VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

Size: px
Start display at page:

Download "VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology"

Transcription

1 VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

2 Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to use? Validation in uniform low contrast anatomy Commissioning Take Home Messages Conclusion

3 Registration Rigid registration Affine Registration Deformable Registration

4 Registration

5

6

7

8

9

10 DIR

11

12 Deformable Transformation y y Transform Fixed Image x Moving Image x

13 Deformable Transformation y y Transform Fixed Image x Moving Image x

14 DIR Every DIR-Deformation Model, Similarity measure and Optimization method Parameter or model based (TPS, Bspline etc..) Non parametetric method ( Physical properties) e.g. Demons Optical Flow Equation ( Thirions) Image Matching evaluated with a metric MI, SSD, CC etc..for intensity based algorithms Contour based measures for model based

15 Example:Similarity Metric-SSD

16 Example:Deformation Models- B-Splines

17 BSplines Order Three Y = ( - 3X 3-6X )/6 Piece-Wise Y = ( 3X 3-6X )/6 Y = (2+X) 3 / 6 Y = (2-X) 3 /

18 Deformable Transformation y x

19 BSplines Grid & Image Grid Calculation are made in an Element by Element basis

20 BSplines Grid & Image Grid Elements are connected at Nodes at which the displacement is solved

21 BSplines Grid & Image Grid Efficiency is gained by elemental computation

22 BSplines Grid & Image Grid Domain subdivision (Mesh) can be tailored to the underlying geometry of the image.

23 DIR Validation: Purpose of this study is to describe a framework to test the. accuracy of DIR based on computational modeling and evaluating using inverse consistency and other methods

24 Platform built Two ITK algorithms B-Splines &Diffeomorphic Demons implemented 3D-Slicer was used as visualization platform DIR analysis tools integrated with 3D-Slicer. Anatomical Correspondence, Physical characteristics of DVF and Image characteristics investigated to validate DIR

25 Methods & Materials ImSimQA software was used to generate a clinically relevant organ deformation in prostate, head & neck and lung cases. DIR was performed using B-Splines and Diffeomorphic Demons algorithms in both forward and inverse directions where the roles of source and target images were switched. DIR analysis was done based on Inverse consistency error, anatomical correspondence and image characteristics using custom built modules on 3D Slicer.

26 Methods-Flow chart for evaluation of DIR

27 Prostate: Applied Deformation

28 Head & Neck: Applied deformation

29 Lung: Applied Deformation

30 What Metrics to use? Should we look at the Deformation Vector Field? (DVF) Inverse Consistency? RT structure comparison? Image Characteristics?

31 Prostate Example: Forward DVF, Inverse DVF & Inverse Consistency Error for Demons

32 Results: Inverse Consistency Error 20 Inverse Consistency Error (ICE) comparison ICE (mm) 10 8 PROSTATE HEAD & NECK LUNG Diffeomorphic Demons B Splines ImSimQA forward DVF & forward diffeomorphic demons ImSimQA forward DVF & forward B Splines ImSimQA Inverse DVF & inverse Diffeomorphic Demons ImSimQA Inverse DVF & Inverse B Splines

33 Results: MSE, Jacobian & Harmonic Energy of DVF

34 Results: Prostate Anatomical Correspondence

35 Results: Head & Neck

36 Results: Lung

37 Results: Prostate: Our results on prostate case indicate that the ICE was comparable to both algorithms. Also, the MSE values were very similar for both methods. However the B-Splines algorithm had significantly better anatomical correspondence for rectum and prostate than diffeomorphic demons algorithm. So considering the anatomical correspondence of the RT structures one can conclude that the B-Splines algorithm performed better. In this example the MSE and ICE evaluation parameters provide no criteria to determine which method performs better. Head and Neck: For the head and neck case, the ICE was much larger for the demons algorithm (6.5 mm) as compared to B-Splines (0.7 mm). The MSE was comparable for both algorithms. However, since the induced neck flexion was large, neither algorithm had a desired anatomical correspondence for PTV and organs at risk that could make the result clinically acceptable. Similar to the prostate case, this example also indicates that considering only the ICE and MSE methods could lead to false positive conclusions. Lung: In the lung case B-Splines algorithm accurately estimated the deformations between images with variable contrast and was clearly superior in all the metrics that were evaluated. The demons algorithm had gross errors in areas of contrast differences between images. This was the only example where all metrics used for the DIR evaluation were in full agreement on the decision making of the DIR algorithm performance.

38 Conclusion: We conclude that the proposed framework offers the application of known deformations on any patient or phantom image sets, that provide clinical medical physicist tools to test, understand and quantify limitations of each algorithm before implementing deformable image registration in the clinic. The evaluation based on anatomical correspondence, physical characteristics of deformation field and image characteristics can facilitate DIR verification with the ultimate goal of implementing adaptive radiotherapy. The suitability of application of a particular evaluation method is strongly dependent on the clinical deformation observed.

39 How does DIR perform in uniform low contrast anatomy? Liver Pancreas Stomach Bladder Kidney Prostate Diaphragm Small Bowel

40 How to evaluate DIR in Low Contrast Anatomy? Accepted for Publication in Medical Physics

41 Force vs Def Deformation States

42 Implanted Markers

43 DIR Validation

44 Force vs Deformation

45 Results

46 Markers Introduced

47 Results

48 Conclusion in low contrast anatomy DIR performance very poor. There is a threshold limit of only ~ 5mm for commercial DIR algorithms The sensitivity of the DIR performance to the number of fiducial markers present indicates that if the DIR performance is solely assessed with the various contrast rich features present in clinical anatomy, the results may not be reflective of the true DIR performance in uniform low contrast anatomy.

49 Commissioning Visual verification NOT enough for initial commissioning. Quantify based on landmarks, Contours (DSC) or digital phantom data In clinical image, verify if the landmarks from image X map to the correct position in image Y TRE- Manual Technique, can identify gross errors Average residual error between the identified points on Study B and the points identified on Study A, mapped onto Study A through DIR

50 Commissioning Use the DIR QA if vendor provides it. Visualize the DVF in terms of vector maps if vendor provides that. For contour based comparison, calculate DSC of deformed RT contours by using Ground Truth RT structure on moving image If using digital phantom, compare known applied deformation with registration results Establish some patient specific QA policy prior to DIR put into clinical practice

51 Virtual Phantoms: Use Virtual phantom for validation prior to Clinical use.

52 Take Home Messages Use Virtual phantom for validation prior to clinical use.

53 Take Home Messages: 1) Understand the basics of image registration techniques 2) Understand the nuts and bolts of your commercial DIR algorithm to ensure appropriate clinical use 3) Perform some validation to verify the basic components of the DIR algorithm and what the potential limitations may be. ( Use digital phantom data or multiple kvct scans of the same patient)

54 Take Home Messages 4) Establish a protocol to ensure CMDs are using registration appropriately. Do NOT blindly use the workflows set up by the vendor 5) Have a consistent validation practice of the DIR or fusion in general preferably with the RO 6) Be VERY cautious of using DIR in uniform low contrast anatomy and especially for dose warping purposes 7. Communicate the accuracy of DIR to RO with respect alignment uncertainty

55 Vendors Should provide more details of regularization and algorithm. Provide DVF export capability. Provide ability to calculate TRE after DIR after identifying landmarks on 2 images. Ability to easily calculate DSC, Hausdorff distance etc.. More transparency!

56 Conclusion DIR is here to stay. Can be a great clinical tool if used appropriately-understand motion, integrate multimodality images, estimate actual dose delivered over the course of RT etc.. ART is promising especially for hypo fractionation schemes with the use of DIR What is lacking is QA Physicists must adopt and implement QA Deformable dose verification is challenging Thanks!

57 Dose Accumulation for Adaptive Therapy using Deformable Registration Deformable dose accumulation for adaptive therapy assumes that the dose during the previous part of the therapy was delivered as planned to the structure of interest and that the volume changed at the time of the new plan. The previously delivered dose is deformed to the new structure volume based on deformation of the old CT to the new CT. Assume the organ of interest has lost half its volume since the original planning CT, that the deformation is such that half of every original voxel is deformed to a voxel in the new volume and that the dose voxels are equal in size to the CT voxels.

58 Dose Accumulation for Tumor Recurrence using Deformable Registration

59 Deformation from Tumor Response

60 Deformation from Tumor Response

61 Deformation from Tumor Response

62 Deformation from Tumor Response

63 Deformation from Tumor Response

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Use of Deformable Image Registration in Radiation Therapy. Colin Sims, M.Sc. Accuray Incorporated 1

Use of Deformable Image Registration in Radiation Therapy. Colin Sims, M.Sc. Accuray Incorporated 1 Use of Deformable Image Registration in Radiation Therapy Colin Sims, M.Sc. Accuray Incorporated 1 Overview of Deformable Image Registration (DIR) Algorithms that can deform one dataset to another have

More information

A framework for deformable image registration validation in radiotherapy clinical applications

A framework for deformable image registration validation in radiotherapy clinical applications JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 1, 2013 A framework for deformable image registration validation in radiotherapy clinical applications Raj Varadhan, 1,4a Grigorios Karangelis,

More information

Overview of Proposed TG-132 Recommendations

Overview of Proposed TG-132 Recommendations Overview of Proposed TG-132 Recommendations Kristy K Brock, Ph.D., DABR Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and Fusion Conflict

More information

Virtual Phantoms for IGRT QA

Virtual Phantoms for IGRT QA TM Virtual Phantoms for IGRT QA Why ImSimQA? ImSimQA was developed to overcome the limitations of physical phantoms for testing modern medical imaging and radiation therapy software systems, when there

More information

Image Co-Registration II: TG132 Quality Assurance for Image Registration. Image Co-Registration II: TG132 Quality Assurance for Image Registration

Image Co-Registration II: TG132 Quality Assurance for Image Registration. Image Co-Registration II: TG132 Quality Assurance for Image Registration Image Co-Registration II: TG132 Quality Assurance for Image Registration Preliminary Recommendations from TG 132* Kristy Brock, Sasa Mutic, Todd McNutt, Hua Li, and Marc Kessler *Recommendations are NOT

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Using Pinnacle 16 Deformable Image registration in a re-treat scenario Introduction Using Pinnacle 16 Deformable Image registration in a re-treat scenario This short Hands On exercise will introduce how the Deformable Image Registration (DIR) tools in Pinnacle can be used

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT 3 ADVANCING CANCER TREATMENT SUPPORTING CLINICS WORLDWIDE RaySearch is advancing cancer treatment through pioneering software. We believe software has un limited potential, and that it is now the driving

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC GPU applications in Cancer Radiation Therapy at UCSD Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC Conventional Radiotherapy SIMULATION: Construciton, Dij Days PLANNING:

More information

Advanced Targeting Using Image Deformation. Justin Keister, MS DABR Aurora Health Care Kenosha, WI

Advanced Targeting Using Image Deformation. Justin Keister, MS DABR Aurora Health Care Kenosha, WI Advanced Targeting Using Image Deformation Justin Keister, MS DABR Aurora Health Care Kenosha, WI History of Targeting The advance of IMRT and CT simulation has changed how targets are identified in radiation

More information

Accounting for Large Geometric Changes During Radiotherapy. Disclosures. Current Generation DIR in RT 8/3/2016

Accounting for Large Geometric Changes During Radiotherapy. Disclosures. Current Generation DIR in RT 8/3/2016 Accounting for Large Geometric Changes During Radiotherapy Geoff Hugo, Ph.D. Department of Radiation Oncology Virginia Commonwealth University, Richmond, Virginia, USA Disclosures Research support: Philips

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT The RayPlan treatment planning system makes proven, innovative RayStation technology accessible to clinics that need a cost-effective and streamlined solution. Fast, efficient and straightforward to use,

More information

Initial Clinical Experience with 3D Surface Image Guidance

Initial Clinical Experience with 3D Surface Image Guidance Initial Clinical Experience with 3D Surface Image Guidance Amanda Havnen-Smith, Ph.D. Minneapolis Radiation Oncology Ridges Radiation Therapy Center Burnsville, MN April 20 th, 2012 Non-funded research

More information

Technical aspects of SPECT and SPECT-CT. John Buscombe

Technical aspects of SPECT and SPECT-CT. John Buscombe Technical aspects of SPECT and SPECT-CT John Buscombe What does the clinician need to know? For SPECT What factors affect SPECT How those factors should be sought Looking for artefacts For SPECT-CT Issues

More information

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D.

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D. Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment Huijun Xu, Ph.D. Acknowledgement and Disclosure Dr. Jeffrey Siebers Dr. DJ

More information

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI GPU-Accelerated autosegmentation for adaptive radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li agodley@mcw.edu NCAAPM Spring Meeting 2010 Madison, WI Overview Motivation Adaptive

More information

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201. Please do not (re)redistribute

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201. Please do not (re)redistribute Deformable Registration, Contour Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD The University of Michigan Jean Pouliot, PhD University of California Learning

More information

Dosimetric Analysis Report

Dosimetric Analysis Report RT-safe 48, Artotinis str 116 33, Athens Greece +30 2107563691 info@rt-safe.com Dosimetric Analysis Report SAMPLE, for demonstration purposes only Date of report: ----------- Date of irradiation: -----------

More information

Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No.

Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132 Kristy K. Brock a) Department of Imaging Physics, The University

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines

Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines Martha M. Coselmon, a) James M. Balter, Daniel L. McShan, and Marc L. Kessler Department

More information

Medicale Image Analysis

Medicale Image Analysis Medicale Image Analysis Registration Validation Prof. Dr. Philippe Cattin MIAC, University of Basel Prof. Dr. Philippe Cattin: Registration Validation Contents 1 Validation 1.1 Validation of Registration

More information

IMRT site-specific procedure: Prostate (CHHiP)

IMRT site-specific procedure: Prostate (CHHiP) IMRT site-specific procedure: Prostate (CHHiP) Scope: To provide site specific instructions for the planning of CHHIP IMRT patients Responsibilities: Radiotherapy Physicists, HPC Registered Therapy Radiographers

More information

8/3/2016. Image Guidance Technologies. Introduction. Outline

8/3/2016. Image Guidance Technologies. Introduction. Outline 8/3/26 Session: Image Guidance Technologies and Management Strategies Image Guidance Technologies Jenghwa Chang, Ph.D.,2 Department of Radiation Medicine, Northwell Health 2 Hofstra Northwell School of

More information

On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 On the dosimetric effect and reduction of

More information

Fast Elastic Registration for Adaptive Radiotherapy

Fast Elastic Registration for Adaptive Radiotherapy Fast Elastic Registration for Adaptive Radiotherapy Urban Malsch 1, Christian Thieke 2,3, and Rolf Bendl 1 1 Department of Medical Physics u.malsch@dkfz.de 2 Clinical Cooperation Unit Radiooncology, DKFZ

More information

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011 Auto-Segmentation Using Deformable Image Registration Lei Dong, Ph.D. Dept. of Radiation Physics University of Texas MD Anderson Cancer Center, Houston, Texas AAPM Therapy Educational Course Aug. 4th 2011

More information

The Insight Toolkit. Image Registration Algorithms & Frameworks

The Insight Toolkit. Image Registration Algorithms & Frameworks The Insight Toolkit Image Registration Algorithms & Frameworks Registration in ITK Image Registration Framework Multi Resolution Registration Framework Components PDE Based Registration FEM Based Registration

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience DVH Estimates Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience Karen Chin Snyder, MS, DABR AAMD Region V Meeting October 4, 2014 Disclosures The Department of Radiation Oncology

More information

Additional file 1: Online Supplementary Material 1

Additional file 1: Online Supplementary Material 1 Additional file 1: Online Supplementary Material 1 Calyn R Moulton and Michael J House School of Physics, University of Western Australia, Crawley, Western Australia. Victoria Lye, Colin I Tang, Michele

More information

Using Probability Maps for Multi organ Automatic Segmentation

Using Probability Maps for Multi organ Automatic Segmentation Using Probability Maps for Multi organ Automatic Segmentation Ranveer Joyseeree 1,2, Óscar Jiménez del Toro1, and Henning Müller 1,3 1 University of Applied Sciences Western Switzerland (HES SO), Sierre,

More information

ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS

ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS By Ryan Datteri Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

SlicerRT Image-guided radiation therapy research toolkit for 3D Slicer

SlicerRT Image-guided radiation therapy research toolkit for 3D Slicer SlicerRT Image-guided radiation therapy research toolkit for 3D Slicer Csaba Pinter 1, Andras Lasso 1, An Wang 2, David Jaffray 2, and Gabor Fichtinger 1 1Laboratory for Percutaneous Surgery, Queen s University,

More information

Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 6, 2013 Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy Nick Stanley,

More information

Image Guidance and Beam Level Imaging in Digital Linacs

Image Guidance and Beam Level Imaging in Digital Linacs Image Guidance and Beam Level Imaging in Digital Linacs Ruijiang Li, Ph.D. Department of Radiation Oncology Stanford University School of Medicine 2014 AAPM Therapy Educational Course Disclosure Research

More information

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Chia-Chi Teng Department of Electrical Engineering University of Washington 1 Outline Introduction Related Work

More information

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang

Deformable Segmentation using Sparse Shape Representation. Shaoting Zhang Deformable Segmentation using Sparse Shape Representation Shaoting Zhang Introduction Outline Our methods Segmentation framework Sparse shape representation Applications 2D lung localization in X-ray 3D

More information

3DVH : SUN NUCLEAR On The Accuracy Of The corporation Planned Dose Perturbation Algorithm Your Most Valuable QA and Dosimetry Tools *Patent Pending

3DVH : SUN NUCLEAR On The Accuracy Of The corporation Planned Dose Perturbation Algorithm Your Most Valuable QA and Dosimetry Tools *Patent Pending 3DVH : On The Accuracy Of The Planned Dose Perturbation Algorithm SUN NUCLEAR corporation Your Most Valuable QA and Dosimetry Tools *Patent Pending introduction State-of-the-art IMRT QA of static gantry

More information

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays Sotiri Stathakis Outline Why IMRT/VMAT QA AAPM TG218 UPDATE Tolerance Limits and Methodologies for IMRT Verification QA Common sources

More information

CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy

CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy Fourth International Workshop on Pulmonary Image Analysis -113- CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy Chen-Rui Chou 1, Brandon Frederick 2, Xiaoxiao Liu 4, Gig

More information

Non-rigid Registration of Preprocedural MRI and Intra-procedural CT for CT-guided Cryoablation Therapy of Liver Cancer

Non-rigid Registration of Preprocedural MRI and Intra-procedural CT for CT-guided Cryoablation Therapy of Liver Cancer NA-MIC Non-rigid Registration of Preprocedural MRI and Intra-procedural CT for CT-guided Cryoablation Therapy of Liver Cancer Atsushi Yamada, Dominik S. Meier and Nobuhiko Hata Brigham and Women s Hospital

More information

Secondary 3D Dose QA Fully Automated using MOSAIQ's IQ Engine. MOSAIQ User Meeting May Antwerp

Secondary 3D Dose QA Fully Automated using MOSAIQ's IQ Engine. MOSAIQ User Meeting May Antwerp Secondary 3D Dose QA Fully Automated using MOSAIQ's IQ Engine MOSAIQ User Meeting May 31 2013 - Antwerp Contents Project goal and collaboration Secondary 3D Dose QA project justification Secondary 3D Dose

More information

Evaluation of 3D Gamma index calculation implemented in two commercial dosimetry systems

Evaluation of 3D Gamma index calculation implemented in two commercial dosimetry systems University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Evaluation of 3D Gamma index calculation implemented

More information

Implementation of Advanced Image Guided Radiation Therapy

Implementation of Advanced Image Guided Radiation Therapy Image Acquisition Course Outline Principles, characteristics& applications of the available modalities Image Processing in the T x room Image guided treatment delivery What can / can t we do in the room

More information

Auto-contouring the Prostate for Online Adaptive Radiotherapy

Auto-contouring the Prostate for Online Adaptive Radiotherapy Auto-contouring the Prostate for Online Adaptive Radiotherapy Yan Zhou 1 and Xiao Han 1 Elekta Inc., Maryland Heights, MO, USA yan.zhou@elekta.com, xiao.han@elekta.com, Abstract. Among all the organs under

More information

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017 ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD Moe Siddiqui, April 08, 2017 Agenda Background IRCU 50 - Disclaimer - Uncertainties Robust optimization Use Cases Lung Robust 4D

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

iplan RT Image Advanced Contouring Workstation - Driving Physician Collaboration

iplan RT Image Advanced Contouring Workstation - Driving Physician Collaboration iplan RT Image Advanced Contouring Workstation - Driving Physician Collaboration The iplan Contouring Workstation offers unique and innovative capabilities for faster contouring and consistent segmentation

More information

Robust Lung Ventilation Assessment

Robust Lung Ventilation Assessment Fifth International Workshop on Pulmonary Image Analysis -75- Robust Lung Ventilation Assessment Sven Kabus 1, Tobias Klinder 1, Tokihiro Yamamoto 2, Paul J. Keall 3, Billy W. Loo, Jr. 4, and Cristian

More information

Modeling and preoperative planning for kidney surgery

Modeling and preoperative planning for kidney surgery Modeling and preoperative planning for kidney surgery Refael Vivanti Computer Aided Surgery and Medical Image Processing Lab Hebrew University of Jerusalem, Israel Advisor: Prof. Leo Joskowicz Clinical

More information

Automated segmentation methods for liver analysis in oncology applications

Automated segmentation methods for liver analysis in oncology applications University of Szeged Department of Image Processing and Computer Graphics Automated segmentation methods for liver analysis in oncology applications Ph. D. Thesis László Ruskó Thesis Advisor Dr. Antal

More information

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD 1 Outline q Introduction q Imaging performances in 4D-CBCT Image

More information

Chapter 9 Field Shaping: Scanning Beam

Chapter 9 Field Shaping: Scanning Beam Chapter 9 Field Shaping: Scanning Beam X. Ronald Zhu, Ph.D. Department of Radiation Physics M. D. Anderson Cancer Center Houston, TX June 14-18, 2015 AAPM - Summer School 2015, Colorado Spring Acknowledgement

More information

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram TomoTherapy Related Projects An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram Development of A Novel Image Guidance Alternative for Patient Localization

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Matching 3D Lung Surfaces with the Shape Context Approach. 1)

Matching 3D Lung Surfaces with the Shape Context Approach. 1) Matching 3D Lung Surfaces with the Shape Context Approach. 1) Martin Urschler, Horst Bischof Institute for Computer Graphics and Vision, TU Graz Inffeldgasse 16, A-8010 Graz E-Mail: {urschler, bischof}@icg.tu-graz.ac.at

More information

7/31/2011. Learning Objective. Video Positioning. 3D Surface Imaging by VisionRT

7/31/2011. Learning Objective. Video Positioning. 3D Surface Imaging by VisionRT CLINICAL COMMISSIONING AND ACCEPTANCE TESTING OF A 3D SURFACE MATCHING SYSTEM Hania Al-Hallaq, Ph.D. Assistant Professor Radiation Oncology The University of Chicago Learning Objective Describe acceptance

More information

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties Steven Dolly 1, Eric Ehler 1, Yang Lou 2, Mark Anastasio 2, Hua Li 2 (1) University

More information

ICARO Vienna April Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588

ICARO Vienna April Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588 ICARO Vienna April 27-29 2009 Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588 M. Saiful Huq, Ph.D., Professor and Director, Dept. of Radiation

More information

USER MANUAL VP PLANNING

USER MANUAL VP PLANNING USER MANUAL VP PLANNING 1.0 Mobile application Android Visible Patient SAS RCS Strasbourg TI 794 458 125 1 place de l'ho pital 67000 Strasbourg, FRANCE Share capital: 58330 Tel.: 33 (0)3 88 11 90 00 Fax:

More information

Tomotherapy archive structure and new software tool for loading and advanced analysis of data contained in it

Tomotherapy archive structure and new software tool for loading and advanced analysis of data contained in it reports of practical oncology and radiotherapy 1 6 (2 0 1 1) 58 64 available at www.sciencedirect.com journal homepage: http://www.rpor.eu/ Original article Tomotherapy archive structure and new software

More information

Prototype of Silver Corpus Merging Framework

Prototype of Silver Corpus Merging Framework www.visceral.eu Prototype of Silver Corpus Merging Framework Deliverable number D3.3 Dissemination level Public Delivery data 30.4.2014 Status Authors Final Markus Krenn, Allan Hanbury, Georg Langs This

More information

Quantitative imaging for clinical dosimetry

Quantitative imaging for clinical dosimetry Quantitative imaging for clinical dosimetry Irène Buvat Laboratoire d Imagerie Fonctionnelle U678 INSERM - UPMC CHU Pitié-Salpêtrière, Paris buvat@imed.jussieu.fr http://www.guillemet.org/irene Methodology

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 2, 2016

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 2, 2016 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 2, 2016 Performance variations among clinically available deformable image registration tools in adaptive radiotherapy how should we evaluate

More information

Help Guide. mm Copyright Mirada Medical Ltd, Mirada Medical RTx 1

Help Guide. mm Copyright Mirada Medical Ltd, Mirada Medical RTx 1 Help Guide mm3237-1.6-1 Copyright Mirada Medical Ltd, 2000-2014. Mirada Medical RTx 1 Contents Help Guide... 1 Contents... 2 Introduction to RTx... 4 Regulatory Statement... 6 Notes... 15 Data Supported...

More information

Development of a deformable lung phantom for the evaluation of deformable registration

Development of a deformable lung phantom for the evaluation of deformable registration JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 1, WINTER 2010 Development of a deformable lung phantom for the evaluation of deformable registration Jina Chang, 1 Tae-Suk Suh, 1a Dong-Soo

More information

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT Volumetric Modulated Arc Therapy - Clinical Implementation Daliang Cao, PhD, DABR Swedish Cancer Institute, Seattle, WA Acknowledgement David M. Shepard, Ph.D. Muhammad K. N. Afghan, Ph.D. Fan Chen, Ph.D.

More information

Evaluation of the tool Reg Refine for user-guided deformable image registration

Evaluation of the tool Reg Refine for user-guided deformable image registration JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 3, 2016 Evaluation of the tool Reg Refine for user-guided deformable image registration Perry B. Johnson, 1a Kyle R. Padgett, 1 Kuan L. Chen,

More information

A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study

A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study Indrin J. Chetty, a) Mihaela Rosu, Neelam Tyagi, Lon H. Marsh, Daniel

More information

USER MANUAL VP PLANNING

USER MANUAL VP PLANNING USER MANUAL VP PLANNING 1.0 Mobile application ios Visible Patient SAS RCS Strasbourg TI 794 458 125 1 place de l'ho pital 67000 Strasbourg, FRANCE Share capital: 58330 Tel.: 33 (0)3 88 11 90 00 Fax: 33

More information

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation

Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation M. HEINRICH et al.: MULTIMODAL REGISTRATION USING GRADIENT ORIENTATION 1 Non-Rigid Multimodal Medical Image Registration using Optical Flow and Gradient Orientation Mattias P. Heinrich 1 mattias.heinrich@eng.ox.ac.uk

More information

Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics Lecture 1: Medical imaging

Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics Lecture 1: Medical imaging Joint CI-JAI advanced accelerator lecture series Imaging and detectors for medical physics Lecture 1: Medical imaging Dr Barbara Camanzi barbara.camanzi@stfc.ac.uk Course layout Day AM 09.30 11.00 PM 15.30

More information

Acknowledgements. Deformable Image Registration in Image Guided Therapy. Disclosure. Objectives 02/04/2011. Research Agreements:

Acknowledgements. Deformable Image Registration in Image Guided Therapy. Disclosure. Objectives 02/04/2011. Research Agreements: Deformable Image Registration in Image Guided Therapy Kristy K Brock, Ph.D., DABR Physicist, Radiation Medicine Program, Princess Margaret Hospital Associate Professor, Depts of Radiation Oncology & Medical

More information

Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system

Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system Michael Velec a) and Joanne L. Moseley Techna Institute

More information

Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay

Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay Jian Wang, Anja Borsdorf, Benno Heigl, Thomas Köhler, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-University

More information

NA-MIC National Alliance for Medical Image Computing Subject Hierarchy

NA-MIC National Alliance for Medical Image Computing   Subject Hierarchy NA-MIC Subject Hierarchy Csaba Pinter Queen s University, Canada csaba.pinter@queensu.ca NA-MIC Tutorial Contest: Winter 2016 Learning Objective This tutorial demonstrates the basic usage and potential

More information

Michael Speiser, Ph.D.

Michael Speiser, Ph.D. IMPROVED CT-BASED VOXEL PHANTOM GENERATION FOR MCNP MONTE CARLO Michael Speiser, Ph.D. Department of Radiation Oncology UT Southwestern Medical Center Dallas, TX September 1 st, 2012 CMPWG Workshop Medical

More information

3D Voxel-Based Volumetric Image Registration with Volume-View Guidance

3D Voxel-Based Volumetric Image Registration with Volume-View Guidance 3D Voxel-Based Volumetric Image Registration with Volume-View Guidance Guang Li*, Huchen Xie, Holly Ning, Deborah Citrin, Jacek Copala, Barbara Arora, Norman Coleman, Kevin Camphausen, and Robert Miller

More information

Comprehensive treatment planning for brachytherapy. Advanced planning made easy

Comprehensive treatment planning for brachytherapy. Advanced planning made easy Comprehensive treatment planning for brachytherapy Advanced planning made easy Oncentra Brachy offers a variety of smart tools that facilitate many of the repetitive tasks for you. In contemporary brachytherapy,

More information

Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy

Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy Combination of Markerless Surrogates for Motion Estimation in Radiation Therapy CARS 2016 T. Geimer, M. Unberath, O. Taubmann, C. Bert, A. Maier June 24, 2016 Pattern Recognition Lab (CS 5) FAU Erlangen-Nu

More information

MR-guided radiotherapy: Vision, status and research at the UMC Utrecht. Dipl. Ing. Dr. Markus Glitzner

MR-guided radiotherapy: Vision, status and research at the UMC Utrecht. Dipl. Ing. Dr. Markus Glitzner MR-guided radiotherapy: Vision, status and research at the UMC Utrecht Dipl. Ing. Dr. Markus Glitzner About myself Training Medizintechnik TU Graz PhD UMC Utrecht Clinical work Software implementation

More information

Large deformation 3D image registration in image-guided radiation therapy

Large deformation 3D image registration in image-guided radiation therapy Large deformation 3D image registration in image-guided radiation therapy Mark Foskey, Brad Davis, Lav Goyal, Sha Chang, Ed Chaney, Nathalie Strehl, Sandrine Tomei, Julian Rosenman and Sarang Joshi Department

More information

4D-CT Lung Registration and its Application for Lung Radiation Therapy

4D-CT Lung Registration and its Application for Lung Radiation Therapy University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) 4D-CT Lung Registration and its Application for Lung Radiation Therapy 2012 Yugang Min University of

More information

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy Towards deformable registration for augmented reality in robotic assisted partial nephrectomy Supervisor: Elena De Momi, PhD Co-supervisor: Dott. Ing. Sara Moccia Author: Anna Morelli, 853814 Academic

More information

Basic Radiation Oncology Physics

Basic Radiation Oncology Physics Basic Radiation Oncology Physics T. Ganesh, Ph.D., DABR Chief Medical Physicist Fortis Memorial Research Institute Gurgaon Acknowledgment: I gratefully acknowledge the IAEA resources of teaching slides

More information

Use of MRI in Radiotherapy: Technical Consideration

Use of MRI in Radiotherapy: Technical Consideration Use of MRI in Radiotherapy: Technical Consideration Yanle Hu, PhD Department of Radiation Oncology, Mayo Clinic Arizona 04/07/2018 2015 MFMER slide-1 Conflict of Interest: None 2015 MFMER slide-2 Objectives

More information

Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases

Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases Jinzhong Yang, Yongbin Zhang, Lifei Zhang, and Lei Dong Department of Radiation Physics, University of Texas MD Anderson Cancer Center

More information

PCRT 3D. Scalable Architecture System. User-Friendly. Traceable. Continuos Development

PCRT 3D. Scalable Architecture System. User-Friendly. Traceable. Continuos Development PCRT 3D The PCRT3D is a versatile 3D radiation treatment planning system featuring the most accurate algorithm calculations, the latest techniques in virtual simulation and the most advanced radiotherapy

More information

Thank-You Members of TG147 TG 147: QA for nonradiographic

Thank-You Members of TG147 TG 147: QA for nonradiographic Thank-You Members of TG147 TG 147: QA for nonradiographic localization and positioning systems Twyla Willoughby, M.S. Medical Physicist Clinical AAPM Meeting March 2013 Department of Radiation Oncology

More information

The IORT Treatment Planning System. radiance. GMV, 2012 Property of GMV All rights reserved

The IORT Treatment Planning System. radiance. GMV, 2012 Property of GMV All rights reserved The IORT Treatment Planning System radiance Property of GMV All rights reserved WHY RADIANCE? JUSTIFICATION Property of GMV All rights reserved ADVANTAGES OF IORT PRECISION: RT guided by direct vision.

More information

Validation of three deformable image registration algorithms for the thorax

Validation of three deformable image registration algorithms for the thorax JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 14, NUMBER 1, 2013 Validation of three deformable image registration algorithms for the thorax Kujtim Latifi, 1,3 Geoffrey Zhang, 1,3 Marnix Stawicki,

More information

Large-Deformation Image Registration using Fluid Landmarks

Large-Deformation Image Registration using Fluid Landmarks Large-Deformation Image Registration using Fluid Landmarks G.E. Christensen 1,P.Yin 1,.W. Vannier 2, K.S.C. Chao 3, J.F. Dempsey 3, and J.F. Williamson 3 1 Department of Electrical and Computer Engineering

More information

Tumor motion during liver SBRT

Tumor motion during liver SBRT Tumor motion during liver SBRT - projects at Aarhus University Hospital - Per Poulsen, Esben Worm, Walther Fledelius, Morten Høyer Aarhus University Hospital, Denmark SBRT: Stereotactic Body Radiation

More information