Sairam Geethanath, Ph.D. Medical Imaging Research Centre Dayananda Sagar Institutions, Bangalore

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Sairam Geethanath, Ph.D. Medical Imaging Research Centre Dayananda Sagar Institutions, Bangalore"

Transcription

1 Sairam Geethanath, Ph.D. Medical Imaging Research Centre Dayananda Sagar Institutions, Bangalore

2 Contrast SNR MRI Speed Data provided by Baek

3 Number of non-zero coefficients in a data vector Importance due to conservation of energy Sinusoidal signal for 3 hours in time domain or frequency domain? Move towards time-frequency transforms

4 CS: what is it all about? Matlab demo Steps ahead on CS Resources on CS

5 Childlike question on compression Acceleration technique involving both acquisition and reconstruction paradigms Technically challenging, pragmatically feasible and clinically valuable

6 2D FFT Good data quality but takes a long time! Hence, may not be suitable for certain imaging protocols. Limits spatial and temporal resolutions Higher spatial resolution aids in morphological analysis of tumors breast DCE-MRI Temporal resolution is important for accurate pharmacokinetic analysis. Several approaches like keyhole, parallel imaging and other fast sequences have been used. 200 X 2D IFFT Data provided by Baek

7 X 2D IFFT Uniform Sampling 120 X 2D IFFT Incoherent Sampling

8 Wavelet Transform Complete data reconstruction Most objects in nature are approximately sparse in a transformed domain. Utilize above concept to obtain very few measurements and yet reconstruct with high fidelity [1,2] X Only 33% of complete data Data provided by Baek [1] David L. Donoho, IEEE Transactions on Information theory, Vol.52, no. 4, April 2006 [2] Candes, E.J. et al., IEEE Transactions on Information theory, Vol.52, no.2, Feb. 2006

9 Generate a 2D phantom Cartesian undersampling of data Obtain undersampled data and zfwdc recon Choice of ROI if required for diagnostic evaluation purposes Recon params, post L-curve optimization Nonlinear conjugate gradient iterative reconstruction Comparative quality

10 Point spread function analyses 1. Incoherence 2. Design of this sampling mask

11 K-space trajectories with 2 constraints: 1. Slew rate 2. Smoothness of k-space coverage

12 Every MRI method: Angiography DWI/DTI/SWI/DCE-MRI/ASL fmri/mrsi/cmr. Because MRI is inherently a slow acquisition process, mostly dictated by the physics of acquisition Magnetic Resonance Fingerprinting

13 1. Rapid 1 H MR metabolic imaging 2. Accelerated DCE-MRI 3. Swifter Sweep Imaging with Fourier Transform (SWIFT) MRI

14 It has been well established that magnetic resonance imaging (MRI) provides critical information about cancer [3]. Magnetic resonance spectroscopic imaging (MRSI) furthers this capability by providing information about the presence of certain metabolites which are known to be important prognostic markers of cancer [4] (stroke, AD, energy metabolism, TCA cycle). MRSI provides information about the spatial distribution of these metabolites, hence enabling metabolic imaging. [3] Huk WJ et al., Neurosurgical Review 7(4) 1984; [4] Preul MC et al., Nat. Med. 2(3) 1996;

15 Increased choline level Reduced N-Acetylaspartate (NAA) level Reduced creatine level CANCER NORMAL [5] [5] H Kugel et al., Radiology 183 June 1992

16 Long acquisition times for MRSI A typical MRSI protocol (32 X 32 X 512) takes ~ 20 minutes Difficult to maintain anatomical posture for long time Increases patient discomfort, likelihood of early termination of study Discourages routine clinical use of this powerful MRI technique To increase throughput (decreased scanner time, technician time) Reduction of acquisition time is usually accomplished by under sampling measured data (k-space). Limitations of Shannon-Nyquist criterion. Compressed sensing provides a framework to achieve sub-nyquist sampling rates with good data fidelity.

17 MRSI data Scanner TR(ms) TE(ms) # Averages Grid Size FOV (mm 3 ) Brain - normal (N=6) Siemens 3.0T Trio Tim x 16 x x 100 x 15 Brain cancer (N=2) Philips 3.0T Achieva x 21 x x 22 x x 210 x x 220 x 15 Prostate cancer (N=2) Philips 3.0T Achieva x 10 x x 12 x x 50 x x 51 x 26 Brain - normal (N=6) Brain - cancer (N=2) Prostate -cancer (N=2)

18 Minimal data processing done using jmrui [7] FID Apodization Gaussian (~3Hz) Removal of water peak using HLSVD Phase correction To allow correct integration of the real part of the spectra QUEST based quantitation. [8] To generate specific metabolite maps. [7] A. Naressi, et al., Computers in Biology and Medicine, vol. 31, [8] H. Ratiney, et al., Magnetic Resonance Materials in Physics Biology and Medicine, vol. 16, 2004.

19 1X 5X Cho Cr NAA

20 1X Normal Brain cancer Cancer Cho NAA Cho Cr Cho Cr 2 Cr 2 Cr NAA Cr Prostate cancer Normal Cancer Cit Cho + Cr Cit 2X 5X 10X

21 Brain - Normal Metabolite maps Brain - cancer Prostate - cancer

22 Mean SD of pooled data for each data type 2 tailed paired t-test Ratio: CNI for brain data and (Cho + cr)/cit for prostate data Excluded voxels with denominator value of 0 in 1X case For CS cases, if the denominator had a value of 0, the ratio was set to 0 P value less than 0.05 was chosen as a significant difference (* p <0.05) Brain (Normal) Brain (Cancer) Prostate (Cancer) NAA (a.u.) Cr (a.u.) Cho (a.u.) Cit (a.u.) Ratio 1X X X X * * * * 1X X X X * * 1X X X X * *

23 RMSE 1 N N i 1 ( i i '') 2 N = total number of elements of the MRSI data; Θ, Θ = the data reconstructed from full k-space and undersampled k-space respectively.

24 Application of compressed sensing on 1 H MRSI has been performed for the first time It has been demonstrated that compressed sensing based reconstruction can be successfully applied on 1 H MRSI in vivo human brain (normal and cancer), prostate cancer data and in vitro, computer generated phantom data sets Our results indicate a potential to reduce MRSI acquisition times by 75% thus significantly reducing the time spent by the patient in the MR scanner for spectroscopic studies Current and future work involves the implementation of compressed sensing based pulse sequences on preclinical and clinical scanners Other groups in the world are working on this demonstration now!

25 Rapid 1 H MR metabolic imaging Accelerated DCE-MRI Swifter Sweep Imaging with Fourier Transform (SWIFT) MRI

26 C(t) = f(δr 1 (t)) T1 weighted images for baseline T1 shortening contrast agent Tissue perfusion, microvascular density and extravascular -extracellular volume -- tumor staging, monitor treatment response [10] Yankeelov TE, et. al MRI;23(4) *Model implemented by Dr. Vikram Kodibagkar in MATLAB [10]

27 [11] Vanvaals JJ et. al. JMRI; 3(4) 1993 [12] Jim J et. al. IEEE TMI 2008 [13] Lustig M et. al. MRM;58(6) 2007 I post-contrast I pre-contrast I diff S post (ω) S pre (ω) y diff Data was normalized to a range of 0 to 1 before retrospective reconstruction Keyhole for DCE CS for DCE S pre (ω) = L pre (ω) + H pre (ω) (1a) S post (ω) = L post (ω) + H pre (ω) (1b) Є( I diff ) = FI diff y diff 2 + λ LI WI diff 1 +λ TV (I diff ) (2) [11] [12,13]

28 5 DCE-MRI breast cancer data sets consisting of 64 frames (4 precontrast images and 60 post-contrast images) were used for retrospective reconstructions. The contrast agent used was Omniscan (intravenously administered through the tail vein at a dose of 0.1 mmol/kg). Reconstructions based on 2 approaches: keyhole and compressed sensing, were performed as function of masks and acceleration factors were performed. These reconstructions were quantified by the root mean square error metric defined below N RMSE 1 N i 1 ( i i '') 2

29 Masks Recon Original Keyhole Keylines Keythresh CS_Gauss CS_Glines CS_Thresh 2X 3X 4X 5X 2X 3X 4X 5X

30 Keyhole CS Keylines CS_Gauss Keyhole CS_Glines Keythresh CS_Thresh Starts at frame 1 Starts at frame 6 (post-contrast)

31 K trans Ve Original Keyhole Keylines Keythresh CS_Gauss CS_Glines CS_Thresh 2X 3X 4X 5X 2X 3X 4X 5X

32 ROI Intensity ROI Intensity ROI Intensity T1w precontrast T1w postcontrast Muscle T2w Overlay Well perfused region Original Keyhole Keylines Keythresh Gauss Glines Gthresh Frame # Poorly perfused region Original Keyhole Keylines Keythresh Gauss Glines Gthresh Frame # Original Keyhole Keylines Keythresh Gauss Glines Gthresh Frame #

33 Muscle Well perfused Poorly perfused

34 It has been shown here and previously that DCE MRI can be reliably accelerated through methods like compressed sensing and keyhole reconstructions to obtain increased spatial and/or temporal resolution. CS based masks Gauss and Gthresh provide better performance when compared to Glines mask, which out do the keyhole masks as observed by the RMSE graphs. Keyhole based masks keyhole mask performs relatively poorer when compared to keythresh and keylines masks Acceleration factors the values of RMSE increases with acceleration as expected (not shown); the CS masks show a RMSE of less than even at an acceleration factor of 5 while keyhole masks result in a RMSE of less than 0.1

35 Rapid 1 H MR metabolic imaging Accelerated DCE-MRI Swifter Sweep Imaging with Fourier Transform (SWIFT) MRI

36 Sweep imaging with Fourier transformation [14] Time domain signals are acquired during a swept radiofrequency excitation in a time shared way This results in a significantly negligible echo time. Insensitive to motion, restricted dynamic range, low gradient noise Bovine tibia [14] D.Idiyatullin et al., JMR, 181, [14] GRE SWIFT Photograph

37 Full k-space recon was performed using gridding. The volume was restricted to a range of [0,1] by normalizing it to the highest absolute value. Prospective implementation is straight forward due to the nature of k-space trajectory. Acceleration of 5.33 X was achieved directly proportional to time saved MR data is sparse in the total variation domain. Since the data in this case is 3D, a 3D total variation norm is most apt. Reconstruction involves minimization of the convex functional given below. This is accomplished by a custom implementation of non-linear conjugate gradient algorithm. Є(m) = F u m y 2 +λ TV TV(m) where m is the desired MRI volume, F u is the Fourier transform operator, TV is the 3D total variation operator,. 2 is the L2 norm operator, λ TV is the regularization parameter for the TV term respectively, and Є is the value of the cost function.

38 The initial estimate of the volume is given by the zero-filled case with density compensation (zfwdc). This produces artifacts which are incoherent as can be seen in the zfwdc images. A total of 8 iterations were used and the recon was performed in 4 mins. NRMSE given by RMSE/ range of input; i.e. 1; hence NRMSE = RMSE calculated as given below N 1 2 RMSE ( i i '') N i 1 N = total number of elements of the MRI volume; Θ, Θ = the data reconstructed from full k- space and undersampled k-space respectively.

39 Original Zero filled with density compensation 5.33 X

40 Intensity (au) Intensity (au) Intensity (au) Original Pixel number Zero filled with density compensation (Zfwdc) Pixel Number 0.6 5X Pixel Number

41 Original 5X Scan time ~ 8 min Estimated scan time ~1.6 min

42 Original Zfwdc 5 X

43 Review on CS MRI Critical reviews in biomedical engineering Miki Lustig, UC Berkley John M Pauly, Stanford

44 25+ member team ( ) Impact factor > 15 for Considered world experts in CS Work on CS has been showcased in the American Society of Neuroradiologists 2013 annual conference Several groups worldwide are working on our idea including Oxford and Yale

45

46 Human Scan Scanning Started from: Number of volunteers scanned till : 20

47 Mr. Rajesh Harsh, Mr. Ravindran Nair, Mr. T.S. Datta, Mr. R.S.Verma MIRC students Knowledge partners for MRI India Consortium: AIIMS, Harvard, NYU, Minnesota, Auburn ASU, KCL/ICL, Wipro-GE Healthcare Scientists/Participants Management of DSCE

48

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

Information about presenter

Information about presenter Information about presenter 2013-now Engineer R&D ithera Medical GmbH 2011-2013 M.Sc. in Biomedical Computing (TU München) Thesis title: A General Reconstruction Framework for Constrained Optimisation

More information

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction Mathematical Modelling and Applications 2017; 2(6): 75-80 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170206.14 ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online) Compressed Sensing

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

Optimal Sampling Geometries for TV-Norm Reconstruction of fmri Data

Optimal Sampling Geometries for TV-Norm Reconstruction of fmri Data Optimal Sampling Geometries for TV-Norm Reconstruction of fmri Data Oliver M. Jeromin, Student Member, IEEE, Vince D. Calhoun, Senior Member, IEEE, and Marios S. Pattichis, Senior Member, IEEE Abstract

More information

Spiral keyhole imaging for MR fingerprinting

Spiral keyhole imaging for MR fingerprinting Spiral keyhole imaging for MR fingerprinting Guido Buonincontri 1, Laura Biagi 1,2, Pedro A Gómez 3,4, Rolf F Schulte 4, Michela Tosetti 1,2 1 IMAGO7 Research Center, Pisa, Italy 2 IRCCS Stella Maris,

More information

Redundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity

Redundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity Redundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity Vimal Singh and Ahmed H. Tewfik Electrical and Computer Engineering Dept., The University of Texas at Austin, USA Abstract. For

More information

MRI reconstruction from partial k-space data by iterative stationary wavelet transform thresholding

MRI reconstruction from partial k-space data by iterative stationary wavelet transform thresholding MRI reconstruction from partial k-space data by iterative stationary wavelet transform thresholding Mohammad H. Kayvanrad 1,2, Charles A. McKenzie 1,2,3, Terry M. Peters 1,2,3 1 Robarts Research Institute,

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Constrained Reconstruction of Sparse Cardiac MR DTI Data

Constrained Reconstruction of Sparse Cardiac MR DTI Data Constrained Reconstruction of Sparse Cardiac MR DTI Data Ganesh Adluru 1,3, Edward Hsu, and Edward V.R. DiBella,3 1 Electrical and Computer Engineering department, 50 S. Central Campus Dr., MEB, University

More information

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging Nuts & Bolts of Advanced Imaging Image Reconstruction Parallel Imaging Michael S. Hansen, PhD Magnetic Resonance Technology Program National Institutes of Health, NHLBI Declaration of Financial Interests

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

Image reconstruction using compressed sensing for individual and collective coil methods.

Image reconstruction using compressed sensing for individual and collective coil methods. Biomedical Research 2016; Special Issue: S287-S292 ISSN 0970-938X www.biomedres.info Image reconstruction using compressed sensing for individual and collective coil methods. Mahmood Qureshi *, Muhammad

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography Course: Advance MRI (BIOE 594) Instructors: Dr Xiaohong Joe Zhou Dr. Shadi Othman By, Nayan Pasad Phase Contrast Angiography By Moran 1982, Bryan et. Al. 1984 and Moran et.

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 24 Compressed Sensing III M. Lustig, EECS UC Berkeley RADIOS https://inst.eecs.berkeley.edu/~ee123/ sp15/radio.html Interfaces and radios on Wednesday -- please

More information

Motion Artifacts and Suppression in MRI At a Glance

Motion Artifacts and Suppression in MRI At a Glance Motion Artifacts and Suppression in MRI At a Glance Xiaodong Zhong, PhD MR R&D Collaborations Siemens Healthcare MRI Motion Artifacts and Suppression At a Glance Outline Background Physics Common Motion

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

K11. Modified Hybrid Median Filter for Image Denoising

K11. Modified Hybrid Median Filter for Image Denoising April 10 12, 2012, Faculty of Engineering/Cairo University, Egypt K11. Modified Hybrid Median Filter for Image Denoising Zeinab A.Mustafa, Banazier A. Abrahim and Yasser M. Kadah Biomedical Engineering

More information

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004 Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 24 1 Alec Chi-Wah Wong Department of Electrical Engineering University of Southern California 374 McClintock

More information

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging Magnetic Resonance in Medicine 58:1182 1195 (2007) Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging Michael Lustig, 1 David Donoho, 2 and John M. Pauly 1 The sparsity which is implicit

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

Acknowledgments and financial disclosure

Acknowledgments and financial disclosure AAPM 2012 Annual Meeting Digital breast tomosynthesis: basic understanding of physics principles James T. Dobbins III, Ph.D., FAAPM Director, Medical Physics Graduate Program Ravin Advanced Imaging Laboratories

More information

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 16 Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 3.1 MRI (magnetic resonance imaging) MRI is a technique of measuring physical structure within the human anatomy. Our proposed research focuses

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

ComputerLab: compressive sensing and application to MRI

ComputerLab: compressive sensing and application to MRI Compressive Sensing, 207-8 ComputerLab: compressive sensing and application to MRI Aline Roumy This computer lab addresses the implementation and analysis of reconstruction algorithms for compressive sensing.

More information

Fast Dynamic MRI for Radiotherapy

Fast Dynamic MRI for Radiotherapy 1 Fast Dynamic MRI for Radiotherapy KE SHENG, PH.D., FAAPM DEPARTMENT OF RADIATION ONCOLOGY UNIVERSITY OF CALIFORNIA, LOS ANGELES Disclosures I receive research grants from Varian Medical Systems I am

More information

Initial Experience of Applying TWIST Dixon with Flexible View Sharing in Breast DCE-MRI

Initial Experience of Applying TWIST Dixon with Flexible View Sharing in Breast DCE-MRI Initial Experience of Applying TWIST Dixon with Flexible View Sharing in Breast DCE-MRI Yuan Le PhD 1, Hal D. Kipfer MD 1, Dominik M. Nickel PhD 2, Randall Kroeker PhD 2, Brian Dale PhD 2, Stephanie P.

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

Optimizing Flip Angle Selection in Breast MRI for Accurate Extraction and Visualization of T1 Tissue Relaxation Time

Optimizing Flip Angle Selection in Breast MRI for Accurate Extraction and Visualization of T1 Tissue Relaxation Time Optimizing Flip Angle Selection in Breast MRI for Accurate Extraction and Visualization of T1 Tissue Relaxation Time GEORGIOS KETSETZIS AND MICHAEL BRADY Medical Vision Laboratory Department of Engineering

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Timing: cine, gating, triggering Slice interleaving Sequential, Odd/even, bit-reversed

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

Compressive Sensing MRI with Wavelet Tree Sparsity

Compressive Sensing MRI with Wavelet Tree Sparsity Compressive Sensing MRI with Wavelet Tree Sparsity Chen Chen and Junzhou Huang Department of Computer Science and Engineering University of Texas at Arlington cchen@mavs.uta.edu jzhuang@uta.edu Abstract

More information

Advanced MRI Techniques (and Applications)

Advanced MRI Techniques (and Applications) Advanced MRI Techniques (and Applications) Jeffry R. Alger, PhD Department of Neurology Ahmanson-Lovelace Brain Mapping Center Brain Research Institute Jonsson Comprehensive Cancer Center University of

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

Micro-CT Methodology Hasan Alsaid, PhD

Micro-CT Methodology Hasan Alsaid, PhD Micro-CT Methodology Hasan Alsaid, PhD Preclinical & Translational Imaging LAS, PTS, GlaxoSmithKline 20 April 2015 Provide basic understanding of technical aspects of the micro-ct Statement: All procedures

More information

8/1/2017. Current Technology: Energy Integrating Detectors. Principles, Pitfalls and Progress in Photon-Counting-Detector Technology.

8/1/2017. Current Technology: Energy Integrating Detectors. Principles, Pitfalls and Progress in Photon-Counting-Detector Technology. Photon Counting Detectors and Their Applications in Medical Imaging Principles, Pitfalls and Progress in Photon-Counting-Detector Technology Taly Gilat Schmidt, PhD Associate Professor Department of Biomedical

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

A novel noise removal using homomorphic normalization for multi-echo knee MRI

A novel noise removal using homomorphic normalization for multi-echo knee MRI A novel noise removal using homomorphic normalization for multi-echo knee MRI Xuenan Cui 1a),HakilKim 1b), Seongwook Hong 1c), and Kyu-Sung Kwack 2d) 1 School of Information and Communication Engineering,

More information

MAGNETIC RESONANCE IMAGE RECONSTRUCTION USING COMPRESSED SENSING ON EMBEDDED PROCESSING PLATFORMS. Yassin Amer El-Sayed Amer

MAGNETIC RESONANCE IMAGE RECONSTRUCTION USING COMPRESSED SENSING ON EMBEDDED PROCESSING PLATFORMS. Yassin Amer El-Sayed Amer MAGNETIC RESONANCE IMAGE RECONSTRUCTION USING COMPRESSED SENSING ON EMBEDDED PROCESSING PLATFORMS By Yassin Amer El-Sayed Amer A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial

More information

7/31/ D Cone-Beam CT: Developments and Applications. Disclosure. Outline. I have received research funding from NIH and Varian Medical System.

7/31/ D Cone-Beam CT: Developments and Applications. Disclosure. Outline. I have received research funding from NIH and Varian Medical System. 4D Cone-Beam CT: Developments and Applications Lei Ren, PhD, DABR Department of Radiation Oncology Duke University Medical Center Disclosure I have received research funding from NIH and Varian Medical

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] Motion artifact correction in ASL images: automated procedure an improved Original Citation: Di Cataldo S., Ficarra E., Acquaviva A., Macii

More information

Journal of Magnetic Resonance

Journal of Magnetic Resonance Journal of Magnetic Resonance 192 (2008) 258 264 Contents lists available at ScienceDirect Journal of Magnetic Resonance journal homepage: www. elsevier. com/ locat e/ jmr Compressed sensing for resolution

More information

Fast methods for magnetic resonance angiography (MRA)

Fast methods for magnetic resonance angiography (MRA) Fast methods for magnetic resonance angiography (MRA) Bahareh Vafadar Department of Electrical and Computer Engineering A thesis presented for the degree of Doctor of Philosophy University of Canterbury,

More information

Compressive Sensing Based Image Reconstruction using Wavelet Transform

Compressive Sensing Based Image Reconstruction using Wavelet Transform Compressive Sensing Based Image Reconstruction using Wavelet Transform Sherin C Abraham #1, Ketki Pathak *2, Jigna J Patel #3 # Electronics & Communication department, Gujarat Technological University

More information

Implementation of Hybrid Model Image Fusion Algorithm

Implementation of Hybrid Model Image Fusion Algorithm IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 5, Ver. V (Sep - Oct. 2014), PP 17-22 Implementation of Hybrid Model Image Fusion

More information

EE369C: Assignment 4 Solutions

EE369C: Assignment 4 Solutions EE369C Fall 2017-18 Medical Image Reconstruction 1 EE369C: Assignment 4 Solutions Due Wednesday, Oct. 25 The problems this week will be concerned with 2DFT SENSE reconstruction. The data is an axial brain

More information

Respiratory Motion Estimation using a 3D Diaphragm Model

Respiratory Motion Estimation using a 3D Diaphragm Model Respiratory Motion Estimation using a 3D Diaphragm Model Marco Bögel 1,2, Christian Riess 1,2, Andreas Maier 1, Joachim Hornegger 1, Rebecca Fahrig 2 1 Pattern Recognition Lab, FAU Erlangen-Nürnberg 2

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO

REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO REMOVAL OF THE EFFECT OF COMPTON SCATTERING IN 3-D WHOLE BODY POSITRON EMISSION TOMOGRAPHY BY MONTE CARLO Abstract C.S. Levin, Y-C Tai, E.J. Hoffman, M. Dahlbom, T.H. Farquhar UCLA School of Medicine Division

More information

Medical Images Analysis and Processing

Medical Images Analysis and Processing Medical Images Analysis and Processing - 25642 Emad Course Introduction Course Information: Type: Graduated Credits: 3 Prerequisites: Digital Image Processing Course Introduction Reference(s): Insight

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors

Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors Sliding window prior data assisted compressed sensing for MRI tracking of lung tumors Eugene Yip Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton,

More information

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI. Floris Jansen, GE Healthcare July, 2015

Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI. Floris Jansen, GE Healthcare July, 2015 Technological Advances and Challenges: Experience with Time-Of-Flight PET Combined with 3T MRI Floris Jansen, GE Healthcare July, 2015 PET/MR 101 : challenges Thermal Workflow & Apps RF interactions?!!

More information

fmri Image Preprocessing

fmri Image Preprocessing fmri Image Preprocessing Rick Hoge, Ph.D. Laboratoire de neuroimagerie vasculaire (LINeV) Centre de recherche de l institut universitaire de gériatrie de Montréal, Université de Montréal Outline Motion

More information

Enhancement Image Quality of CT Using Single Slice Spiral Technique

Enhancement Image Quality of CT Using Single Slice Spiral Technique Enhancement Image Quality of CT Using Single Slice Spiral Technique Doaa. N. Al Sheack 1 and Dr.Mohammed H. Ali Al Hayani 2 1 2 Electronic and Communications Engineering Department College of Engineering,

More information

New Enhanced Multi-frame DICOM CT and MR Objects to Enhance Performance and Image Processing on PACS and Workstations

New Enhanced Multi-frame DICOM CT and MR Objects to Enhance Performance and Image Processing on PACS and Workstations New Enhanced Multi-frame DICOM CT and MR Objects to Enhance Performance and Image Processing on PACS and Workstations SCAR 2004 Hot Topics - 22 May 2004 David Clunie, RadPharm Charles Parisot,, GE Healthcare

More information

Detection & Classification of Lung Nodules Using multi resolution MTANN in Chest Radiography Images

Detection & Classification of Lung Nodules Using multi resolution MTANN in Chest Radiography Images The International Journal Of Engineering And Science (IJES) ISSN (e): 2319 1813 ISSN (p): 2319 1805 Pages 98-104 March - 2015 Detection & Classification of Lung Nodules Using multi resolution MTANN in

More information

Multi-Dimensional Flow-Preserving Compressed Sensing (MuFloCoS) for Time-Resolved Velocity-Encoded Phase Contrast MRI

Multi-Dimensional Flow-Preserving Compressed Sensing (MuFloCoS) for Time-Resolved Velocity-Encoded Phase Contrast MRI 400 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 2, FEBRUARY 2015 Multi-Dimensional Flow-Preserving Compressed Sensing (MuFloCoS) for Time-Resolved Velocity-Encoded Phase Contrast MRI Jana Hutter*,

More information

P-LORAKS: Low-Rank Modeling of Local k-space Neighborhoods with Parallel Imaging Data

P-LORAKS: Low-Rank Modeling of Local k-space Neighborhoods with Parallel Imaging Data P-LORAKS: Low-Rank Modeling of Local k-space Neighborhoods with Parallel Imaging Data Justin P. Haldar 1, Jingwei Zhuo 2 1 Electrical Engineering, University of Southern California, Los Angeles, CA, USA

More information

Sources of Distortion in Functional MRI Data

Sources of Distortion in Functional MRI Data Human Brain Mapping 8:80 85(1999) Sources of Distortion in Functional MRI Data Peter Jezzard* and Stuart Clare FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK Abstract:

More information

Optimisation of Toshiba Aquilion ONE Volume Imaging

Optimisation of Toshiba Aquilion ONE Volume Imaging Optimisation of Toshiba Aquilion ONE Volume Imaging Jane Edwards, RPRSG Royal Free London NHS Foundation Trust Dr Mufudzi Maviki, Plymouth Hospitals NHS Trust Background In 2011/12 Radiology at RFH was

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

Introduction to Medical Image Processing

Introduction to Medical Image Processing Introduction to Medical Image Processing Δ Essential environments of a medical imaging system Subject Image Analysis Energy Imaging System Images Image Processing Feature Images Image processing may be

More information

Whole Body MRI Intensity Standardization

Whole Body MRI Intensity Standardization Whole Body MRI Intensity Standardization Florian Jäger 1, László Nyúl 1, Bernd Frericks 2, Frank Wacker 2 and Joachim Hornegger 1 1 Institute of Pattern Recognition, University of Erlangen, {jaeger,nyul,hornegger}@informatik.uni-erlangen.de

More information

Partially Parallel Imaging With Localized Sensitivities (PILS)

Partially Parallel Imaging With Localized Sensitivities (PILS) Partially Parallel Imaging With Localized Sensitivities (PILS) Magnetic Resonance in Medicine 44:602 609 (2000) Mark A. Griswold, 1 * Peter M. Jakob, 1 Mathias Nittka, 1 James W. Goldfarb, 2 and Axel Haase

More information

A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging

A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2012 A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging Yuchou Chang University of Wisconsin-Milwaukee

More information

A New GPU-Based Level Set Method for Medical Image Segmentation

A New GPU-Based Level Set Method for Medical Image Segmentation A New GPU-Based Level Set Method for Medical Image Segmentation Wenzhe Xue Research Assistant Radiology Department Mayo Clinic, Scottsdale, AZ Ph.D. Student Biomedical Informatics Arizona State University,

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney.

SPECT QA and QC. Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC Bruce McBride St. Vincent s Hospital Sydney. SPECT QA and QC What is needed? Why? How often? Who says? QA and QC in Nuclear Medicine QA - collective term for all the efforts made to produce

More information

Acknowledgments. Nesterov s Method for Accelerated Penalized-Likelihood Statistical Reconstruction for C-arm Cone-Beam CT.

Acknowledgments. Nesterov s Method for Accelerated Penalized-Likelihood Statistical Reconstruction for C-arm Cone-Beam CT. June 5, Nesterov s Method for Accelerated Penalized-Likelihood Statistical Reconstruction for C-arm Cone-Beam CT Adam S. Wang, J. Webster Stayman, Yoshito Otake, Gerhard Kleinszig, Sebastian Vogt, Jeffrey

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

E. Mark Haacke, PhD. The MRI Institute for Biomedical Research Detroit, Michigan Wayne State University Detroit, Michigan 48201

E. Mark Haacke, PhD. The MRI Institute for Biomedical Research Detroit, Michigan Wayne State University Detroit, Michigan 48201 E. Mark Haacke, PhD The MRI Institute for Biomedical Research Detroit, Michigan 48202 Wayne State University Detroit, Michigan 48201 Acknowledgements The testing and establishment of these protocols has

More information

CT Protocol Review: Practical Tips for the Imaging Physicist Physicist

CT Protocol Review: Practical Tips for the Imaging Physicist Physicist CT Protocol Review: Practical Tips for the Imaging Physicist Physicist Dianna Cody, Ph.D., DABR, FAAPM U.T.M.D. Anderson Cancer Center August 8, 2013 AAPM Annual Meeting Goals Understand purpose and importance

More information

Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs

Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Qualitative Comparison of Conventional and Oblique MRI for Detection of Herniated Spinal Discs Doug Dean Final Project Presentation ENGN 2500: Medical Image Analysis May 16, 2011 Outline Review of the

More information

CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106

CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106 CHAPTER 6 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform Page No 6.1 Introduction 103 6.2 Compression Techniques 104 103 6.2.1 Lossless compression 105 6.2.2 Lossy compression

More information

Southwest Conference on Integrated Mathematical Methods in Medical Imaging. Conference Speaker Abstracts

Southwest Conference on Integrated Mathematical Methods in Medical Imaging. Conference Speaker Abstracts Saturday, February 6, 2010 College of Design, North Building, Room 60 Justin Romberg, Georgia Tech Presenting at 9:15 AM FFTs on Spirals and Dynamic Updating for L1 Minimization We will discuss two algorithms

More information

Magnetic Resonance Elastography (MRE) of Liver Disease

Magnetic Resonance Elastography (MRE) of Liver Disease Magnetic Resonance Elastography (MRE) of Liver Disease Authored by: Jennifer Dolan Fox, PhD VirtualScopics Inc. jennifer_fox@virtualscopics.com 1-585-249-6231 1. Overview of MRE Imaging MRE is a magnetic

More information

Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model 5 Paul A Wolf 1, Jakob H Jørgensen 2, Taly G Schmidt 1 and Emil Y Sidky 3 1

More information

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors 2005 IEEE Nuclear Science Symposium Conference Record M11-354 PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors Sangeetha Somayajula, Evren Asma, and Richard

More information

4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization

4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization 4D Computed Tomography Reconstruction from Few-Projection Data via Temporal Non-local Regularization Xun Jia 1, Yifei Lou 2, Bin Dong 3, Zhen Tian 1,4, and Steve Jiang 1 1 Department of Radiation Oncology

More information

Make the Most of Time

Make the Most of Time Make the Most of Time Temporal Extension of the itv Algorithm for 4D Cardiac C-Arm CT Viktor Haase 1,5, Oliver Taubmann 2,3, Yixing Huang 2, Gregor Krings 4, Günter Lauritsch 5, Andreas Maier 2,3, Alfred

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

ThE ultimate, INTuITIVE Mr INTErFAcE

ThE ultimate, INTuITIVE Mr INTErFAcE ThE ultimate, INTuITIVE Mr INTErFAcE Empowering you to do more The revolutionary Toshiba M-power user interface takes Mr performance and flexibility to levels higher than ever before. M-power is able to

More information

Segmentation and Classification of Breast Tumor Using Dynamic Contrast-Enhanced MR Images

Segmentation and Classification of Breast Tumor Using Dynamic Contrast-Enhanced MR Images Segmentation and Classification of Breast Tumor Using Dynamic Contrast-Enhanced MR Images Yuanjie Zheng, Sajjad Baloch, Sarah Englander, Mitchell D. Schnall, and Dinggang Shen Department of Radiology,

More information

Research Article Parallel Computing of Patch-Based Nonlocal Operator and Its Application in Compressed Sensing MRI

Research Article Parallel Computing of Patch-Based Nonlocal Operator and Its Application in Compressed Sensing MRI Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine Volume 2014, Article ID 257435, 6 pages http://dx.doi.org/10.1155/2014/257435 Research Article Parallel Computing of Patch-Based

More information

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs Measurements and Bits: Compressed Sensing meets Information Theory Dror Baron ECE Department Rice University dsp.rice.edu/cs Sensing by Sampling Sample data at Nyquist rate Compress data using model (e.g.,

More information

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images Tina Memo No. 2008-003 Internal Memo Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images P. A. Bromiley Last updated 20 / 12 / 2007 Imaging Science and

More information

New Modality Issues: DICOM Enhanced Images CT, MR, PET, XA/XRF

New Modality Issues: DICOM Enhanced Images CT, MR, PET, XA/XRF The Medicine Behind the Image New Modality Issues: DICOM Enhanced Images CT, MR, PET, XA/XRF Dr. David A. Clunie, MB.,BS., FRACR Chief Technology Officer RadPharm, Inc. Disclosures David Clunie, MBBS,

More information

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods

Limitations of Projection Radiography. Stereoscopic Breast Imaging. Limitations of Projection Radiography. 3-D Breast Imaging Methods Stereoscopic Breast Imaging Andrew D. A. Maidment, Ph.D. Chief, Physics Section Department of Radiology University of Pennsylvania Limitations of Projection Radiography Mammography is a projection imaging

More information

Compressed Sensing for Electron Tomography

Compressed Sensing for Electron Tomography University of Maryland, College Park Department of Mathematics February 10, 2015 1/33 Outline I Introduction 1 Introduction 2 3 4 2/33 1 Introduction 2 3 4 3/33 Tomography Introduction Tomography - Producing

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 1 Introduction Lucas C. Parra, parra@ccny.cuny.edu 1 Content Topics: Physics of medial imaging modalities (blue) Digital Image Processing (black) Schedule: 1. Introduction,

More information