereo This lecture carries forward some of the topics from early in the course, namely defocus blur and binocular disparity. The main emphasis here will be on the information these cues carry about depth, rather

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION In this chapter we will discuss the process of disparity computation. It plays an important role in our caricature system because all 3D coordinates of nodes

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy

Machine vision. Summary # 11: Stereo vision and epipolar geometry. u l = λx. v l = λy 1 Machine vision Summary # 11: Stereo vision and epipolar geometry STEREO VISION The goal of stereo vision is to use two cameras to capture 3D scenes. There are two important problems in stereo vision:

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 2 is due today, 11:59 PM Homework 3 will be assigned today Reading: Chapter 7: Stereopsis CSE 152 Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where relative

More information

Binocular Stereo Vision

Binocular Stereo Vision Binocular Stereo Vision Properties of human stereo vision Marr-Poggio-Grimson multi-resolution stereo algorithm CS332 Visual Processing Department of Computer Science Wellesley College Properties of human

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

COMP 558 lecture 22 Dec. 1, 2010

COMP 558 lecture 22 Dec. 1, 2010 Binocular correspondence problem Last class we discussed how to remap the pixels of two images so that corresponding points are in the same row. This is done by computing the fundamental matrix, defining

More information

Announcements. Stereo

Announcements. Stereo Announcements Stereo Homework 1 is due today, 11:59 PM Homework 2 will be assigned on Thursday Reading: Chapter 7: Stereopsis CSE 252A Lecture 8 Binocular Stereopsis: Mars Given two images of a scene where

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Computer Vision, Lecture 11

Computer Vision, Lecture 11 Computer Vision, Lecture 11 Professor Hager http://www.cs.jhu.edu/~hager Computational Stereo Much of geometric vision is based on information from (or more) camera locations hard to recover 3D information

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

LUMS Mine Detector Project

LUMS Mine Detector Project LUMS Mine Detector Project Using visual information to control a robot (Hutchinson et al. 1996). Vision may or may not be used in the feedback loop. Visual (image based) features such as points, lines

More information

Stereo imaging ideal geometry

Stereo imaging ideal geometry Stereo imaging ideal geometry (X,Y,Z) Z f (x L,y L ) f (x R,y R ) Optical axes are parallel Optical axes separated by baseline, b. Line connecting lens centers is perpendicular to the optical axis, and

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) Readings Szeliski, Chapter 10 (through 10.5)

Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by  ) Readings Szeliski, Chapter 10 (through 10.5) Announcements Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by email) One-page writeup (from project web page), specifying:» Your team members» Project goals. Be specific.

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman

Stereo. 11/02/2012 CS129, Brown James Hays. Slides by Kristen Grauman Stereo 11/02/2012 CS129, Brown James Hays Slides by Kristen Grauman Multiple views Multi-view geometry, matching, invariant features, stereo vision Lowe Hartley and Zisserman Why multiple views? Structure

More information

Epipolar Geometry CSE P576. Dr. Matthew Brown

Epipolar Geometry CSE P576. Dr. Matthew Brown Epipolar Geometry CSE P576 Dr. Matthew Brown Epipolar Geometry Epipolar Lines, Plane Constraint Fundamental Matrix, Linear solution + RANSAC Applications: Structure from Motion, Stereo [ Szeliski 11] 2

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 12 130228 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Panoramas, Mosaics, Stitching Two View Geometry

More information

Depth from two cameras: stereopsis

Depth from two cameras: stereopsis Depth from two cameras: stereopsis Epipolar Geometry Canonical Configuration Correspondence Matching School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture

More information

Stereo: Disparity and Matching

Stereo: Disparity and Matching CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS2 is out. But I was late. So we pushed the due date to Wed Sept 24 th, 11:55pm. There is still *no* grace period. To

More information

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012

Stereo Vision A simple system. Dr. Gerhard Roth Winter 2012 Stereo Vision A simple system Dr. Gerhard Roth Winter 2012 Stereo Stereo Ability to infer information on the 3-D structure and distance of a scene from two or more images taken from different viewpoints

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

Announcements. Stereo Vision Wrapup & Intro Recognition

Announcements. Stereo Vision Wrapup & Intro Recognition Announcements Stereo Vision Wrapup & Intro Introduction to Computer Vision CSE 152 Lecture 17 HW3 due date postpone to Thursday HW4 to posted by Thursday, due next Friday. Order of material we ll first

More information

MAPI Computer Vision. Multiple View Geometry

MAPI Computer Vision. Multiple View Geometry MAPI Computer Vision Multiple View Geometry Geometry o Multiple Views 2- and 3- view geometry p p Kpˆ [ K R t]p Geometry o Multiple Views 2- and 3- view geometry Epipolar Geometry The epipolar geometry

More information

Introduction to 3D Imaging: Perceiving 3D from 2D Images

Introduction to 3D Imaging: Perceiving 3D from 2D Images Introduction to 3D Imaging: Perceiving 3D from 2D Images How can we derive 3D information from one or more 2D images? There have been 2 approaches: 1. intrinsic images: a 2D representation that stores

More information

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller

3D Computer Vision. Depth Cameras. Prof. Didier Stricker. Oliver Wasenmüller 3D Computer Vision Depth Cameras Prof. Didier Stricker Oliver Wasenmüller Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo II CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo II CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Camera parameters A camera is described by several parameters Translation T of the optical center from the origin of world

More information

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception Binocular cues to depth PSY 310 Greg Francis Lecture 21 How to find the hidden word. Depth perception You can see depth in static images with just one eye (monocular) Pictorial cues However, motion and

More information

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1)

Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Image Rectification (Stereo) (New book: 7.2.1, old book: 11.1) Guido Gerig CS 6320 Spring 2013 Credits: Prof. Mubarak Shah, Course notes modified from: http://www.cs.ucf.edu/courses/cap6411/cap5415/, Lecture

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1674: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 5, 2016 Announcement Please send me three topics you want me to review next

More information

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth?

Think-Pair-Share. What visual or physiological cues help us to perceive 3D shape and depth? Think-Pair-Share What visual or physiological cues help us to perceive 3D shape and depth? [Figure from Prados & Faugeras 2006] Shading Focus/defocus Images from same point of view, different camera parameters

More information

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II Depth Perception Part II Depth Perception 1 Binocular Cues to Depth Depth Information Oculomotor Visual Accomodation Convergence Binocular Monocular Static Cues Motion Parallax Perspective Size Interposition

More information

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz

Stereo CSE 576. Ali Farhadi. Several slides from Larry Zitnick and Steve Seitz Stereo CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz Why do we perceive depth? What do humans use as depth cues? Motion Convergence When watching an object close to us, our eyes

More information

Multiple Views Geometry

Multiple Views Geometry Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 2, 28 Epipolar geometry Fundamental geometric relationship between two perspective

More information

Computer Vision I. Announcement. Stereo Vision Outline. Stereo II. CSE252A Lecture 15

Computer Vision I. Announcement. Stereo Vision Outline. Stereo II. CSE252A Lecture 15 Announcement Stereo II CSE252A Lecture 15 HW3 assigned No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in WLH Room 2112 Mars Exploratory Rovers: Spirit and Opportunity Stereo Vision Outline

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Camera Drones Lecture 3 3D data generation

Camera Drones Lecture 3 3D data generation Camera Drones Lecture 3 3D data generation Ass.Prof. Friedrich Fraundorfer WS 2017 Outline SfM introduction SfM concept Feature matching Camera pose estimation Bundle adjustment Dense matching Data products

More information

7. The Geometry of Multi Views. Computer Engineering, i Sejong University. Dongil Han

7. The Geometry of Multi Views. Computer Engineering, i Sejong University. Dongil Han Computer Vision 7. The Geometry of Multi Views Computer Engineering, i Sejong University i Dongil Han THE GEOMETRY OF MULTIPLE VIEWS Epipolar Geometry The Stereopsis Problem: Fusion and Reconstruction

More information

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Teesta suspension bridge-darjeeling, India Mark Twain at Pool Table", no date, UCR Museum of Photography Woman getting eye exam during

More information

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation Alexander Andreopoulos, Hirak J. Kashyap, Tapan K. Nayak, Arnon Amir, Myron D. Flickner IBM Research March 25,

More information

Depth estimation from stereo image pairs

Depth estimation from stereo image pairs Depth estimation from stereo image pairs Abhranil Das In this report I shall first present some analytical results concerning depth estimation from stereo image pairs, then describe a simple computational

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

Rectification and Disparity

Rectification and Disparity Rectification and Disparity Nassir Navab Slides prepared by Christian Unger What is Stereo Vision? Introduction A technique aimed at inferring dense depth measurements efficiently using two cameras. Wide

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

1 CSE 252A Computer Vision I Fall 2017

1 CSE 252A Computer Vision I Fall 2017 Assignment 1 CSE A Computer Vision I Fall 01 1.1 Assignment This assignment contains theoretical and programming exercises. If you plan to submit hand written answers for theoretical exercises, please

More information

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA 14, by Pizzoli, Forster, Scaramuzza [M. Pizzoli, C. Forster,

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Recap from Previous Lecture

Recap from Previous Lecture Recap from Previous Lecture Tone Mapping Preserve local contrast or detail at the expense of large scale contrast. Changing the brightness within objects or surfaces unequally leads to halos. We are now

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision CS 1699: Intro to Computer Vision Epipolar Geometry and Stereo Vision Prof. Adriana Kovashka University of Pittsburgh October 8, 2015 Today Review Projective transforms Image stitching (homography) Epipolar

More information

Cameras and Stereo CSE 455. Linda Shapiro

Cameras and Stereo CSE 455. Linda Shapiro Cameras and Stereo CSE 455 Linda Shapiro 1 Müller-Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html What do you know about perspective projection? Vertical lines? Other lines? 2 Image formation

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

Stereo Observation Models

Stereo Observation Models Stereo Observation Models Gabe Sibley June 16, 2003 Abstract This technical report describes general stereo vision triangulation and linearized error modeling. 0.1 Standard Model Equations If the relative

More information

Perception II: Pinhole camera and Stereo Vision

Perception II: Pinhole camera and Stereo Vision Perception II: Pinhole camera and Stereo Vision Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Mobile Robot Control Scheme knowledge, data base mission commands Localization

More information

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song

CS 563 Advanced Topics in Computer Graphics Stereoscopy. by Sam Song CS 563 Advanced Topics in Computer Graphics Stereoscopy by Sam Song Stereoscopy Introduction Parallax Camera Displaying and Viewing Results Stereoscopy What is it? seeing in three dimensions creates the

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Binocular Stereo Vision. System 6 Introduction Is there a Wedge in this 3D scene?

Binocular Stereo Vision. System 6 Introduction Is there a Wedge in this 3D scene? System 6 Introduction Is there a Wedge in this 3D scene? Binocular Stereo Vision Data a stereo pair of images! Given two 2D images of an object, how can we reconstruct 3D awareness of it? AV: 3D recognition

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe Structured Light Tobias Nöll tobias.noell@dfki.de Thanks to Marc Pollefeys, David Nister and David Lowe Introduction Previous lecture: Dense reconstruction Dense matching of non-feature pixels Patch-based

More information

Assignment 2: Stereo and 3D Reconstruction from Disparity

Assignment 2: Stereo and 3D Reconstruction from Disparity CS 6320, 3D Computer Vision Spring 2013, Prof. Guido Gerig Assignment 2: Stereo and 3D Reconstruction from Disparity Out: Mon Feb-11-2013 Due: Mon Feb-25-2013, midnight (theoretical and practical parts,

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

A virtual tour of free viewpoint rendering

A virtual tour of free viewpoint rendering A virtual tour of free viewpoint rendering Cédric Verleysen ICTEAM institute, Université catholique de Louvain, Belgium cedric.verleysen@uclouvain.be Organization of the presentation Context Acquisition

More information

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera 3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera Shinichi GOTO Department of Mechanical Engineering Shizuoka University 3-5-1 Johoku,

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Application questions. Theoretical questions

Application questions. Theoretical questions The oral exam will last 30 minutes and will consist of one application question followed by two theoretical questions. Please find below a non exhaustive list of possible application questions. The list

More information

Stereo vision. Many slides adapted from Steve Seitz

Stereo vision. Many slides adapted from Steve Seitz Stereo vision Many slides adapted from Steve Seitz What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape What is

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information