A bit more Deferred - CryEngine 3. Triangle Game Conference 2009 Martin Mittring Lead Graphics Programmer

Size: px
Start display at page:

Download "A bit more Deferred - CryEngine 3. Triangle Game Conference 2009 Martin Mittring Lead Graphics Programmer"

Transcription

1 A bit more Deferred - CryEngine 3 Triangle Game Conference 2009 Martin Mittring Lead Graphics Programmer

2 Crytek Main office: Germany Frankfurt More studios: Kiev, Budapest, Sofia, Nottingham, Seoul English as company language 30+ nationalities CryEngine 1: PC only (Far Cry ) CryEngine 2: PC only (Crysis ) CryEngine 3: PC, XBox360, PS3 (announced GDC09)

3 32/64 Bit, WinXP/Vista, DX9/10, Multi CPU/GPU WYSIWYP ResourceCompiler Source asset -> Platform specific Direct Light: Shadow mapping Indirect Light (AO): SSAO / RAM /... No precomputed lighting Production time saver, Memory, Consistency, Dynamic content Übershaders [Mittring07]

4 Goals after CryEngine 2 PS3 / XBox360 GPU, CPU, memory Improve streaming Improve multithreading Improve lighting More predictable performance Tackle the shader combination issue

5 What is the shader combination issue? Übershader is one shader with many features (e.g lights, light types, CM reflection, fog, detail texture, normalmap, specular texture) Compiling all possible permutations is a memory, production and performance problem Usual solutions: dynamic branching / separating into multiple passes / reducing combinations and accepting less functionality and less performance Asynchronous shader compiling Distributed Job System to compile the shader cache

6 Why Deferred Rendering? Rendering is a multi-dimensional query: View x Geometry x Material x Light Classic Forward Rendering: for each light render geometry from scene query with shader Classic Deferred Rendering: render geometry from scene query outputting GBuffer render each light from scene query and shade with GBuffer => Decouples geometric complexity from lighting and shading => Helps on shader combination issue and predictable performance

7 GBuffer in CryEngine 2 Z Minimal GBuffer (depth) Slower Early Z pass when outputting linear depth Formats: R16 R16G16 R32 Proved to be very useful

8 Deferred in CryEngine 2 Main use: Deferred shadows, Per pixel fog Additionally: Soft Z clipped Particles, Motion Blur, Beach/Ocean, EdgeAA, Sun Rays, SSAO, Fake lights, 2.5D TerrainAO SSAO ShadowMask

9 Deferred Lighting in CryEngine 3 Z (native) Normal Specular Power Passes: 1) Forward GBuffer generation 2) Deferred light accumulation into texture (Phong) 3) Forward shading with light accumulation texture => No deferred shading Deferred Lighting* + Multiple light primitives are possible + even Image Based Lighting (IBL) + easy to extend Compared to Deferred Shading + Less bandwidth and memory problems (10MB EDRAM XBox360) + More flexibility on shading (besides Phong) * [Geldreich09] aka Light Pre-Pass Renderer [Engel08]

10 Options for the light accumulation texture 6 channels: Diffuse and Specular two 7e3 7e3 7e3, A16R16G16B16f or A8R8G8B8* 4 channels: Diffuse and Specular strength a single A16R16G16B16f or A8R8G8B8* (specular approximated by diffuse*strength) * srgb helps to distribute more details in dark areas The following pictures show lighting with two differently coloured lights: 6 channels (correct) 4 channels (fast)

11 Light accumulation texture in IBL The following pictures show lighting with Diffuse and Specular Cubemaps: Diffuse RGB Specular RGB High Quality (left) Diffuse RGB Specular Strength Fast Rendering (right) Difference often neglectable (depends on environment)

12 Storing normals in the GBuffer XYZ world space 8 bit: problematic with extreme reflections/specular 10 bit: good, but what about specular power and PS3 Solving Quantization Artefacts Detail Normalmaps, Noise, Dither XY view space (Z reconstruct) 8/10/16 bit, negate Z bit (perspective and normal mapping) => Problematic [Lee09] [Lob09]

13 Alternative: VS Normal in 2 scalars => Normal to GBufffer: G=normalize(N.xy)*sqrt(N.z* ) GBuffer to Normal: N.z=length2(G.xy)*2-1 N.xy=normalize(G.xy)*sqrt(1-N.z*N.z) + more precision where it matters (bright part) + framebuffer blending friendly + no z reconstruction issues - wasted area - more ALU than WS => still, WS normals are faster

14 Improved SSAO (with normals)

15 Light rasterization in 2D (Rectangle) or 3D (Convex Object) 2D 3D + cheap WS position reconstruction (Interpolator+MAD) + Combining multiple lights - Stencil prepass (if not fullscreen) - Coarse blocks can be rejected based on z min/max + Z buffer + tighter bounding object (less pixels to process) Depth bounds test (only on some HW)

16 Deferred Light Types 1/3: Directional light optional with cloud shadows, multiple shadowmaps Point/Projector lights optional with projector texture Procedural Caustics (before this was multi-pass, one drawcall for each object under water including terrain) Interleaved Shadowmap lookups no extra memory less bandwidth needed no limits on shadow mask channel count

17 Deferred Light Types 2/3: Image Based Lighting (IBL) Light Probes are the high quality solution for distant light Cubemaps allow efficient HDR lighting in real-time Diffuse CM can be computed from specular CM Mip adjusted lookup allows different specular power values Improves shading in ambient lighting condition by adding normal dependent and specular lighting Light Probes can be generated at specified level positions Deferred Lighting allows blending of localized Light Probes Looks even better with SSAO

18 Ambient without SSAO with hemispherical lighting

19 Bright ambient SSAO Black ambient Shadow casting light source SSAO Grey ambient (hemispherical) Shadow casting light source SSAO IBL ambient (Specular and Diffuse) Shadow casting light source SSAO

20 IBL ambient (Specular and Diffuse) SSAO * brightened up for better display

21 Deferred Light Types 3/3: Real-time Dynamic Global Illumination Details will be presented at upcoming Siggraph 2009 by Anton Kaplanyan who developed that at Crytek Implemented and fast on XBox360, PS3 and PC No precomputation Fully dynamic (geometry, materials and lights) Unified for static and dynamic objects

22 Global Illumination off black ambient (to emphasize where GI affects the image) color bleeding bump without light fully dynamic real-time Global Illumination on

23 Global Illumination * brightened up for better display

24 Something missing? Transparency => falling back to well known techniques: Per pixel global fog and fog volumes (deferred) Back to front sorted alpha transparent objects Volume texture clouds, Imposter clouds, Distance clouds Particle systems avoiding per particle sorting Anti-aliasing => Nasty but possible EdgeAA,... we work on it

25 References [Mittring07] Finding Next Gen CryEngine2 Siggraph 2007, Martin Mittring [Engel08] The Light Pre-Pass Renderer ShaderX7, Wolfgang Engel [Lee09a] Prelighting Mark Lee [Lee09b] Pre-lighting in Resistance 2 GDC 2009, Mark Lee [Geldreich09] Deferred Lighting and Shading GDC 2009, Rich Geldreich, Matt Pritchard, John Brooks [Shish05] Deferred Shading in S.T.A.L.K.E.R. GPU Gems 2, Oles Shishkovtsov [Lob09] S.T.A.L.K.E.R : Clear Sky a showcase for Direct3D 10.0/1 GDC 2009, Igor A. Lobanchikov, Holger Gruen [Valient07] Deferred Rendering in Killzone 2 Develop Conference 2007, Michal Valient Slides should be soon at Special thanks to all the passionate people at Crytek

26

27

GUERRILLA DEVELOP CONFERENCE JULY 07 BRIGHTON

GUERRILLA DEVELOP CONFERENCE JULY 07 BRIGHTON Deferred Rendering in Killzone 2 Michal Valient Senior Programmer, Guerrilla Talk Outline Forward & Deferred Rendering Overview G-Buffer Layout Shader Creation Deferred Rendering in Detail Rendering Passes

More information

DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/

DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/ DEFERRED RENDERING STEFAN MÜLLER ARISONA, ETH ZURICH SMA/2013-11-04 DEFERRED RENDERING? CONTENTS 1. The traditional approach: Forward rendering 2. Deferred rendering (DR) overview 3. Example uses of DR:

More information

CS354R: Computer Game Technology

CS354R: Computer Game Technology CS354R: Computer Game Technology Real-Time Global Illumination Fall 2018 Global Illumination Mirror s Edge (2008) 2 What is Global Illumination? Scene recreates feel of physically-based lighting models

More information

Render all data necessary into textures Process textures to calculate final image

Render all data necessary into textures Process textures to calculate final image Screenspace Effects Introduction General idea: Render all data necessary into textures Process textures to calculate final image Achievable Effects: Glow/Bloom Depth of field Distortions High dynamic range

More information

MAXIS-mizing Darkspore*: A Case Study of Graphic Analysis and Optimizations in Maxis Deferred Renderer

MAXIS-mizing Darkspore*: A Case Study of Graphic Analysis and Optimizations in Maxis Deferred Renderer MAXIS-mizing Darkspore*: A Case Study of Graphic Analysis and Optimizations in Maxis Deferred Renderer A New Gaming Experience Made Possible With Processor Graphics Released in early 2011, the 2nd Generation

More information

Enabling immersive gaming experiences Intro to Ray Tracing

Enabling immersive gaming experiences Intro to Ray Tracing Enabling immersive gaming experiences Intro to Ray Tracing Overview What is Ray Tracing? Why Ray Tracing? PowerVR Wizard Architecture Example Content Unity Hybrid Rendering Demonstration 3 What is Ray

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Dominic Filion, Senior Engineer Blizzard Entertainment. Rob McNaughton, Lead Technical Artist Blizzard Entertainment

Dominic Filion, Senior Engineer Blizzard Entertainment. Rob McNaughton, Lead Technical Artist Blizzard Entertainment Dominic Filion, Senior Engineer Blizzard Entertainment Rob McNaughton, Lead Technical Artist Blizzard Entertainment Screen-space techniques Deferred rendering Screen-space ambient occlusion Depth of Field

More information

Deferred Rendering Due: Wednesday November 15 at 10pm

Deferred Rendering Due: Wednesday November 15 at 10pm CMSC 23700 Autumn 2017 Introduction to Computer Graphics Project 4 November 2, 2017 Deferred Rendering Due: Wednesday November 15 at 10pm 1 Summary This assignment uses the same application architecture

More information

Deus Ex is in the Details

Deus Ex is in the Details Deus Ex is in the Details Augmenting the PC graphics of Deus Ex: Human Revolution using DirectX 11 technology Matthijs De Smedt Graphics Programmer, Nixxes Software Overview Introduction DirectX 11 implementation

More information

3D Authoring Tool BS Content Studio supports Deferred Rendering for improved visual quality

3D Authoring Tool BS Content Studio supports Deferred Rendering for improved visual quality 3D Authoring Tool BS Content Studio supports Deferred Rendering for improved visual quality Oliver Neubauer Project Manager 02.07.2013 BS Content Studio BS Content Studio manages hundreds of lights WYSIWYG

More information

CS 498 VR. Lecture 19-4/9/18. go.illinois.edu/vrlect19

CS 498 VR. Lecture 19-4/9/18. go.illinois.edu/vrlect19 CS 498 VR Lecture 19-4/9/18 go.illinois.edu/vrlect19 Review from previous lectures Image-order Rendering and Object-order Rendering Image-order Rendering: - Process: Ray Generation, Ray Intersection, Assign

More information

Advanced Graphics. Global Illumination. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Global Illumination. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Global Illumination 1 Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd What s wrong with raytracing? Soft shadows are expensive Shadows

More information

Screen Space Ambient Occlusion TSBK03: Advanced Game Programming

Screen Space Ambient Occlusion TSBK03: Advanced Game Programming Screen Space Ambient Occlusion TSBK03: Advanced Game Programming August Nam-Ki Ek, Oscar Johnson and Ramin Assadi March 5, 2015 This project report discusses our approach of implementing Screen Space Ambient

More information

Beyond Programmable Shading Course ACM SIGGRAPH 2010 Bending the Graphics Pipeline

Beyond Programmable Shading Course ACM SIGGRAPH 2010 Bending the Graphics Pipeline Beyond Programmable Shading Course ACM SIGGRAPH 2010 Bending the Graphics Pipeline Johan Andersson DICE Overview Give a taste of a few rendering techniques we are using & experimenting with how they interact,

More information

Michal Valient Lead Tech Guerrilla Games

Michal Valient Lead Tech Guerrilla Games Michal Valient Lead Tech Guerrilla Games Intro Guerrilla is based in Amsterdam and we re part of Sony since 2005 We re working on two titles Unannounced new IP Killzone: Shadow Fall The new Killzone is

More information

Advanced Computer Graphics CS 563: Screen Space GI Techniques: Real Time

Advanced Computer Graphics CS 563: Screen Space GI Techniques: Real Time Advanced Computer Graphics CS 563: Screen Space GI Techniques: Real Time William DiSanto Computer Science Dept. Worcester Polytechnic Institute (WPI) Overview Deferred Shading Ambient Occlusion Screen

More information

Lecture 9: Deferred Shading. Visual Computing Systems CMU , Fall 2013

Lecture 9: Deferred Shading. Visual Computing Systems CMU , Fall 2013 Lecture 9: Deferred Shading Visual Computing Systems The course so far The real-time graphics pipeline abstraction Principle graphics abstractions Algorithms and modern high performance implementations

More information

Game Graphics Programmers

Game Graphics Programmers Graphics INTRODUCTION - A Glimpse into what Game Graphics Programmers do - System level view of Graphics Architectures & Pipeline - Intro to Commonly used Rendering Techniques in Games Game Graphics Programmers

More information

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games Bringing AAA graphics to mobile platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Platform team at Epic Games Unreal Engine 15 years in the industry 30 years of programming

More information

AGGREGATE G-BUFFER ANTI-ALIASING

AGGREGATE G-BUFFER ANTI-ALIASING AGGREGATE G-BUFFER ANTI-ALIASING Cyril Crassin 1, Morgan McGuire 1,2, Kayvon Fatahalian 3, Aaron Lefohn 1 1 NVIDIA 2 Williams College 3 Carnegie Mellon University Motivation Pixel The Mummy [ Universal

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows are what we normally see in the real world. If you are near a bare halogen bulb, a stage spotlight, or other

More information

TSBK03 Screen-Space Ambient Occlusion

TSBK03 Screen-Space Ambient Occlusion TSBK03 Screen-Space Ambient Occlusion Joakim Gebart, Jimmy Liikala December 15, 2013 Contents 1 Abstract 1 2 History 2 2.1 Crysis method..................................... 2 3 Chosen method 2 3.1 Algorithm

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

The Vegetation of Horizon Zero Dawn. Gilbert Sanders Principal Artist, Guerrilla Games

The Vegetation of Horizon Zero Dawn. Gilbert Sanders Principal Artist, Guerrilla Games The Vegetation of Horizon Zero Dawn Gilbert Sanders Principal Artist, Guerrilla Games Welcome Topics Simulation Shading Creation Shadow Casting Summary Introduction Our Renderer Artist Node-Based Shader

More information

Computer Graphics. Shadows

Computer Graphics. Shadows Computer Graphics Lecture 10 Shadows Taku Komura Today Shadows Overview Projective shadows Shadow texture Shadow volume Shadow map Soft shadows Why Shadows? Shadows tell us about the relative locations

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Applications of Explicit Early-Z Z Culling. Jason Mitchell ATI Research

Applications of Explicit Early-Z Z Culling. Jason Mitchell ATI Research Applications of Explicit Early-Z Z Culling Jason Mitchell ATI Research Outline Architecture Hardware depth culling Applications Volume Ray Casting Skin Shading Fluid Flow Deferred Shading Early-Z In past

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

PowerVR Hardware. Architecture Overview for Developers

PowerVR Hardware. Architecture Overview for Developers Public Imagination Technologies PowerVR Hardware Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

More information

Direct3D 11 Performance Tips & Tricks

Direct3D 11 Performance Tips & Tricks Direct3D 11 Performance Tips & Tricks Holger Gruen Cem Cebenoyan AMD ISV Relations NVIDIA ISV Relations Agenda Introduction Shader Model 5 Resources and Resource Views Multithreading Miscellaneous Q&A

More information

Evolution of GPUs Chris Seitz

Evolution of GPUs Chris Seitz Evolution of GPUs Chris Seitz Overview Concepts: Real-time rendering Hardware graphics pipeline Evolution of the PC hardware graphics pipeline: 1995-1998: Texture mapping and z-buffer 1998: Multitexturing

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

global light baking software

global light baking software How to create a second level global light baking software Li Wenyao Game engine researcher, Netease Game Outline Development background Baking direct lighting Baking indirect lighting Starting point 1

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

GLSL Applications: 2 of 2

GLSL Applications: 2 of 2 Administrivia GLSL Applications: 2 of 2 Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 2 due today 11:59pm on Blackboard Assignment 3 handed out today Due Wednesday, 02/09 at

More information

The Making of Seemore WebGL. Will Eastcott, CEO, PlayCanvas

The Making of Seemore WebGL. Will Eastcott, CEO, PlayCanvas The Making of Seemore WebGL Will Eastcott, CEO, PlayCanvas 1 What is Seemore WebGL? A mobile-first, physically rendered game environment powered by HTML5 and WebGL 2 PlayCanvas: Powering Seemore WebGL

More information

Render-To-Texture Caching. D. Sim Dietrich Jr.

Render-To-Texture Caching. D. Sim Dietrich Jr. Render-To-Texture Caching D. Sim Dietrich Jr. What is Render-To-Texture Caching? Pixel shaders are becoming more complex and expensive Per-pixel shadows Dynamic Normal Maps Bullet holes Water simulation

More information

SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene.

SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene. SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from

More information

03 RENDERING PART TWO

03 RENDERING PART TWO 03 RENDERING PART TWO WHAT WE HAVE SO FAR: GEOMETRY AFTER TRANSFORMATION AND SOME BASIC CLIPPING / CULLING TEXTURES AND MAPPING MATERIAL VISUALLY DISTINGUISHES 2 OBJECTS WITH IDENTICAL GEOMETRY FOR NOW,

More information

Shadow Techniques. Sim Dietrich NVIDIA Corporation

Shadow Techniques. Sim Dietrich NVIDIA Corporation Shadow Techniques Sim Dietrich NVIDIA Corporation sim.dietrich@nvidia.com Lighting & Shadows The shadowing solution you choose can greatly influence the engine decisions you make This talk will outline

More information

Ambient Occlusion. Ambient Occlusion (AO) "shadowing of ambient light "darkening of the ambient shading contribution

Ambient Occlusion. Ambient Occlusion (AO) shadowing of ambient light darkening of the ambient shading contribution Slides modified from: Patrick Cozzi University of Pennsylvania CIS 565 - Fall 2013 (AO) "shadowing of ambient light "darkening of the ambient shading contribution "the crevices of the model are realistically

More information

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information

PowerVR Series5. Architecture Guide for Developers

PowerVR Series5. Architecture Guide for Developers Public Imagination Technologies PowerVR Series5 Public. This publication contains proprietary information which is subject to change without notice and is supplied 'as is' without warranty of any kind.

More information

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager Optimizing DirectX Graphics Richard Huddy European Developer Relations Manager Some early observations Bear in mind that graphics performance problems are both commoner and rarer than you d think The most

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. March 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. March 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing March 2015 Introductions James Rumble Developer Technology Engineer Ray Tracing Support Justin DeCell Software Design Engineer Ray Tracing

More information

Mali Demos: Behind the Pixels. Stacy Smith

Mali Demos: Behind the Pixels. Stacy Smith Mali Demos: Behind the Pixels Stacy Smith Mali Graphics: Behind the demos Mali Demo Team: Doug Day Stacy Smith (Me) Sylwester Bala Roberto Lopez Mendez PHOTOGRAPH UNAVAILABLE These days I spend more time

More information

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI Tutorial on GPU Programming #2 Joong-Youn Lee Supercomputing Center, KISTI Contents Graphics Pipeline Vertex Programming Fragment Programming Introduction to Cg Language Graphics Pipeline The process to

More information

Game Technology. Lecture Physically Based Rendering. Dipl-Inform. Robert Konrad Polona Caserman, M.Sc.

Game Technology. Lecture Physically Based Rendering. Dipl-Inform. Robert Konrad Polona Caserman, M.Sc. Game Technology Lecture 7 4.12.2017 Physically Based Rendering Dipl-Inform. Robert Konrad Polona Caserman, M.Sc. Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab PPT-for-all v.3.4_office2010

More information

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

COSC 448: REAL-TIME INDIRECT ILLUMINATION

COSC 448: REAL-TIME INDIRECT ILLUMINATION U B C O K A N A G A N Department of Computer Science COSC 448: REAL-TIME INDIRECT ILLUMINATION Written by Stephen Smithbower Supersor: Dr. Ramon Lawrence January 2010 - April 2010 University of British

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Deferred Renderer Proof of Concept Report

Deferred Renderer Proof of Concept Report Deferred Renderer Proof of Concept Report Octavian Mihai Vasilovici 28 March 2013 Bournemouth University 1. Summary This document aims at explaining the methods decide to be used in creating a deferred

More information

Computer Graphics 10 - Shadows

Computer Graphics 10 - Shadows Computer Graphics 10 - Shadows Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Shadows Overview Projective shadows Shadow textures Shadow volume Shadow map Soft

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

lecture 19 Shadows - ray tracing - shadow mapping - ambient occlusion Interreflections

lecture 19 Shadows - ray tracing - shadow mapping - ambient occlusion Interreflections lecture 19 Shadows - ray tracing - shadow mapping - ambient occlusion Interreflections In cinema and photography, shadows are important for setting mood and directing attention. Shadows indicate spatial

More information

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized

Topic 11: Texture Mapping 11/13/2017. Texture sources: Solid textures. Texture sources: Synthesized Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

There are many kinds of surface shaders, from those that affect basic surface color, to ones that apply bitmap textures and displacement.

There are many kinds of surface shaders, from those that affect basic surface color, to ones that apply bitmap textures and displacement. mental ray Overview Mental ray is a powerful renderer which is based on a scene description language. You can use it as a standalone renderer, or even better, integrated with 3D applications. In 3D applications,

More information

GeForce4. John Montrym Henry Moreton

GeForce4. John Montrym Henry Moreton GeForce4 John Montrym Henry Moreton 1 Architectural Drivers Programmability Parallelism Memory bandwidth 2 Recent History: GeForce 1&2 First integrated geometry engine & 4 pixels/clk Fixed-function transform,

More information

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology Graphics Performance Optimisation John Spitzer Director of European Developer Technology Overview Understand the stages of the graphics pipeline Cherchez la bottleneck Once found, either eliminate or balance

More information

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences Hardware Accelerated Volume Visualization Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences A Real-Time VR System Real-Time: 25-30 frames per second 4D visualization: real time input of

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural

Topic 11: Texture Mapping 10/21/2015. Photographs. Solid textures. Procedural Topic 11: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip mapping & env mapping Topic 11: Photographs Texture Mapping Motivation Sources of texture Texture coordinates

More information

Physically Based Shading in Unity. Aras Pranckevičius Rendering Dude

Physically Based Shading in Unity. Aras Pranckevičius Rendering Dude Physically Based Shading in Unity Aras Pranckevičius Rendering Dude Outline New built-in shaders in Unity 5 What, how and why And all related things Shaders in Unity 4.x A lot of good things are available

More information

Interactive Methods in Scientific Visualization

Interactive Methods in Scientific Visualization Interactive Methods in Scientific Visualization GPU Volume Raycasting Christof Rezk-Salama University of Siegen, Germany Volume Rendering in a Nutshell Image Plane Eye Data Set Back-to-front iteration

More information

Optimizing and Profiling Unity Games for Mobile Platforms. Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June

Optimizing and Profiling Unity Games for Mobile Platforms. Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June Optimizing and Profiling Unity Games for Mobile Platforms Angelo Theodorou Senior Software Engineer, MPG Gamelab 2014, 25 th -27 th June 1 Agenda Introduction ARM and the presenter Preliminary knowledge

More information

Wednesday, July 24, 13

Wednesday, July 24, 13 The Chase Pushing the Limits of Modern Mobile GPU Renaldas Zioma, Unity Technologies Ole Ciliox, Unity Technologies The Chase High-End Mobile Demo Built with off-the-shelf Unity 4.2 The Chase Goals Impressive

More information

SHADERX 7 : ADVANCED RENDERING TECHNIQUES

SHADERX 7 : ADVANCED RENDERING TECHNIQUES SHADERX 7 : ADVANCED RENDERING TECHNIQUES WOLFGANG ENGEL Charles River Media Apart of Course Techno(ogy, Cengage Learning ~.. COURSE TECHNOLOGY 1% CENGAGE Learning- Australia, Brazil, Japan, Korea,Mexico,Singapore,

More information

Rendering Structures Analyzing modern rendering on mobile

Rendering Structures Analyzing modern rendering on mobile Rendering Structures Analyzing modern rendering on mobile 2018 Arm Limited Hans-Kristian Arntzen 2018-08-16 SIGGRAPH 2018 Content 1 2 3 4 5 Motivation Scene and lights Rendering structures overview Benchmark

More information

LEVEL 1 ANIMATION ACADEMY2010

LEVEL 1 ANIMATION ACADEMY2010 1 Textures add more realism to an environment and characters. There are many 2D painting programs that can be used to create textures, such as Adobe Photoshop and Corel Painter. Many artists use photographs

More information

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp Next-Generation Graphics on Larrabee Tim Foley Intel Corp Motivation The killer app for GPGPU is graphics We ve seen Abstract models for parallel programming How those models map efficiently to Larrabee

More information

Ultimate Graphics Performance for DirectX 10 Hardware

Ultimate Graphics Performance for DirectX 10 Hardware Ultimate Graphics Performance for DirectX 10 Hardware Nicolas Thibieroz European Developer Relations AMD Graphics Products Group nicolas.thibieroz@amd.com V1.01 Generic API Usage DX10 designed for performance

More information

OpenGl Pipeline. triangles, lines, points, images. Per-vertex ops. Primitive assembly. Texturing. Rasterization. Per-fragment ops.

OpenGl Pipeline. triangles, lines, points, images. Per-vertex ops. Primitive assembly. Texturing. Rasterization. Per-fragment ops. OpenGl Pipeline Individual Vertices Transformed Vertices Commands Processor Per-vertex ops Primitive assembly triangles, lines, points, images Primitives Fragments Rasterization Texturing Per-fragment

More information

rendering rasterization based rendering pipelined architecture, parallel mostly triangles (lines and points possible too)

rendering rasterization based rendering pipelined architecture, parallel mostly triangles (lines and points possible too) Rendering Scena 3D rendering Immagine screen buffer ( array 2D di pixel ) Rendering in games Real-time (20 or) 30 or 60 FPS Algorithm: rasterization based rendering Hardware based pipelined architecture,

More information

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers

Order Independent Transparency with Dual Depth Peeling. Louis Bavoil, Kevin Myers Order Independent Transparency with Dual Depth Peeling Louis Bavoil, Kevin Myers Document Change History Version Date Responsible Reason for Change 1.0 February 9 2008 Louis Bavoil Initial release Abstract

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 11 The Graphics Processing Unit Mattan Erez The University of Texas at Austin Outline What is a GPU? Why should

More information

Game Graphics Programmers

Game Graphics Programmers Graphics 1 Introduction A Glimpse into what Game Graphics Programmers do System level view of Graphics Architectures & Pipeline Intro to Commonly used Rendering Techniques in Games 2 Game Graphics Programmers

More information

Basic GPU techniques Josef Pelikán CGG MFF UK Praha.

Basic GPU techniques Josef Pelikán CGG MFF UK Praha. Basic GPU techniques 2005-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Basic GPU 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Content visibility

More information

CS 464 Review. Review of Computer Graphics for Final Exam

CS 464 Review. Review of Computer Graphics for Final Exam CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then

More information

Canonical Shaders for Optimal Performance. Sébastien Dominé Manager of Developer Technology Tools

Canonical Shaders for Optimal Performance. Sébastien Dominé Manager of Developer Technology Tools Canonical Shaders for Optimal Performance Sébastien Dominé Manager of Developer Technology Tools Agenda Introduction FX Composer 1.0 High Performance Shaders Basics Vertex versus Pixel Talk to your compiler

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

Advanced Deferred Rendering Techniques. NCCA, Thesis Portfolio Peter Smith

Advanced Deferred Rendering Techniques. NCCA, Thesis Portfolio Peter Smith Advanced Deferred Rendering Techniques NCCA, Thesis Portfolio Peter Smith August 2011 Abstract The following paper catalogues the improvements made to a Deferred Renderer created for an earlier NCCA project.

More information

Fog and Cloud Effects. Karl Smeltzer Alice Cao John Comstock

Fog and Cloud Effects. Karl Smeltzer Alice Cao John Comstock Fog and Cloud Effects Karl Smeltzer Alice Cao John Comstock Goal Explore methods of rendering scenes containing fog or cloud-like effects through a variety of different techniques Atmospheric effects make

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V: Principles in Computer Architecture Parallelism and Locality Fall 2008 Lecture 10 The Graphics Processing Unit Mattan Erez The University of Texas at Austin Outline What is a GPU? Why should we

More information

Working with Metal Overview

Working with Metal Overview Graphics and Games #WWDC14 Working with Metal Overview Session 603 Jeremy Sandmel GPU Software 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission

More information

Programming Graphics Hardware

Programming Graphics Hardware Tutorial 5 Programming Graphics Hardware Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller Overview of the Tutorial: Morning 8:30 9:30 10:15 10:45 Introduction to the Hardware Graphics Pipeline

More information

3D Rasterization II COS 426

3D Rasterization II COS 426 3D Rasterization II COS 426 3D Rendering Pipeline (for direct illumination) 3D Primitives Modeling Transformation Lighting Viewing Transformation Projection Transformation Clipping Viewport Transformation

More information

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015

Enhancing Traditional Rasterization Graphics with Ray Tracing. October 2015 Enhancing Traditional Rasterization Graphics with Ray Tracing October 2015 James Rumble Developer Technology Engineer, PowerVR Graphics Overview Ray Tracing Fundamentals PowerVR Ray Tracing Pipeline Using

More information

Com S 336 Final Project Ideas

Com S 336 Final Project Ideas Com S 336 Final Project Ideas Deadlines These projects are to be done in groups of two. I strongly encourage everyone to start as soon as possible. Presentations begin four weeks from now (Tuesday, December

More information

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University Global Illumination CS334 Daniel G. Aliaga Department of Computer Science Purdue University Recall: Lighting and Shading Light sources Point light Models an omnidirectional light source (e.g., a bulb)

More information

A Trip Down The (2011) Rasterization Pipeline

A Trip Down The (2011) Rasterization Pipeline A Trip Down The (2011) Rasterization Pipeline Aaron Lefohn - Intel / University of Washington Mike Houston AMD / Stanford 1 This talk Overview of the real-time rendering pipeline available in ~2011 corresponding

More information

Radeon ProRender and Radeon Rays in a Gaming Rendering Workflow. Takahiro Harada, AMD 2017/3

Radeon ProRender and Radeon Rays in a Gaming Rendering Workflow. Takahiro Harada, AMD 2017/3 Radeon ProRender and Radeon Rays in a Gaming Rendering Workflow Takahiro Harada, AMD 2017/3 Agenda Introduction Radeon ProRender & Radeon Rays Radeon Rays Unity + Radeon Rays Integration to real time applications

More information

POWERVR MBX. Technology Overview

POWERVR MBX. Technology Overview POWERVR MBX Technology Overview Copyright 2009, Imagination Technologies Ltd. All Rights Reserved. This publication contains proprietary information which is subject to change without notice and is supplied

More information

Game Graphics Programmers

Game Graphics Programmers Graphics 1 Introduction A Glimpse into what Game Graphics Programmers do System level view of Graphics Architectures & Pipeline Intro to Commonly used Rendering Techniques in Games 2 Game Graphics Programmers

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information