Plane wave in free space Exercise no. 1

Size: px
Start display at page:

Download "Plane wave in free space Exercise no. 1"

Transcription

1 Plane wave in free space Exercise no. 1 The exercise is focused on numerical modeling of plane wave propagation in ANSYS HFSS. Following aims should be met: 1. A numerical model of a plane wave propagating in free space should be created. Parameters of free space are identical with vacuum. Frequency of wave is f = 9 GHz. Considering the computed field distribution, wavelength should be determined as the shortest distance of two points with the same phase, and the value should be verified: λ = c / f (1.1) where c is velocity of light and f denotes frequency. 2. Plane wave propagates in free space with the dielectric constant r = 4. What is the wavelength with respect to the propagation in vacuum? 3. Plane wave propagates in free space with the dielectric constant r = 1 and conductivity tan = 0.1. What is the field distribution with respect to the propagation in vacuum?

2 How to do it ANSYS HFSS numerically solves Maxwell equations in the differential form by finite element method (FEM). FEM decomposes an analyzed structure to tetrahedral elements (finite ones). In each element, electromagnetic field is approximated by a parametric function. In the next step, parameters are evaluated to minimize energy of the computed field. Today, we are aimed to create a simple model of plane wave propagation in HFSS. Plane wave will be formed by a special wave-guiding structure: The top wall and the bottom wall of the waveguide are created by perfect electric conductor (). Since electric field intensity has to be perpendicular to the wall, the plane wave will have E component oriented in a vertical direction. Side walls of the waveguide are created by perfect magnetic conductor (PMC). Since magnetic field intensity has to be perpendicular to the PMC wall, the plane wave will have H component oriented in a horizontal direction. Wave propagates in parallel to the longitudinal axis of the waveguide. Direction of propagation is perpendicular both to the electric field E and to the magnetic field H at the same time. H E k PMC PMC Fig. 1.1 Transversal cut (left) and longitudinal cut (right) of the analyzed waveguide. Now, attention is turned to modeling the described waveguide in ANSYS HFSS. Following steps have to be done: Menu: Project Insert HFSS Design We create a numerical model based on in finite elements in frequency domain (wave propagation is modeled in a harmonic steady state). Menu: Draw Box In the graphical editor, we click points creating vertexes of a block. In the list of objects, Box1 appears. Clicking the right button the CreateBox, dimensions of the box can be specified accurately. In our case, XSize = 22 mm, YSize = 200 mm and ZSize = 10 mm. If Position is set to (0 mm, 0 mm, 0 mm), the left back bottom vertex of the box appears in the origin of the coordinate system. User s interface of ANSYS HFSS version 15.0 is depicted in Fig. 1.2: On the top, we have a conventional toolbar with frequently used commands. The box can therefore be created via menu (Draw Box) or by a corresponding icon.

3 In the central-left part, Project Manager is available. The task to be computed is specified by a consecutive setting of all the items of the project (from Model to Radiation). On the right from Project Manager, the list of geometric objects is displayed. In our case, only Box1 is listed. In the window Properties, which is below Project Manager, parameters of objects are listed. Bottom windows display messages related to the status of modeling. Warnings and errors are shown in the left window, status of computations is given in the right window. Fig. 1.2 User s interface of ANSYS HFSS. Now, let us continue the preparation of the model: Key F + click on the face of the box the face is selected o Top and bottom face: HFSS Boundaries Assign Perfect E (perfect electric conductor) o Front and back face: HFSS Boundaries Assign Perfect H (perfect magnetic conductor) o Right face: HFSS Boundaries Assign Radiation Boundary (radiating face perfectly absorbing energy of a propagating wave; reflections are eliminated) o Left face: HFSS Excitation Assign Wave Port (field distribution on the input port is the source of the wave) Properties of the wave port have to be determined in several dialog boxes: 1. General. The port is named (the default name 1 can be used).

4 2. Modes. On the line Mode = 1, we click the column Integration line. In the center of the input face, we create an arrow from the top wall to the bottom wall. Center of the face is indicated by a triangle. 3. Post processing. Default settings are used. Menu: HFSS Analysis Setup Add solution setup On the first tab (General), we set frequency of analysis (Solution frequency) to 9 GHz. Other settings stay unchanged. Menu: HFSS Validation check A dialog for the verification of the correctness of the model is opened. If the model is correct (see fig. 1.3), analysis can be run. Menu: HFSS Analyze all Fig. 1.3 verification of the correctness of the created model. Before running the analysis, HFSS requires the model to be saved. Run of the analysis is indicated in the right bottom window. Finishing analysis, results can be displayed. Select: Box1 (in the box with objects), Field overlays (in Project Manager by right click), Menu: Plot fields H Vector H That way, magnetic component of the computed electromagnetic wave is displayed. H field (in Project Manager by right click) Menu: Modify attributes Spectrum: grey Color palette for a proper representation of computed fields can be selected. The described steps can be repeated for the electric field. That way, the complete field consisting of electric components (red arrows) and magnetic components (grey arrows) can be displayed (see Fig. 1.4). If filed distribution should be animated, we use: Menu: View Animate If output of analysis should be copied to clipboard, we use: Menu: Edit Copy image If distance of two points should be measured, we use: Menu: Modeler Measure Position

5 Fig. 1.4 Electric field intensity vector (red) and magnetic field intensity vector (grey) of wave propagating in a waveguide from Fig. 1.1.

LAB # 3 Wave Port Excitation Radiation Setup & Analysis

LAB # 3 Wave Port Excitation Radiation Setup & Analysis COMSATS Institute of Information Technology Electrical Engineering Department (Islamabad Campus) LAB # 3 Wave Port Excitation Radiation Setup & Analysis Designed by Syed Muzahir Abbas 1 WAVE PORT 1. New

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

Ansoft HFSS 3D Boundary Manager

Ansoft HFSS 3D Boundary Manager and Selecting Objects and s Menu Functional and Ansoft HFSS Choose Setup / to: Define the location of ports, conductive surfaces, resistive surfaces, and radiation (or open) boundaries. Define sources

More information

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD

IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL (HFSS) SOLUTIONS ADVANCED ELECTROMAGNETIC THEORY SOHAIB SAADAT AFRIDI HAMMAD BUTT ZUNNURAIN AHMAD STUDY OF SCATTERING & RESULTANT RADIATION PATTERN: INFINITE LINE CURRENT SOURCE POSITIONED HORIZONTALLY OVER A PERFECTLY CONDUCTING INFINITE GROUND PLANE IMPLEMENTATION OF ANALYTICAL (MATLAB) AND NUMERICAL

More information

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1

CECOS University Department of Electrical Engineering. Wave Propagation and Antennas LAB # 1 CECOS University Department of Electrical Engineering Wave Propagation and Antennas LAB # 1 Introduction to HFSS 3D Modeling, Properties, Commands & Attributes Lab Instructor: Amjad Iqbal 1. What is HFSS?

More information

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel

An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel An Introduction to the Finite Difference Time Domain (FDTD) Method & EMPIRE XCcel Simulation Model definition for FDTD DUT Port Simulation Box Graded Mesh six Boundary Conditions 1 FDTD Basics: Field components

More information

HFSS PO Hybrid Region

HFSS PO Hybrid Region HFSS PO Hybrid Region Introduction The design of electrically large systems poses many challenges. Electromagnetic simulations can relatively quickly assess options and trade-offs before any physical testing.

More information

Laboratory Assignment: EM Numerical Modeling of a Stripline

Laboratory Assignment: EM Numerical Modeling of a Stripline Laboratory Assignment: EM Numerical Modeling of a Stripline Names: Objective This laboratory experiment provides a hands-on tutorial for drafting up an electromagnetic structure (a stripline transmission

More information

Powerful features (1)

Powerful features (1) HFSS Overview Powerful features (1) Tangential Vector Finite Elements Provides only correct physical solutions with no spurious modes Transfinite Element Method Adaptive Meshing r E = t E γ i i ( x, y,

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

MRI Induced Heating of a Pacemaker. Peter Krenz, Application Engineer

MRI Induced Heating of a Pacemaker. Peter Krenz, Application Engineer MRI Induced Heating of a Pacemaker Peter Krenz, Application Engineer 1 Problem Statement Electric fields generated during MRI exposure are dissipated in tissue of the human body resulting in a temperature

More information

Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide

Contents Contents Creating a Simulation Example: A Dipole Antenna AMDS User s Guide Contents Contents 1 Creating a Simulation 7 Introduction 8 Data Files for Examples 8 Software Organization 9 Constructing the Geometry 10 Creating the Mesh 11 Defining Run Parameters 13 Requesting Results

More information

Module 6 : Wave Guides. Lecture 46 : The Surface Current on the Waveguide Walls. Objectives. In this course you will learn the following

Module 6 : Wave Guides. Lecture 46 : The Surface Current on the Waveguide Walls. Objectives. In this course you will learn the following Objectives In this course you will learn the following Procedure for obtaining current distribution on the waveguide walls. Surface current for mode inside Parallel Plane Waveguide. Surface current on

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets.

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets. POLARIZATION OF LIGHT REFERENCES Halliday, D. and Resnick, A., Physics, 4 th edition, New York: John Wiley & Sons, Inc, 1992, Volume II, Chapter 48-1, 48-2, 48-3. (2weights) (1weight-exercises 1 and 3

More information

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired

Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired Supplementary Figure 1 Optimum transmissive mask design for shaping an incident light to a desired tangential form. (a) The light from the sources and scatterers in the half space (1) passes through the

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI

Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 2: Introduction to the Designer GUI Ansoft Designer Desktop Menu bar Toolbars Schematic

More information

Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions

Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions Designing Horn Antenna utilizing FEM Symmetry Boundary Conditions If a structure has any symmetry (E or M i.e. Electric or Magnetic), the structure s physical size can be reduced symmetric plane boundary

More information

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM 1 SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD- Introduction Medical Implanted Communication Service (MICS) has received a lot of attention recently. The MICS

More information

Workshop 3-1: Coax-Microstrip Transition

Workshop 3-1: Coax-Microstrip Transition Workshop 3-1: Coax-Microstrip Transition 2015.0 Release Introduction to ANSYS HFSS 1 2015 ANSYS, Inc. Example Coax to Microstrip Transition Analysis of a Microstrip Transmission Line with SMA Edge Connector

More information

Agilent Electromagnetic Design System

Agilent Electromagnetic Design System Agilent 85270 Electromagnetic Design System Getting Started Agilent Technologies Notices Agilent Technologies, Inc. 2006 No part of this manual may be reproduced in any form or by any means (including

More information

Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad

Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad Recent Via Modeling Methods for Multi-Vias in a Shared Anti-pad Yao-Jiang Zhang, Jun Fan and James L. Drewniak Electromagnetic Compatibility (EMC) Laboratory, Missouri University of Science &Technology

More information

Reflection, Refraction and Polarization of Light Physics 246

Reflection, Refraction and Polarization of Light Physics 246 Reflection, Refraction and Polarization of Light Physics 46 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

Outline. Darren Wang ADS Momentum P2

Outline. Darren Wang ADS Momentum P2 Outline Momentum Basics: Microstrip Meander Line Momentum RF Mode: RFIC Launch Designing with Momentum: Via Fed Patch Antenna Momentum Techniques: 3dB Splitter Look-alike Momentum Optimization: 3 GHz Band

More information

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014

ECE ILLINOIS. ECE 451: Ansys HFSS Tutorial. Simulate and Analyze an Example of Microstrip Line. Drew Handler, Jerry Yang October 20, 2014 ECE ILLINOIS ECE 451: Ansys HFSS Tutorial Simulate and Analyze an Example of Microstrip Line Drew Handler, Jerry Yang October 20, 2014 Introduction ANSYS HFSS is an industry standard tool for simulating

More information

Workshop 3-1: Antenna Post-Processing

Workshop 3-1: Antenna Post-Processing Workshop 3-1: Antenna Post-Processing 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Example Antenna Post-Processing Analysis of a Dual Polarized Probe Fed Patch Antenna This example is

More information

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc.

HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. HFSS 14 Update for SI and RF Applications Markus Kopp Product Manager, Electronics ANSYS, Inc. 1 ANSYS, Inc. September 21, Advanced Solvers: Finite Arrays with DDM 2 ANSYS, Inc. September 21, Finite Arrays

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

Physics 1502: Lecture 28 Today s Agenda

Physics 1502: Lecture 28 Today s Agenda Physics 1502: Lecture 28 Today s Agenda Announcements: Midterm 2: Monday Nov. 16 Homework 08: due next Friday Optics Waves, Wavefronts, and Rays Reflection Index of Refraction 1 Waves, Wavefronts, and

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Lab 1: Microstrip Line

Lab 1: Microstrip Line Lab 1: Microstrip Line In this lab, you will build a simple microstrip line to quickly familiarize yourself with the EMPro User Interface and how to setup FEM and FDTD simulations. If you are doing only

More information

Simulation Advances. Antenna Applications

Simulation Advances. Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Presented by Martin Vogel, PhD Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition

More information

Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Chapter 33 The Nature and Propagation of Light by C.-R. Hu Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Getting Started with HFSS v9 for Antenna Design October, 2003

Getting Started with HFSS v9 for Antenna Design October, 2003 Getting Started with HFSS v9 for Antenna Design October, 2003 This Getting Started training material is intended for new users of HFSS. The objective is to provide a very thorough introduction to HFSS

More information

PHYS 202 Notes, Week 8

PHYS 202 Notes, Week 8 PHYS 202 Notes, Week 8 Greg Christian March 8 & 10, 2016 Last updated: 03/10/2016 at 12:30:44 This week we learn about electromagnetic waves and optics. Electromagnetic Waves So far, we ve learned about

More information

LAB # 2 3D Modeling, Properties Commands & Attributes

LAB # 2 3D Modeling, Properties Commands & Attributes COMSATS Institute of Information Technology Electrical Engineering Department (Islamabad Campus) LAB # 2 3D Modeling, Properties Commands & Attributes Designed by Syed Muzahir Abbas 1 1. Overview of the

More information

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU

Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU Implementation of the finite-difference method for solving Maxwell`s equations in MATLAB language on a GPU 1 1 Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086 Abstract.

More information

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator

user s guide High Frequency Structure Simulator electronic design automation software High Frequency Structure Simulator High Frequency Structure Simulator 9.0 electronic design automation software user s guide High Frequency Structure Simulator ANSOFT CORPORATION Four Station Square Suite 200 Pittsburgh, PA 15219-1119 The

More information

Mie scattering off plasmonic nanoparticle

Mie scattering off plasmonic nanoparticle Mie scattering off plasmonic nanoparticle Model documentation COMSOL 2009 Version: COMSOL 3.5a1 (build 3.5.0.608) Contents I. Model Overview II. Model Navigator III. Options and settings IV. Geometry modeling

More information

Workshop 5-1: Dynamic Link

Workshop 5-1: Dynamic Link Workshop 5-1: Dynamic Link 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Overview Linear Circuit Overview Dynamic Link Push Excitations Dynamic Link Example: Impedance Matching of Log-Periodic

More information

Chapter 6.0. Chapter 6.0 Eddy Current Examples. 6.1 Asymmetrical Conductor with a Hole. Ansoft Maxwell 3D Field Simulator v11 User s Guide

Chapter 6.0. Chapter 6.0 Eddy Current Examples. 6.1 Asymmetrical Conductor with a Hole. Ansoft Maxwell 3D Field Simulator v11 User s Guide Chapter 6.0 Chapter 6.0 Eddy Current Examples Asymmetrical Conductor with a Hole 6 The Asymmetrical Conductor with a Hole This example is intended to show you how to create and analyze an Asymmetrical

More information

EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY

EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY EXAMINING THE IMPACT OF SPLIT PLANES ON SIGNAL AND POWER INTEGRITY Jason R. Miller, Gustavo J. Blando, Roger Dame, K. Barry A. Williams and Istvan Novak Sun Microsystems, Burlington, MA 1 AGENDA Introduction

More information

Agilent W2100 Antenna Modeling Design System

Agilent W2100 Antenna Modeling Design System Agilent W2100 Antenna Modeling Design System User s Guide Agilent Technologies Notices Agilent Technologies, Inc. 2007 No part of this manual may be reproduced in any form or by any means (including electronic

More information

Package on Board Simulation with 3-D Electromagnetic Simulation

Package on Board Simulation with 3-D Electromagnetic Simulation White Paper Package on Board Simulation with 3-D Electromagnetic Simulation For many years, designers have taken into account the effect of package parasitics in simulation, from using simple first-order

More information

A Level. A Level Physics. WAVES: Wave Properties (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Wave Properties (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics WAVES: Wave Properties (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd

More information

Modeling of Elliptical Air Hole PCF for Lower Dispersion

Modeling of Elliptical Air Hole PCF for Lower Dispersion Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 4 (2013), pp. 439-446 Research India Publications http://www.ripublication.com/aeee.htm Modeling of Elliptical Air Hole

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Geometric Field Tracing through an Off- Axis Parabolic Mirror

Geometric Field Tracing through an Off- Axis Parabolic Mirror UseCase.0077 (1.0) Geometric Field Tracing through an Off- Axis Parabolic Mirror Keywords: focus, geometric field tracing, diffractive field tracing Description This use case explains the usage of the

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

Simulation of Transition Radiation from a flat target using CST particle studio.

Simulation of Transition Radiation from a flat target using CST particle studio. Simulation of Transition Radiation from a flat target using CST particle studio. K. Lekomtsev 1, A. Aryshev 1, P. Karataev 2, M. Shevelev 1, A. Tishchenko 3 and J. Urakawa 1 1. High Energy Accelerator

More information

Analysis of Two-dimensional Scattering by a Periodic Array of Conducting Cylinders Using the Method of Auxiliary Sources

Analysis of Two-dimensional Scattering by a Periodic Array of Conducting Cylinders Using the Method of Auxiliary Sources PIERS ONLINE, VOL. 4, NO. 5, 8 51 Analysis of Two-dimensional Scattering by a Periodic Array of Conducting Cylinders Using the Method of Auxiliary Sources Naamen Hichem and Taoufik Aguili Ecole Nationale

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Compact spectrometer based on a disordered photonic chip Brandon Redding, Seng Fatt Liew, Raktim Sarma, Hui Cao* Department of Applied Physics, Yale University, New Haven, CT

More information

Chapter 4 Determining Cell Size

Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size Chapter 4 Determining Cell Size The third tutorial is designed to give you a demonstration in using the Cell Size Calculator to obtain the optimal cell size for your circuit

More information

Simulation Advances for RF, Microwave and Antenna Applications

Simulation Advances for RF, Microwave and Antenna Applications Simulation Advances for RF, Microwave and Antenna Applications Bill McGinn Application Engineer 1 Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving:

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools

A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools A Proposed Set of Specific Standard EMC Problems To Help Engineers Evaluate EMC Modeling Tools Bruce Archambeault, Ph. D Satish Pratapneni, Ph.D. David C. Wittwer, Ph. D Lauren Zhang, Ph.D. Juan Chen,

More information

Institute of Mechatronics and Information Systems

Institute of Mechatronics and Information Systems EXERCISE 4 Free vibrations of an electrical machine model Target Getting familiar with the fundamental issues of free vibrations analysis of a simplified model of an electrical machine, with the use of

More information

Basic Polarization Techniques and Devices 1998, 2003 Meadowlark Optics, Inc

Basic Polarization Techniques and Devices 1998, 2003 Meadowlark Optics, Inc Basic Polarization Techniques and Devices 1998, 2003 Meadowlark Optics, Inc This application note briefly describes polarized light, retardation and a few of the tools used to manipulate the polarization

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

BioIRC solutions. CFDVasc manual

BioIRC solutions. CFDVasc manual BioIRC solutions CFDVasc manual Main window of application is consisted from two parts: toolbar - which consist set of button for accessing variety of present functionalities image area area in which is

More information

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) 1 PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4) The first three lectures in this unit dealt with what is for called geometric optics. Geometric optics, treats light as a collection of rays that travel in straight

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Polarization of Light

Polarization of Light Purpose: To study the following aspects of polarization: Polarizer-analyzer Rotation of the plane of polarization by a solution Brewster s angle Equipment: Optical bench, component carriers, angular translator

More information

LECTURE 37: Ray model of light and Snell's law

LECTURE 37: Ray model of light and Snell's law Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 37: Ray model of light and Snell's law Understand when the ray model of light is applicable. Be able to apply Snell's Law of Refraction to any system.

More information

Exercise 16: Magnetostatics

Exercise 16: Magnetostatics Exercise 16: Magnetostatics Magnetostatics is part of the huge field of electrodynamics, founding on the well-known Maxwell-equations. Time-dependent terms are completely neglected in the computation of

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Ansoft HFSS Version 7 Training Section 5: Boundary Module

Ansoft HFSS Version 7 Training Section 5: Boundary Module Ansoft HFSS Version 7 Training Section 5: Boundary Module 5-1 General Overview Synopsis Boundary Types, Definitions, and Parameters Source Types, Definitions, and Parameters Interface Layout Assigning

More information

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

The sources must be coherent. This means they emit waves with a constant phase with respect to each other. CH. 24 Wave Optics The sources must be coherent. This means they emit waves with a constant phase with respect to each other. The waves need to have identical wavelengths. Can t be coherent without this.

More information

Solid Conduction Tutorial

Solid Conduction Tutorial SECTION 1 1 SECTION 1 The following is a list of files that will be needed for this tutorial. They can be found in the Solid_Conduction folder. Exhaust-hanger.tdf Exhaust-hanger.ntl 1.0.1 Overview The

More information

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4 UMEÅ UNIVERSITY Department of Physics Claude Dion Olexii Iukhymenko May 15, 2015 Strömningslära Fluid Dynamics (5FY144) Computer laboratories using COMSOL v4.4!! Report requirements Computer labs must

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Aerospace Sheetmetal Design

Aerospace Sheetmetal Design Aerospace Sheetmetal Design Page 1 Overview Conventions What's New? Getting Started Entering the Aerospace SheetMetal Design Workbench Defining the Aerospace SheetMetal Parameters Creating a Web from a

More information

SOURCE-RECEIVER MODEL OF A BUILDING EXCITED BY GROUND BORNE VIBRATION

SOURCE-RECEIVER MODEL OF A BUILDING EXCITED BY GROUND BORNE VIBRATION Full paper for the structured session Railway noise and vibration of the EAA symposium Noise in the built environment SOURCE-RECEIVER MODEL OF A BUILDING EXCITED BY GROUND BORNE VIBRATION M Villot P Ropars

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

CHAPTER 8 FINITE ELEMENT ANALYSIS

CHAPTER 8 FINITE ELEMENT ANALYSIS If you have any questions about this tutorial, feel free to contact Wenjin Tao (w.tao@mst.edu). CHAPTER 8 FINITE ELEMENT ANALYSIS Finite Element Analysis (FEA) is a practical application of the Finite

More information

The Probe Feed Patch Antenna

The Probe Feed Patch Antenna Finite Element Tutorial in Electromagnetics #1 DRAFT Sponsored by NSF Grant #05-559: Finite Element Method Exercises for use in Undergraduate Engineering Programs The Probe Feed Patch Antenna Prepared

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

Create coupled designs between Maxwell and ephysics

Create coupled designs between Maxwell and ephysics Create coupled designs between Maxwell and ephysics Creating datalink coupling with Maxwell is easy. In general this is a two step process when the link involves one Maxwell solver and one ephysics solver.

More information

Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC.

Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC. Dual Polarized Phased Array Antenna Simulation Using Optimized FDTD Method With PBC. Sudantha Perera Advanced Radar Research Center School of Electrical and Computer Engineering The University of Oklahoma,

More information

Fig The light rays that exit the prism enter longitudinally into an astronomical telescope adjusted for infinite distance.

Fig The light rays that exit the prism enter longitudinally into an astronomical telescope adjusted for infinite distance. Romanian Master of Physics 07 Problem I Reflection and refraction of light A. An interesting prism The main section of a glass prism, situated in air n '.00, has the form of a rhomb with. A thin yellow

More information

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 3, 2015 ISSN 1223-7027 NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS Bogdan Stefaniţă CALIN 1, Liliana PREDA 2 We have successfully designed a

More information

Exercise 1: Axle Structural Static Analysis

Exercise 1: Axle Structural Static Analysis Exercise 1: Axle Structural Static Analysis The purpose of this exercise is to cover the basic functionality of the Mechanical Toolbar (MTB) in the context of performing an actual analysis. Details of

More information

Maxwell 2D Student Version. A 2D Electrostatic Problem

Maxwell 2D Student Version. A 2D Electrostatic Problem Maxwell 2D Student Version A 2D Electrostatic Problem November 2002 Notice The information contained in this document is subject to change without notice. Ansoft makes no warranty of any kind with regard

More information

CHAPTER 8 ANALYSIS USING ANSYS MAXWELL SOFTWARE. 8.1 Ansys Maxwell Software

CHAPTER 8 ANALYSIS USING ANSYS MAXWELL SOFTWARE. 8.1 Ansys Maxwell Software CHAPTER 8 8.1 Ansys Maxwell Software ANALYSIS USING ANSYS MAXWELL SOFTWARE The Ansys Maxwell software is widely used in designing and optimizing electrostatic, electromagnetic and eddy current problems.

More information

LAB EXERCISE 3B EM Techniques (Momentum)

LAB EXERCISE 3B EM Techniques (Momentum) ADS 2012 EM Basics (v2 April 2013) LAB EXERCISE 3B EM Techniques (Momentum) Topics: EM options for meshing and the preprocessor, and using EM to simulate an inductor and use the model in schematic. Audience:

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments M. Paszyński 1,3, D. Pardo 1,2, L. Demkowicz 1, C. Torres-Verdin 2 1 Institute for Computational Engineering and Sciences 2

More information

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation

HFSS - Antennas, Arrays and FSS's. David Perry Applications Engineer Ansoft Corporation HFSS - Antennas, Arrays and FSS's David Perry Applications Engineer Ansoft Corporation Synopsis Some Excerpts from What s New Enhancements to HFSS Wave Guide Simulator (WGS) What is it? Why you would use

More information

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012

Electromagnetics. R14 Update. Greg Pitner ANSYS, Inc. February 24, 2012 Electromagnetics R14 Update Greg Pitner 1 HFSS Version 14 2 HFSS Overview Advanced Integrated Solver Technologies Finite Arrays with Domain Decomposition Hybrid solving: FEBI, IE Regions Physical Optics

More information

NUMERICAL MODELING OF DISPERSION PHENOMENA IN THICK PLATE

NUMERICAL MODELING OF DISPERSION PHENOMENA IN THICK PLATE NUMERICAL MODELING OF DISPERSION PHENOMENA IN THICK PLATE Petr Hora, Jiří Michálek Abstract This paper report on a technique for the analysis of propagating multimode signals. The method involves a -D

More information

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee Module-01 Lecture 03 Double Refraction Okay, this is the third lecture of the five lecture series

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME :

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 2 Answer ALL questions in the spaces provided on the

More information

Design of Electromagnetic Test Sites

Design of Electromagnetic Test Sites Sensor and Simulation Notes Note 533 3 August 2008 Design of Electromagnetic Test Sites Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque New Mexico 87131

More information

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3,

Wall thickness= Inlet: Prescribed mass flux. All lengths in meters kg/m, E Pa, 0.3, Problem description Problem 30: Analysis of fluid-structure interaction within a pipe constriction It is desired to analyze the flow and structural response within the following pipe constriction: 1 1

More information