Key Question. Focus. What are the geometric properties of a regular tetrahedron, and how do these compare to a bird tetrahedron?

 Tyrone Carroll
 7 days ago
 Views:
Transcription
1 Key Question What are the geometric properties of a regular tetrahedron, and how do these compare to a bird tetrahedron? Math Properties of polyhedra faces edges vertices Surface area Integrated Processes Observing Comparing and contrasting Relating Paper Two squares per model in one or two colors Additional Materials Bird tetrahedron models Creator Tomoko Fusè Management 1. Because this activity asks students to draw comparisons between the bird tetrahedron and the regular tetrahedron it is very important that both models be made from the same size paper so that the comparisons are valid. Procedure 1. Hand out the folding instructions (pages 3337) and two squares of paper to each student. Guide Focus Students will fold a regular tetrahedron and compare its properties to those of the bird tetrahedron. students through the construction of the tetrahedron unit step by step. 2. Have students fold the second unit individually, being sure that they made it a mirror image of the first unit. Take the class through the assembly process, giving assistance as needed. 3. When all students have successfully assembled their tetrahedron, hand out the remaining student sheet. Students should also have their bird tetrahedron models on hand. 4. Have students work together in small groups to answer the questions and compare the two models. 5. Close with a time of class discussion where students share the discoveries they made about the properties of their tetrahedron and how these relate to the bird tetrahedron. Discussion 1. How many faces does a regular tetrahedron have? [four] What shape are they? [equilateral triangles] 2. How does this compare to the number and shape of the faces on the bird tetrahedron? [The bird tetrahedron has six faces that are isosceles right triangles.] 3. How many vertices does a regular tetrahedron have? [four] How many edges? [six] How do these values compare to those for the bird tetrahedron? [The bird tetrahedron has five vertices and nine edges.] 4. What was your group s plan for finding the surface area of the tetrahedron? 5. If the base of one face is 3 units and the height is 2.5 units, what is the surface area of the entire tetrahedron? [The surface area of one face is 3.75 units, making the surface area of the entire tetrahedron 15 units 2.] 6. How does this surface area compare to the surface area that you calculated for the bird tetrahedron? [The surface area of the bird tetrahedron is nine units 2.] 7. Were you surprised that the polyhedron with more faces had a smaller surface area? Why or why not? 8. How can you explain this apparent paradox? [While the bird tetrahedron has two more faces than the regular tetrahedron, the surface area of each face is more than two units less than the surface area of each face of the tetrahedron. This accounts for the difference in total surface area of the two polyhedra.] Extensions 1. Have students complete the Equilateral Triangle Exploration. 2. Challenge students to construct a squarebased pyramid by using two identical tetrahedron units and the flat square unit from the Tetrahedron Puzzle activity. This can be compared and contrasted with the tetrahedron. 32
2 1. Fold the square in half vertically and unfold. 2. Fold from the bottom left corner as indicated by the dashed line so that the bottom right corner touches the midline. 3. Fold the right side over so that the two points marked with dots meet as shown. 33
3 4. Unfold completely and fold the paper horizontally so that the two points marked by dots meet. The horizontal fold should go through the intersection of the two diagonals. 5. a. Fold the top part of the paper down at the point where the bottom edge meets the paper. b. Unfold the bottom half, but leave the top part folded down. a. b. 6. Crease as indicated by each of the dashed lines, bringing the corners in to meet the horizontal midline. 34
4 7. Fold the top left and bottom right corners where indicated by the dashed lines so that the corners touch the nearest diagonals. Notice that the two new sides formed are parallel to the nearest diagonals. 8. Fold again along the diagonals so that the two sides meet in the center. 9. Flip the paper over and crease where indicated by the dashed lines. 35
5 10. Repeat steps one through six with the second square. Steps seven through nine will be done as mirror images. Fold the top right and bottom left corners where indicated by the dashed lines so that the corners touch the nearest diagonals. Notice that the two new sides formed are parallel to the nearest diagonals. 11. Fold again along the diagonals so that the two sides meet in the center. 12. Flip the paper over and crease where indicated by the dashed lines. 36
6 Connect the pieces as shown, folding the units so that each point is inserted into the indicated pocket. You should be left with a regular tetrahedron. Top view Side view 37
7 Use your completed tetrahedron model to answer the following questions. 1. How many faces does a regular tetrahedron have? What shape are they? 2. How does this compare to the number and shape of the faces on a bird tetrahedron? 3. How many vertices does a regular tetrahedron have? How many edges? How do these values compare to those for the bird tetrahedron? 4. How would you find the surface area of one face of the tetrahedron? of the whole tetrahedron? Describe your plan below. 5. If the base of one face is 3 units and the height is 2.5 units, what is the surface area of the tetrahedron? 6. How does this surface area compare to the surface area you calculated for the bird tetrahedron? 7. Does the difference in these two values surprise you? Why or why not? 38
Nets and Drawings for Visualizing Geometry. Unit 1 Lesson 1
Nets and Drawings for Visualizing Geometry Unit 1 Lesson 1 Students will be able to: Represent threedimensional figures using nets. Make isometric and orthographic drawings. Key Vocabulary: Net Isometric
More informationRight Angle Triangle. Square. Opposite sides are parallel
Triangles 3 sides ngles add up to 18⁰ Right ngle Triangle Equilateral Triangle ll sides are the same length ll angles are 6⁰ Scalene Triangle ll sides are different lengths ll angles are different Isosceles
More information1 The Platonic Solids
1 The We take the celebration of Dodecahedron Day as an opportunity embark on a discussion of perhaps the bestknown and most celebrated of all polyhedra the Platonic solids. Before doing so, however,
More informationPolyhedron. A polyhedron is simply a threedimensional solid which consists of a collection of polygons, joined at their edges.
Polyhedron A polyhedron is simply a threedimensional solid which consists of a collection of polygons, joined at their edges. A polyhedron is said to be regular if its faces and vertex figures are regular
More informationLESSON. Bigger and Bigger. Years 5 to 9. Enlarging Figures to Construct Polyhedra Nets
LESSON 4 Bigger and Bigger Years 5 to 9 Enlarging Figures to Construct Polyhedra Nets This lesson involves students using their MATHOMAT to enlarge regular polygons to produce nets of selected polyhedra,
More informationGeometry Unit 9 Surface Area & Volume
Geometry Unit 9 Surface Area & Volume Practice Test Good Luck To: Period: 1. Define surface area: 2. Define lateral area:. Define volume: Classify the following as polyhedra or not. Circle yes or no. If
More informationThe Volume of a Platonic Solid
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7007 The Volume of a Platonic Solid Cindy Steinkruger
More informationGlossary 14:00. 2dimensional (2D) addend. addition = 8. a.m. 3dimensional (3D) analogue clock. angle. approximate, approximately
3 Glossary 2dimensional (2D) The number being added in an addition calculation. Augend + = sum (or total). circle rightangled equilateral isosceles square addition A mathematical operation combining
More informationPrime Time (Factors and Multiples)
CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;
More informationReady to Go On? Skills Intervention Building Blocks of Geometry
81 Ready to Go On? Skills Intervention Building Blocks of Geometry A point is an exact location. A line is a straight path that extends without end in opposite directions. A plane is a flat surface that
More informationPlatonic? Solids: How they really relate.
Platonic? Solids: How they really relate. Ron Hopley ATI Education Specialist University of Arizona Math Department rhopley@math.arizona.edu High School Teacher s Circle Tuesday, September 21, 2010 The
More informationAnswer Key: ThreeDimensional Cross Sections
Geometry A Unit Answer Key: ThreeDimensional Cross Sections Name Date Objectives In this lesson, you will: visualize threedimensional objects from different perspectives be able to create a projection
More information11.4 ThreeDimensional Figures
11. ThreeDimensional Figures Essential Question What is the relationship between the numbers of vertices V, edges E, and faces F of a polyhedron? A polyhedron is a solid that is bounded by polygons, called
More informationModule 4B: Creating Sheet Metal Parts Enclosing The 3D Space of Right and Oblique Pyramids With The Work Surface of Derived Parts
Inventor (5) Module 4B: 4B 1 Module 4B: Creating Sheet Metal Parts Enclosing The 3D Space of Right and Oblique Pyramids With The Work Surface of Derived Parts In Module 4B, we will learn how to create
More informationD A S O D A. Identifying and Classifying 3D Objects. Examples
Identifying Classifying 3D Objects Examples Have you noticed that many of the products we purchase come in packages or boxes? Take a look at the products below. A) Did you notice that all the sides or
More informationTHE PLATONIC SOLIDS BOOK DAN RADIN
THE PLATONIC SOLIDS BOOK DAN RADIN Copyright 2008 by Daniel R. Radin All rights reserved. Published by CreateSpace Publishing 3D renderings were created on a thirteenyearold Macintosh computer using
More informationA Physical Proof for Five and Only Five Regular Solids
A Physical Proof for Five and Only Five Regular Solids Robert McDermott Center for High Performance Computing University of Utah Salt Lake City, Utah, 84112, USA Email: mcdermott@chpc.utah.edu Abstract
More information168 Butterflies on a Polyhedron of Genus 3
168 Butterflies on a Polyhedron of Genus 3 Douglas Dunham Department of Computer Science University of Minnesota, Duluth Duluth, MN 558122496, USA Email: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/
More informationMath 7, Unit 8: Geometric Figures Notes
Math 7, Unit 8: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess
More informationFractal Gaskets: Reptiles, Hamiltonian Cycles, and Spatial Development
Bridges Finland Conference Proceedings Fractal Gaskets: Reptiles, Hamiltonian Cycles, and Spatial Development Robert W. Fathauer Tessellations Company 3913 E. Bronco Trail Phoenix, AZ 85044, USA rob@tessellations.com
More informationG520 Introduction to Slides
WORKBOOK 5:2 PAGE 317 G520 Introduction to Slides GOALS Students will slide a dot on a grid. PRIOR KNOWLEDGE REQUIRED Ability to count Distinguish between right and left VOCABULARY slide For this lesson,
More informationGeometry AP Book 8, Part 2: Unit 7
Geometry P ook 8, Part 2: Unit 7 P ook G87 page 168 1. base # s V F 6 9 5 4 8 12 6 C 5 10 15 7 6 12 18 8 8 16 24 10 n nagon n 2n n n + 2 2. 4; 5; 8; 5; No. a) 4 6 6 4 = 24 8 e) ii) top, and faces iii)
More informationGeorgia Standards of Excellence Curriculum Frameworks. Mathematics. GSE Grade 6 Unit 5: Area and Volume
Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Grade 6 Unit 5: Area and Volume These materials are for nonprofit educational purposes only. Any other use may constitute copyright
More informationMath 7, Unit 08: Geometric Figures Notes
Math 7, Unit 08: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My
More informationPerimeter Magic Polygons
Perimeter Magic Polygons In, Terrel Trotter, Jr., then a math teacher in Urbana Illinois, published an article called Magic Triangles of Order n. In, he published a follow up article called Perimeter Magic
More informationCoordinate Graphing/Geometry Project
Coordinate Graphing/Geometry Project Purpose: The following activities allow students to demonstrate their understanding of the coordinate system as well as learn various geometry projects. Goals: This
More informationMATHEMATICS. Y4 Understanding shape Visualise 3D objects and make nets of common solids. Equipment
MATHEMATICS Y4 Understanding shape 4502 Visualise 3D objects and make nets of common solids Equipment Paper, pencil, boxes, range of 3D shapes, straws and pipe cleaners or 3D model construction kits.
More informationRectangular prism. The two bases of a prism. bases
Page 1 of 8 9.1 Solid Figures Goal Identify and name solid figures. Key Words solid polyhedron base face edge The threedimensional shapes on this page are examples of solid figures, or solids. When a
More informationGeometry SIA #3. Name: Class: Date: Short Answer. 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1).
Name: Class: Date: ID: A Geometry SIA #3 Short Answer 1. Find the perimeter of parallelogram ABCD with vertices A( 2, 2), B(4, 2), C( 6, 1), and D(0, 1). 2. If the perimeter of a square is 72 inches, what
More information3 Pyramids. possible student responses shown here. 'Alternative responses are shown in quotation marks.
3 Pyramids Themes Terminology, etymology (word origin), pyramids and their 2D base shapes. Vocabulary Base, pyramid, regular, convex, concave, vertex, vertices, side, edge. Synopsis Build pyramids with
More information6th Grade Math. Parent Handbook
6th Grade Math Benchmark 3 Parent Handbook This handbook will help your child review material learned this quarter, and will help them prepare for their third Benchmark Test. Please allow your child to
More information1 Introduction. Counting with Cubes. Barringer Winter MathCamp, 2016
1 Introduction Consider a large cube made from unit cubes 1 Suppose our cube is n n n Look at the cube from a corner so that you can see three faces How many unit cubes are in your line of vision? Build
More informationGeometry Unit 10 Note Sheets Date Name of Lesson. 1.6 TwoDimensional Figures Areas of Circles and Sectors
Date Name of Lesson 1.6 TwoDimensional Figures 11.3 Areas of Circles and Sectors Quiz 11.1 Areas of Parallelograms and Triangles 11.2 Areas of Trapezoids, Rhombi and Kites 11.4 Areas of Regular Polygons
More informationUnit Lesson Plan: Measuring Length and Area: Area of shapes
Unit Lesson Plan: Measuring Length and Area: Area of shapes Day 1: Area of Square, Rectangles, and Parallelograms Day 2: Area of Triangles Trapezoids, Rhombuses, and Kites Day 3: Quiz over Area of those
More informationSample Quilt Word Board
Sample Quilt Word Board See next page for further details Geo Jammin By DeSign 2000, 2003 www.beaconlearningcenter.com Rev. 11.05.03 Lesson 2, Duo Dancing, 1 For this unit design a repeating pattern to
More informationSection 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc.
Section 9.4 Volume and Surface Area What You Will Learn Volume Surface Area 9.42 Volume Volume is the measure of the capacity of a threedimensional figure. It is the amount of material you can put inside
More information1.4 Surface Area of Right Pyramids and Right Cones
Math 1201 Date: 1.4 Surface Area of Right Pyramids and Right Cones Understanding how to calculate surface area can be helpful in many real world applications. For example, surface area can be used to estimate
More informationMATH 7 SOL PRACTICE PACKET
NAME: BLOCK: DUE DATE: #2 MATH 7 SOL PRACTICE PACKET Geometry and Measurement do not lose this packet!!! SOL DATES: ADay: Wednesday, May 28 th BDay: Thursday, May 29 th Reporting Category: Measurement
More informationThreeDimensional Figures
ThreeDimensional Figures The number of coins created by the U.S. Mint changes each year. In the year 2000, there were about 28 billion coins created and about half of them were pennies!.1 Whirlygigs for
More informationDRAFT CHAPTER. Surface Area GET READY. xxx. Math Link. 5.1 Warm Up xxx. 5.1 Views of ThreeDimensional Objects xxx. 5.
CHAPTER 5 Surface Area GET READY Math Link xxx xxx 5.1 Warm Up xxx 5.1 Views of ThreeDimensional Objects xxx 5.2 Warm Up xxx 5.2 Nets of ThreeDimensional Objects xxx 5.3 Warm Up xxx 5.3 Surface Area
More informationZome Symmetry & Tilings
Zome Symmetry & Tilings Tia Baker San Francisco State tiab@mail.sfsu.edu 1 Introduction Tessellations also known as tilings are a collection of polygons that fill the plane with no overlaps or gaps. There
More informationACT SparkNotes Test Prep: Plane Geometry
ACT SparkNotes Test Prep: Plane Geometry Plane Geometry Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test If you ve taken
More informationA square centimeter is 1 centimeter by 1 centimeter. It has an area of 1 square centimeter. Sketch a square centimeter such as the one here.
3 Measuring Triangles You can find the area of a figure by drawing it on a grid (or covering it with a transparent grid) and counting squares, but this can be very time consuming. In Investigation, you
More informationNAEP Released Items Aligned to the Iowa Core: Geometry
NAEP Released Items Aligned to the Iowa Core: Geometry Congruence GCO Experiment with transformations in the plane 1. Know precise definitions of angle, circle, perpendicular line, parallel line, and
More informationa 3dimensional solid with a circular base and a curved surface that meets at a point
q. Super Solids Whole Class or Small Group Geometric Vocabulary reproducible (2 per student) (pg. 20) Super Solids reproducible (pg. 24) Make photocopies of the Geometric Vocabulary (2 per student) and
More information.o jump moth. G434: Prism and Pyramid Bases page 339. Melissa is exploring differences between pyramids and prisms. She discovers that...
G434: Prism and Pyramid Bases page 339 Melissa is exploring differences between pyramids and prisms. She discovers that.... A pyramid has one base. (There is one exception pyramid, any face is a base.)
More informationAREAS AND VOLUMES. Learning Outcomes and Assessment Standards
4 Lesson AREAS AND VOLUMES Learning Outcomes and Assessment Standards Learning Outcome : Shape, space and measurement Assessment Standard Surface area and volume of right pyramids and cones. Volumes of
More informationTESSELLATIONS #1. All the shapes are regular (equal length sides). The side length of each shape is the same as any other shape.
TESSELLATIONS #1 Arrange for students to work in pairs during this lesson. Each pair of students needs unlined paper and two tessellation sets, one red and one blue. Ask students in each pair to share
More information178 The National Strategies Secondary Mathematics exemplification: Y7
178 The National Strategies Secondary Mathematics exemplification: Y7 Pupils should learn to: Use accurately the vocabulary, notation and labelling conventions for lines, angles and shapes; distinguish
More information3 Vectors and the Geometry of Space
3 Vectors and the Geometry of Space Up until this point in your career, you ve likely only done math in 2 dimensions. It s gotten you far in your problem solving abilities and you should be proud of all
More informationFair Game Review. Chapter 11. Name Date. Reflect the point in (a) the xaxis and (b) the yaxis. 2. ( 2, 4) 1. ( 1, 1 ) 3. ( 3, 3) 4.
Name Date Chapter Fair Game Review Reflect the point in (a) the ais and (b) the ais.. (, ). (, ). (, ). (, ) 5. (, ) 6. (, ) Copright Big Ideas Learning, LLC Name Date Chapter Fair Game Review (continued)
More informationModule 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation
1 Module 5: Creating Sheet Metal Transition Piece Between a Square Tube and a Rectangular Tube with Triangulation In Module 5, we will learn how to create a 3D folded model of a sheet metal transition
More information3 Identify shapes as twodimensional (lying in a plane, flat ) or threedimensional ( solid ).
Geometry Kindergarten Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1 Describe objects in the environment using names of shapes,
More informationThis resource can be used with questions on any subject. To enable it to be used straight away these questions on keywords in maths can be used.
Letter Quiz Maths Keyword Question Bank This resource can be used with questions on any subject. To enable it to be used straight away these questions on keywords in maths can be used. A What A is the
More informationof Nebraska  Lincoln
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 72008 Archimedean Solids Anna Anderson University of
More informationTransformation, tessellation and symmetry line symmetry
Transformation, tessellation and symmetry line symmetry Reflective or line symmetry describes mirror image, when one half of a shape or picture matches the other exactly. The middle line that divides the
More informationMath 257: Geometry & Probability for Teachers, with Joe Champion, Fall 2013
Exam 1 Study Guide Math 257: Geometry & Probability for Teachers, with Joe Champion, Fall 2013 Instructions 1. Exam 1 is one of two unit exams that combine for 50% of the overall course grade. The exam
More informationIntegrated Curriculum for Secondary Schools. MATHEMATICS Form 1
MINISTRY OF EDUCATION MALAYSIA Integrated Curriculum for Secondary Schools Curriculum Specifications MATHEMATICS Form 1 Curriculum Development Centre Ministry of Education Malaysia 2002 CONTENTS Page WHOLE
More informationAlgebra Area of Parallelograms
Lesson 10.1 Reteach Algebra Area of Parallelograms The formula for the area of a parallelogram is the product of the base and height. The formula for the area of a square is the square of one of its sides.
More informationSpatial Reasoning. 10A ThreeDimensional Figures. 10B Surface Area and Volume
Spatial Reasoning 10A ThreeDimensional Figures 101 Solid Geometry 102 Representations of ThreeDimensional Figures Lab Use Nets to Create Polyhedrons 103 Formulas in Three Dimensions 10B Surface Area
More informationSTANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY. 3 rd Nine Weeks,
STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY 3 rd Nine Weeks, 20162017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for
More information7th Bay Area Mathematical Olympiad
7th Bay Area Mathematical Olympiad February 22, 2005 Problems and Solutions 1 An integer is called formidable if it can be written as a sum of distinct powers of 4, and successful if it can be written
More informationFinding Perimeters and Areas of Regular Polygons
Finding Perimeters and Areas of Regular Polygons Center of a Regular Polygon  A point within the polygon that is equidistant from all vertices. Central Angle of a Regular Polygon  The angle whose vertex
More informationMeet #2. Park Forest Math Team. Selfstudy Packet
Park Forest Math Team Meet #2 Selfstudy Packet Problem Categories for this Meet (in addition to topics of earlier meets): 1. Mystery: Problem solving 2. : rea and perimeter of polygons 3. Number Theory:
More informationCORRELATION TO GEORGIA QUALITY CORE CURRICULUM FOR GEOMETRY (GRADES 912)
CORRELATION TO GEORGIA (GRADES 912) SUBJECT AREA: Mathematics COURSE: 27. 06300 TEXTBOOK TITLE: PUBLISHER: Geometry: Tools for a Changing World 2001 Prentice Hall 1 Solves problems and practical applications
More informationFractions. 7th Grade Math. Review of 6th Grade. Slide 1 / 306 Slide 2 / 306. Slide 4 / 306. Slide 3 / 306. Slide 5 / 306.
Slide 1 / 06 Slide 2 / 06 7th Grade Math Review of 6th Grade 20150114 www.njctl.org Slide / 06 Table of Contents Click on the topic to go to that section Slide 4 / 06 Fractions Decimal Computation Statistics
More informationNotes: Geometry (6.G.1 4)
Perimeter Add up all the sides (P =s + s + s...) Square A = side 2 A = S 2 Perimeter The distance around a polygon. Rectangle w s L A = Length x Width A = lw Parallelogram A = Base x Height A = h h Triangle
More informationNote: For all questions, answer (E) NOTA means none of the above answers is correct. Unless otherwise specified, all angles are measured in degrees.
Note: For all questions, answer means none of the above answers is correct. Unless otherwise specified, all angles are measured in degrees. 1. The three angles of a triangle have measures given by 3 5,
More informationReteaching Nets. Name Date Class
Name ate lass eteaching Nets INV 5 You have worked with two and threedimensional figures before. Now ou ll work with nets, which are  representations of 3 figures. Making a 3 Figure from a Net A net
More informationSummer Packet 7 th into 8 th grade. Name. Integer Operations = 2. (7)(6)(4) = = = = 6.
Integer Operations Name Adding Integers If the signs are the same, add the numbers and keep the sign. 7 + 9 = 16  + 6 = 8 If the signs are different, find the difference between the numbers and keep
More informationUnit 8 Syllabus: Surface Area & Volume
Date Period Day Unit 8 Syllabus: Surface Area & Volume Topic 1 Space Figures and Cross Sections Surface Area and Volume of Spheres 3 Surface Area of Prisms and Cylinders Surface Area of Pyramids and Cones
More information2 + (2) = 0. Hinojosa 7 th. Math Vocabulary Words. Unit 1. Word Definition Picture. The opposite of a number. Additive Inverse
Unit 1 Word Definition Picture Additive Inverse The opposite of a number 2 + (2) = 0 Equal Amount The same in quantity = Fraction A number in the form a/b, where b 0. Half One of two equal parts of a
More informationA triangle that has three acute angles Example:
1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.
More informationSubject : Mathematics Level B1 Class VII Lesson: 1 (Integers)
Subject : Mathematics Level B1 Class VII Lesson: 1 (Integers) Skill/Competency /Concept Computational Skill Properties of Addition and subtraction of integers Multiplication and division Operation on integer.
More informationGeometry Lesson Polyhedron Nets. National Standards
Geometry Lesson Polyhedron Nets National Standards Instructional programs for Algebra grades 6 th 8 th should enable all students to: Precisely describe, classify, and understand relationships among types
More informationMay 01, Lateral and Surface area Pyramids and Cones ink.notebook. Page 159. Page Surface Area of Pyramids and Cones
12.3 Lateral and Surface area Pyramids and Cones ink.notebook May 01, 2017 Page 159 12.3 Surface Area of Pyramids and Cones Page 161 Page 160 Page 162 Page 163 1 Lesson Objectives Standards Lesson Notes
More informationSummer Review for Students Entering PreCalculus with Trigonometry. TI84 Plus Graphing Calculator is required for this course.
1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios and Pythagorean Theorem 4. Multiplying and Dividing Rational Expressions
More informationGeometry and. II if. Measurement. Why It's. Important. II Learn. What. Owelop and use a formula for the  surface area xif a trfangular prism.
Geometry and Measurement II if m m m M 1m wmm i f i L mfssiigs vii. H am ea^ 94 What II Learn Recognize and sketch " objtecfe. Us*, nets to build objects. Owelop and use a formula for the  surface
More informationReversible Nets of Polyhedra
Reversible Nets of Polyhedra Jin Akiyama 1, Stefan Langerman 2(B), and Kiyoko Matsunaga 1 1 Tokyo University of Science, 13 Kagurazaka, Shinjuku, Tokyo 1628601, Japan ja@jinakiyama.com, matsunaga@mathlabjp.com
More informationThursday Friday. Tuesday. Sunday. Mathematics Assessment (CfE)  Early Level. 1. What time is shown here? 9 o clock. o clock
Mathematics Assessment (CfE)  Early Level (MNU 010a) I am aware of how routines and events in my world link with times and seasons, and have explored ways to record and display these using clocks, calendars
More informationGeo H  Chapter 11 Review
Geo H  Chapter 11 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A circle has a circumference of 50 meters. Find its diameter. a. 12.5 m c. 7.96
More informationName Period Date MATHLINKS: GRADE 7 STUDENT PACKET 14 ANGLES, TRIANGLES, AND QUADRILATERALS
Name Period Date 714 STUDENT PACKET MATHLINKS: GRADE 7 STUDENT PACKET 14 ANGLES, TRIANGLES, AND QUADRILATERALS 14.1 Angle Measurements Measure and draw angles using a protractor. Review facts about interior
More informationUnderstand the concept of volume M.TE Build solids with unit cubes and state their volumes.
Strand II: Geometry and Measurement Standard 1: Shape and Shape Relationships  Students develop spatial sense, use shape as an analytic and descriptive tool, identify characteristics and define shapes,
More informationMatija Gubec International School Zagreb MYP 0. Mathematics
Matija Gubec International School Zagreb MYP 0 Mathematics 1 MYP0: Mathematics Unit 1: Natural numbers Through the activities students will do their own research on history of Natural numbers. Students
More informationGeometry GEOMETRY. Congruence
Geometry Geometry builds on Algebra I concepts and increases students knowledge of shapes and their properties through geometrybased applications, many of which are observable in aspects of everyday life.
More informationb. find the lateral area of the cylinder c. If the radius is doubled, what happens to the volume?
im: How do we find the volume and surface area of pyramids? o Now: If the radius and the height of a cylinder is 4 a. find the volume of the cylinder b. find the lateral area of the cylinder c. If the
More informationAlaska Mathematics Standards Vocabulary Word List Grade 7
1 estimate proportion proportional relationship rate ratio rational coefficient rational number scale Ratios and Proportional Relationships To find a number close to an exact amount; an estimate tells
More informationACCELERATED MATHEMATICS CHAPTER 11 DIMENSIONAL GEOMETRY TOPICS COVERED:
ACCELERATED MATHEMATICS CHAPTER DIMENSIONAL GEOMETRY TOPICS COVERED: Naming 3D shapes Nets Volume of Prisms Volume of Pyramids Surface Area of Prisms Surface Area of Pyramids Surface Area using Nets Accelerated
More informationMath Handbook of Formulas, Processes and Tricks. Geometry
Math Handbook of Formulas, Processes and Tricks (www.mathguy.us) Prepared by: Earl L. Whitney, FSA, MAAA Version 3.1 October 3, 2017 Copyright 2010 2017, Earl Whitney, Reno NV. All Rights Reserved Handbook
More informationWe have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.
Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the
More informationGo to Grade 5 Everyday Mathematics Sample Lesson
McGrawHill makes no representations or warranties as to the accuracy of any information contained in this McGrawHill Material, including any warranties of merchantability or fitness for a particular
More informationArea And Perimeter Real Life Applications
And Real Life Applications Free PDF ebook Download: And Real Life Applications Download or Read Online ebook area and perimeter real life applications in PDF Format From The Best User Guide Database AKS:
More informationFor Exercises 1 4, follow these directions. Use the given side lengths.
A C E Applications Connections Extensions Applications For Exercises 1 4, follow these directions. Use the given side lengths. If possible, build a triangle with the side lengths. Sketch your triangle.
More informationMathematics High School Geometry
Mathematics High School Geometry An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts interpreting a schematic drawing, estimating the amount of
More informationGlossary. array. 2dimensional (2D) augend = 8. 3dimensional (3D) balance. block diagram. 5, 10, 15 minutes past. calendar. capacity.
Glossary dimensional (D) circle triangle square rectangle pentagon hexagon heptagon octagon dimensional (D) cube cuboid cone cylinder array An arrangement of numbers, shapes or objects in rows of equal
More informationplace value Thousands Hundreds Tens Units
Number add total altogether sum plus + take away subtract minus the difference multiply times lots of groups of product divide share equally remainder (rem.) digit two digit numbers three digit numbers
More informationG.8D. A. 495cm2. B. 584cm2. C. 615cm2. D. 975cm2 G.9B, G.2B A. 65 B. 55 C. 45 D. 35
1. Mary, Dan Jane and Lucy walked into a shop at four different times. If Mary went into the shop before Lucy, Jane was the first person after Dan,and Mary was not the first person in the shop, who wa
More informationSTRAND H: Angle Geometry
Mathematics SK, Strand H UNIT H4 ongruence and Similarity: Text STRN H: ngle Geometry H4 ongruency and Similarity Text ontents Section * * H4.1 ongruence H4. Similarity IMT, Plymouth University Mathematics
More informationGeometry Curriculum Guide Dunmore School District Dunmore, PA
Geometry Dunmore School District Dunmore, PA Geometry Prerequisite: Successful completion Algebra I This course is designed for the student who has successfully completed Algebra I. The course content
More informationUnit 1. Word Definition Picture. The number s distance from 0 on the number line. The symbol that means a number is greater than the second number.
Unit 1 Word Definition Picture Absolute Value The number s distance from 0 on the number line. 3 =3 Greater Than The symbol that means a number is greater than the second number. > Greatest to Least To
More information