Flexible multibody systems - Relative coordinates approach

Size: px
Start display at page:

Download "Flexible multibody systems - Relative coordinates approach"

Transcription

1 Computer-aided analysis of multibody dynamics (part 2) Flexible multibody systems - Relative coordinates approach Paul Fisette (paul.fisette@uclouvain.be) Introduction In terms of modeling, multibody scientists must develop a «critical mind» statics «by hand», Matlab From a «customer problem» flexible bodies advanced dynamics basic dynamics advanced dynamics Matlab rigid MBS code flexible MBS code => What is the «real» problem to solve. and thus the optimal model to build

2 Introduction It is particularily true when dealing with «flexibility» Examples : Car suspension deformation : MBS + static FEM (in post-process) Antenna deployment : MBS + FEM (super-elements ) Flexible 2D mechanism : Chassis torsion : MBS + Finite segment / 2D beam model Full FEM or Lumped torsion (MBS-rigid)? => What is the «real» problem to solve and thus the «minimal» model to build Introduction FEM community MBS community > 1990 : «handshake» MBS community «credos» : Simulation time efficiency towards real time Lumped and/or «macro» models are still very promising High dynamics problems Flexibility : small deformation few modes High interest in system control and optimization

3 Contents Relative coordinates approach : review MBS with flexible beams : finite segment approach MBS with flexible beams : assumed mode approach =>chap. 9 of Beam Model Symbolic implementation MBS with telescopic beams Kluwer Academic Publishers, 2003 Contents Relative coordinates approach : review MBS with flexible beams : finite segment approach MBS with flexible beams : assumed mode approach =>chap. 9 of Beam Model Symbolic implementation MBS with telescopic beams Kluwer Academic Publishers, 2003

4 Concepts Multibody structure Leaf body 5 Rigid bodies (+flexible beams) 3 2 body joint base loop Relative joint coordinates Tree-like structures Closed structures Topology (tree-like structure) : the «inbody» vector : inbody = [ ] Joints Concepts - Definitions Classical 6 dof! More «Exotic» «Knee» joint (1 6 dof) «Wheel on rail» joint (5 dof) «Cam/Follower» joint

5 Tree-like MBS: Recursive Newton-Euler Origin : Robotics inverse dynamics (O(N body ) operations) Forward kinematics : kin. ω j = ω i + Ω ij Backward dynamics :.. F i = F j + F k + m i x i. L i = L j + L k + I i ω i +... Joint projection :... F i F j body i ω i L j body j ω j body k F k L i L k dyn. Tree-like MBS: Recursive Newton-Euler Origin : Robotics inverse dynamics (Luh, Walker, Paul, 1980) (O(N body ) operations) Objective : Recursive formulation for direct dynamics (O(N body2 ) operations) to keep the advantage of the recursive formulation

6 Closed-loop MBS Kinematic loops for unconstrained system 11 Closed-loop MBS Coordinate partitioning : u v v Exact resolution of the constraints Position : Velocity : Acceleration : 12

7 Contents Relative coordinates approach : review MBS with flexible beams : finite segment approach MBS with flexible beams : assumed mode approach =>chap. 9 of Beam Model Symbolic implementation MBS with telescopic beams Kluwer Academic Publishers, 2003 Finite segment formulation A very simple idea «Computer methods in flexible multibody dynamics», Huston R.L., IJNME 1991 (also Amirouche, 1986) Flexible rod Ressort hélicoïdal Ω = 150 rad/sec θ Glissière Flexibility effects are modeled by spring (and possible dampers) between bodies => Lumped flexibility formulation ex. bending :... i k ij {... l i l j j

8 Finite segment formulation Motivation i... k ij { l i l j... j to avoid the «difficult» mariage between rigid body dynamics and structural dynamics intuitive and direct method perfect for a first «pre-study» can be implemented in a rigid multibody code (easy to implement!) incorporate the flexibilty effects into the global dynamic equations not intrinsically limited to elastic systems (=> viscoelastic, nonlinear elastic ) Limitations restricted to slender bodies (beams, tapered bodies, rods, ) no prove to satisfy the «Rayleigh» vibration criteria (in terms of eigenvalues approx.) deformation coupling : sequence dependent (but ok for small deformation) could be used «erroneously» : requires skills, insight and intuition computer efficiency : OK in 2D, heavy in 3D Finite segment formulation Computation of the equivalent stiffness coefficients Equivalent stiffness coefficient are computed from basic principle of structual mechanics applied to bending, torsion and extension Extension (example) : Continuous : µ dx Lumped : m l Resulting Force Torque in the MBS equations => Joint force (for extension) or torque (for torsion/bending)

9 Finite segment formulation Proposed combinations (not exhaustive) Finite segment formulation Proposed combinations (not exhaustive) COMBINED TAPERED SEGMENTS

10 Finite segment formulation Example : a flexible slider-crank Ressort hélicoïdal θ Ω = 150 rad/sec A y A Glissière Rod modal analysis around equilibrium (horizontal configuration) Finite segment formulation Example : a flexible slider-crank {Y} Ressort hélicoïdal θ Ω = 150 rad/sec A y A Glissière Lateral deflection of the mid-point A in frame {Y} y A ya FEM FSM

11 Finite segment formulation Example : a flexible slider-crank {Y} Ressort hélicoïdal θ Ω = 150 rad/sec B Glissière Shortening of the rod (point B) in frame {Y} x B x B xb FEM FSM Finite segment formulation Kane s benchmark : 2D rotating beam : FEM (+). : monomials shape function (+) : FSM (+) -----:modal shape function (-)

12 Contents Relative coordinates approach : review MBS with flexible beams : finite segment approach MBS with flexible beams : assumed mode approach =>chap. 9 of Beam Model Symbolic implementation MBS with telescopic beams Kluwer Academic Publishers, 2003 MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications

13 MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications Flexible beam model : hypotheses Geometry : prismatic beams - rectilinear centroidal axis Material : homogeneous and isotropic - conforms to linear elasticity Deformation model : Timoshenko 3D, conservation of plane cross sections, shear deformation and rotary inertia included Kinematics : angular and curvature of the beam must remain small (rotation matrix linearized) - but still compatible to «capture» geometic stiffening effect Topology : a beam has the same status as a rigid body in the MBS : Rigid body Flexible beam Joint

14 Flexible beam model : notations Beam local rotation Linearized rotation matrix Flexible beam model : notations C Centroidal axis deformation Vector position (section S) : Current = undeformed + deformed : Displacement field v :

15 Flexible beam : shape functions ^ E z θ ^ E x v For the x, y, z, linear deformation of the centroidal axis C with : generalized coordinates (=amplitude of shape functions) For the x, y, z, angular deformation of the cross sections S with : generalized coordinates (=amplitude of shape functions) Flexible beam : shape functions ^ E z ^ E x Which kind of shape functions? θ v «global» shape functions From a previous (FEM) modal analysis => assumed modes From a purely mathematical set of functions: cubic splines Legendre polynomials Monomials

16 Flexible beam : monomials Why monomials? They can «theoretically» approximate any plausible deformation (think at a Taylor series which combines them) Being an invariable set of functions, there is no need for a prior modal analysis* They are perfectly suitable for symbolic computation of integrals, ex.: =! But they do not form a set of orthogonal functions (=> numerical unstabilities) *Monomials being not eigenmodes, the beam configuration (q,qd,qdd) may «move away» from the equilibrium state of a prior modal analysis MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications

17 Flexible beam : kinematics «Relative» kinematics Angular velocity and acceleration Linear velocity and acceleration MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications

18 MBS with flexible beam : kinematics Forward kinematic recursion etc. for accelerations MBS with flexible beam : joint dynamics MBS Virtual power principle: Virtual velocity field :

19 MBS with flexible beam : joint dynamics Backward dynamic recursion F i L i MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications

20 Flexible beam : deformation dynamics Beam deformation : Displacement gradient : Strain vector of the centroïdal axis : Beam curvature vector : with where Flexible beam : deformation dynamics MBS Virtual Power Principle: (see next slides) requires the relative derivatives of Γ and K : Real : Virtual :

21 Flexible beam : deformation dynamics MBS Virtual power principle: Virtual velocity field : Flexible beam : deformation dynamics Constitutive equations (linear elasticity) : Local equations of motion (of the beam portion ds) :

22 Flexible beam : deformation dynamics By integrating by part the terms : Final form : for «each» beam i Flexible beam : deformation dynamics Example of computation : recall : for «each» beam i

23 Flexible beam : deformation dynamics Example of computation : Using monomials Analytical integrals Flexible beam : deformation dynamics Example of computation : Interpretation :

24 Flexible beam : deformation dynamics Example of computation : where :!!! Second order terms required in Γ to be consistent with first order kinematics in the VPP)!!! Example : pure bending (=> Γ 1 = 0 (by definition)) First order : Second order : pure bending => = 0!! pure bending => MBS + flexible beams : eq. of motion Joint equations of body i : Rigid : Flexible (beam) : Deformation equation of beam i : Implicit equations of motion of the MBS

25 MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications MBS + flexible beams : eq. of motion with Symbolic computation of the tangent matrices M, G, K with ROBOTRAN => recursive (efficient) derivation!!!!

26 MBS + flexible beams : eq. of motion Global computation scheme (Robotran) : MBS + flexible beams : symbolic generation Input file (for flexible beams) Input file (for rigid bodies) (standard file) ROBOTRAN Symbolic model

27 MBS + flexible beams : symbolic generation Symbolic model (example - Matlab) Implicit form : MBS with flexible beams Flexible beam model Shape functions Beam Kinematics Multibody kinematics (forward) Joint dynamic equations( backward) Deformation equations (beam per beam) Symbolic computation Applications

28 MBS + flexible beams : examples A cantilevered L-shaped structure : modal analysis For each beam : FEM : 10 beam elements FSM : 10 interconnected bodies Monomials : 5 shape functions in x, y, θ MBS + flexible beams : examples Kane s benchmark : 2D rotating beam CPU time reduction factor :14

29 MBS + flexible beams : examples Fisette et al. benchmark : 3D rotating beam CPU time reduction factor :38 MBS + flexible beams : examples Jahnke, Popp s benchmark : flexible slider-crank FEM

30 Contents Relative coordinates approach : review MBS with flexible beams : finite segment approach MBS with flexible beams : assumed mode approach Beam Model Symbolic implementation MBS with telescopic beams MBS + telescopic beam : principle Sliding section S, frame {t}

31 MBS + telescopic beam : principle Position constraints : Orientation constraints : Loop closure : pseudo-rotation constraints recall (part 1) 62

32 Loop closure : pseudo-rotation constraints Let s choose a subset of 3 independent constraints (general 3D rotation): 63 Loop closure : pseudo-rotation constraints if all the constraints are satisfied : because : = E => Coordinate partitioning method can be used to reduce the system => ODE 64

33 Loop closure : pseudo-rotation constraints Conclusion 1 : Pseudo-rotation constraints Pseudo-gradient with : 65 MBS + telescopic beam : example A telescopic flexible slider-crank

34 Conclusions Flexible multibody systems in relative coordinates Finite segment method : a «pragmatic» technique MBS with flexible beams Floating frame approach set of «problem-independent» shape functions Beam Model : Timoshenko (Euler-Bernouilli would certainly be a bit more efficient) Symbolic implementation : OK and «fully» in case of monomial shape functions CPU time : very powerfull (but limitation in terms of flexibility modeling) MBS with telescopic beams : closed loop approach symbolic implementation

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Olivier Brüls. Department of Aerospace and Mechanical Engineering University of Liège

Olivier Brüls. Department of Aerospace and Mechanical Engineering University of Liège Fully coupled simulation of mechatronic and flexible multibody systems: An extended finite element approach Olivier Brüls Department of Aerospace and Mechanical Engineering University of Liège o.bruls@ulg.ac.be

More information

INTRODUCTION CHAPTER 1

INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

Recent developments in simulation, optimization and control of flexible multibody systems

Recent developments in simulation, optimization and control of flexible multibody systems Recent developments in simulation, optimization and control of flexible multibody systems Olivier Brüls Department of Aerospace and Mechanical Engineering University of Liège o.bruls@ulg.ac.be Katholieke

More information

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric Parallel Robots Mechanics and Control H AMID D TAG HI RAD CRC Press Taylor & Francis Group Boca Raton London NewYoric CRC Press Is an Imprint of the Taylor & Francis Croup, an informs business Contents

More information

Flexible multibody dynamics: From FE formulations to control and optimization

Flexible multibody dynamics: From FE formulations to control and optimization Flexible multibody dynamics: From FE formulations to control and optimization Olivier Brüls Multibody & Mechatronic Systems Laboratory Department of Aerospace and Mechanical Engineering University of Liège,

More information

Chapter 5 Modeling and Simulation of Mechanism

Chapter 5 Modeling and Simulation of Mechanism Chapter 5 Modeling and Simulation of Mechanism In the present study, KED analysis of four bar planar mechanism using MATLAB program and ANSYS software has been carried out. The analysis has also been carried

More information

Scientific Manual FEM-Design 17.0

Scientific Manual FEM-Design 17.0 Scientific Manual FEM-Design 17. 1.4.6 Calculations considering diaphragms All of the available calculation in FEM-Design can be performed with diaphragms or without diaphragms if the diaphragms were defined

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

Introduction. Section 3: Structural Analysis Concepts - Review

Introduction. Section 3: Structural Analysis Concepts - Review Introduction In this class we will focus on the structural analysis of framed structures. Framed structures consist of components with lengths that are significantly larger than crosssectional areas. We

More information

Modelling of Torsion Beam Rear Suspension by Using Multibody Method

Modelling of Torsion Beam Rear Suspension by Using Multibody Method Multibody System Dynamics 12: 303 316, 2004. C 2004 Kluwer Academic Publishers. Printed in the Netherlands. 303 Modelling of Torsion Beam Rear Suspension by Using Multibody Method G. FICHERA, M. LACAGNINA

More information

Slope Deflection Method

Slope Deflection Method Slope Deflection Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Slope Deflection method. 2) Derive the Slope Deflection Method equations using mechanics

More information

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine

Example Lecture 12: The Stiffness Method Prismatic Beams. Consider again the two span beam previously discussed and determine Example 1.1 Consider again the two span beam previously discussed and determine The shearing force M1 at end B of member B. The bending moment M at end B of member B. The shearing force M3 at end B of

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Generally all considerations in the force analysis of mechanisms, whether static or dynamic, the links are assumed to be rigid. The complexity of the mathematical analysis of mechanisms

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

Vehicle Dynamics & Safety: Multibody System. Simulation tools based on MultiBody approach are widespread in vehicle design and testing

Vehicle Dynamics & Safety: Multibody System. Simulation tools based on MultiBody approach are widespread in vehicle design and testing Vehicle Dynamics & Safety: Multibody System Simulation tools based on MultiBody approach are widespread in vehicle design and testing Vehicle Dynamics & Safety: Multibody System What is a Multibody System?

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Courtesy of Design Simulation Technologies, Inc. Used with permission. Dan Frey Today s Agenda Collect assignment #2 Begin mechanisms

More information

[ Ω 1 ] Diagonal matrix of system 2 (updated) eigenvalues [ Φ 1 ] System 1 modal matrix [ Φ 2 ] System 2 (updated) modal matrix Φ fb

[ Ω 1 ] Diagonal matrix of system 2 (updated) eigenvalues [ Φ 1 ] System 1 modal matrix [ Φ 2 ] System 2 (updated) modal matrix Φ fb Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Modal Test Data Adjustment For Interface Compliance Ryan E. Tuttle, Member of the

More information

: A Fast Symbolic, Dynamic Simulator interfaced with

: A Fast Symbolic, Dynamic Simulator interfaced with 18/11/2014 : A Fast Symbolic, Dynamic Simulator interfaced with Timothée Habra (Université catholique de Louvain) Houman Dallali (Instituto Italiano di Technologia) 1 Introduction Robots model complexity

More information

Dynamic Analysis of Manipulator Arm for 6-legged Robot

Dynamic Analysis of Manipulator Arm for 6-legged Robot American Journal of Mechanical Engineering, 2013, Vol. 1, No. 7, 365-369 Available online at http://pubs.sciepub.com/ajme/1/7/42 Science and Education Publishing DOI:10.12691/ajme-1-7-42 Dynamic Analysis

More information

Isogeometric Analysis Application to Car Crash Simulation

Isogeometric Analysis Application to Car Crash Simulation Isogeometric Analysis Application to Car Crash Simulation S. Bouabdallah 2, C. Adam 2,3, M. Zarroug 2, H. Maitournam 3 De Vinci Engineering Lab, École Supérieure d Ingénieurs Léonard de Vinci 2 Direction

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

CE371 Structural Analysis II Lecture 5:

CE371 Structural Analysis II Lecture 5: CE371 Structural Analysis II Lecture 5: 15.1 15.4 15.1) Preliminary Remarks 15.2) Beam-Member Stiffness Matrix 15.3) Beam-Structure Stiffness Matrix 15.4) Application of the Stiffness Matrix. 15.1) Preliminary

More information

INFLUENCE OF MODELLING AND NUMERICAL PARAMETERS ON THE PERFORMANCE OF A FLEXIBLE MBS FORMULATION

INFLUENCE OF MODELLING AND NUMERICAL PARAMETERS ON THE PERFORMANCE OF A FLEXIBLE MBS FORMULATION INFLUENCE OF MODELLING AND NUMERICAL PARAMETERS ON THE PERFORMANCE OF A FLEXIBLE MBS FORMULATION J. CUADRADO, R. GUTIERREZ Escuela Politecnica Superior, Universidad de La Coruña, Ferrol, Spain SYNOPSIS

More information

FEA Model Updating Using SDM

FEA Model Updating Using SDM FEA l Updating Using SDM Brian Schwarz & Mark Richardson Vibrant Technology, Inc. Scotts Valley, California David L. Formenti Sage Technologies Santa Cruz, California ABSTRACT In recent years, a variety

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Modeling lattice structured materials with micropolar elasticity. Accuracy of the micropolar model. Marcus Yoder. CEDAR presentation Spring 2017

Modeling lattice structured materials with micropolar elasticity. Accuracy of the micropolar model. Marcus Yoder. CEDAR presentation Spring 2017 Modeling lattice structured materials with micropolar elasticity Accuracy of the micropolar model CEDAR presentation Spring 2017 Advisors: Lonny Thompson and Joshua D. Summers Outline 2/25 1. Background

More information

2.007 Design and Manufacturing I Spring 2009

2.007 Design and Manufacturing I Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 2.007 Design and Manufacturing I Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.007 Design and Manufacturing

More information

COMPUTATIONAL DYNAMICS

COMPUTATIONAL DYNAMICS COMPUTATIONAL DYNAMICS THIRD EDITION AHMED A. SHABANA Richard and Loan Hill Professor of Engineering University of Illinois at Chicago A John Wiley and Sons, Ltd., Publication COMPUTATIONAL DYNAMICS COMPUTATIONAL

More information

Performance of railway track system under harmonic loading by finite element method

Performance of railway track system under harmonic loading by finite element method Performance of railway track system under harmonic by finite element method Ammar Shuber 1, Mohammed Hamood 1, * and Walaa Jawad 1 1 Building and Construction Engineering Department, University of Technology,

More information

Chassis Design using Composite Materials MBS-Modeling and Experiences

Chassis Design using Composite Materials MBS-Modeling and Experiences Chassis Design using Composite Materials MBS-Modeling and Experiences Udo Piram Bernd Austermann Uwe Heitz Calculations and Simulations System Functions ZF Friedrichshafen AG Chassis Design using Composite

More information

Reduction of Finite Element Models for Explicit Car Crash Simulations

Reduction of Finite Element Models for Explicit Car Crash Simulations Reduction of Finite Element Models for Explicit Car Crash Simulations K. Flídrová a,b), D. Lenoir a), N. Vasseur b), L. Jézéquel a) a) Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Centrale

More information

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure In the final year of his engineering degree course a student was introduced to finite element analysis and conducted an assessment

More information

CRANK ROUND SLIDER ENGINE MULTI-FLEXIBLE-BODY DYNAMICS SIMULATION

CRANK ROUND SLIDER ENGINE MULTI-FLEXIBLE-BODY DYNAMICS SIMULATION RANK ROUND SLIDER ENGINE MULTI-FLEXIBLE-BODY DYNAMIS SIMULATION 1 HONG-YUAN ZHANG, 2 XING-GUO MA 1 School of Automobile and Traffic, Shenyang Ligong University, Shenyang 110159, hina 2 School of Mechanical

More information

Proceedings of the ASME th Biennial Conference On Engineering Systems Design And Analysis ESDA2012 July 2-4, 2012, Nantes, France

Proceedings of the ASME th Biennial Conference On Engineering Systems Design And Analysis ESDA2012 July 2-4, 2012, Nantes, France Proceedings of the ASME 2012 11th Biennial Conference On Engineering Systems Design And Analysis ESDA2012 July 2-4 2012 Nantes France ESDA2012-82316 A MULTIBODY SYSTEM APPROACH TO DRILL STRING DYNAMICS

More information

1. Carlos A. Felippa, Introduction to Finite Element Methods,

1. Carlos A. Felippa, Introduction to Finite Element Methods, Chapter Finite Element Methods In this chapter we will consider how one can model the deformation of solid objects under the influence of external (and possibly internal) forces. As we shall see, the coupled

More information

Finite Element Models for Dynamic Analysis of Vehicles and Bridges under Traffic Loads

Finite Element Models for Dynamic Analysis of Vehicles and Bridges under Traffic Loads Finite Element Models for Dynamic Analysis of Vehicles and Bridges under Traffic Loads Javier Oliva, Pablo Antolín, José M. Goicolea and Miguel Á. Astiz Department Of Mechanincs And Structures. School

More information

Comparison between Bezier and Hermite cubic interpolants in elastic spline formulations

Comparison between Bezier and Hermite cubic interpolants in elastic spline formulations Acta Mech DOI 10.1007/s00707-013-1020-1 Sayed-Mahdi Hashemi-Dehkordi Pier Paolo Valentini Comparison between Bezier and Hermite cubic interpolants in elastic spline formulations Received: 2 August 2013

More information

Vibration Analysis with SOLIDWORKS Simulation and SOLIDWORKS. Before you start 7

Vibration Analysis with SOLIDWORKS Simulation and SOLIDWORKS. Before you start 7 i Table of contents Before you start 7 Notes on hands-on exercises and functionality of Simulation Prerequisites Selected terminology 1: Introduction to vibration analysis 10 Differences between a mechanism

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Applications. Human and animal motion Robotics control Hair Plants Molecular motion

Applications. Human and animal motion Robotics control Hair Plants Molecular motion Multibody dynamics Applications Human and animal motion Robotics control Hair Plants Molecular motion Generalized coordinates Virtual work and generalized forces Lagrangian dynamics for mass points

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Chapter 3 Analysis of Original Steel Post

Chapter 3 Analysis of Original Steel Post Chapter 3. Analysis of original steel post 35 Chapter 3 Analysis of Original Steel Post This type of post is a real functioning structure. It is in service throughout the rail network of Spain as part

More information

Design procedures of seismic-isolated container crane at port

Design procedures of seismic-isolated container crane at port Design procedures of seismic-isolated container crane at port T.Sugano 1, M.Takenobu 1, T.Suzuki 1, and Y.Shiozaki 2 1 Port and Airport Research Institute,Yokosuka, Japan 2 JFE R&D Corporation,Kawasaki,Japan

More information

Finite Element Modeling Techniques (2) دانشگاه صنعتي اصفهان- دانشكده مكانيك

Finite Element Modeling Techniques (2) دانشگاه صنعتي اصفهان- دانشكده مكانيك Finite Element Modeling Techniques (2) 1 Where Finer Meshes Should be Used GEOMETRY MODELLING 2 GEOMETRY MODELLING Reduction of a complex geometry to a manageable one. 3D? 2D? 1D? Combination? Bulky solids

More information

From direct to inverse analysis in flexible multibody dynamics

From direct to inverse analysis in flexible multibody dynamics From direct to inverse analysis in flexible multibody dynamics Olivier Brüls Department of Aerospace and Mechanical Engineering (LTAS) University of Liège, Belgium Annual GAMM Conference Darmstadt, March

More information

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR Fabian Andres Lara Molina, Joao Mauricio Rosario, Oscar Fernando Aviles Sanchez UNICAMP (DPM-FEM), Campinas-SP, Brazil,

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Outcome 1 The learner can: CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 15 - FINITE ELEMENT ANALYSIS - PART 1 Calculate stresses, strain and deflections in a range of components under

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Trajectory planning

Prof. Fanny Ficuciello Robotics for Bioengineering Trajectory planning Trajectory planning to generate the reference inputs to the motion control system which ensures that the manipulator executes the planned trajectories path and trajectory joint space trajectories operational

More information

Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417

Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417 Introduction Modeling Skills Stress Analysis J.E. Akin, Rice University, Mech 417 Most finite element analysis tasks involve utilizing commercial software, for which you do not have the source code. Thus,

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information

SAMCEF MECANO FlexDyn: Market analysis

SAMCEF MECANO FlexDyn: Market analysis SAMCEF MECANO FlexDyn: Market analysis Sebastien GOHY 1 - ASD Competence Center - 2011 SAMCEF Mecano Flexdyn: Market analysis SAMCEF Mecano: Reminder Mecano Structure Classical NL FEM Cf Abaqus, MSC Marc

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Solving the Kinematics of Planar Mechanisms. Jassim Alhor

Solving the Kinematics of Planar Mechanisms. Jassim Alhor Solving the Kinematics of Planar Mechanisms Jassim Alhor Table of Contents 1.0 Introduction 3 2.0 Methodology 3 2.1 Modeling in the Complex Plane 4 2.2 Writing the Loop Closure Equations 4 2.3 Solving

More information

State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model

State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea May 21-26, 2001 State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor

More information

Analysis of Distortion Parameters of Eight node Serendipity Element on the Elements Performance

Analysis of Distortion Parameters of Eight node Serendipity Element on the Elements Performance Analysis of Distortion Parameters of Eight node Serendipity Element on the Elements Performance Vishal Jagota & A. P. S. Sethi Department of Mechanical Engineering, Shoolini University, Solan (HP), India

More information

Generative Part Structural Analysis Expert

Generative Part Structural Analysis Expert CATIA V5 Training Foils Generative Part Structural Analysis Expert Version 5 Release 19 September 2008 EDU_CAT_EN_GPE_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018)

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) Instructions 1. Limit your total time to 5 hours. You can take a break in the middle of the exam if you need to ask a question, or go to dinner, etc. That

More information

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections

A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections A Multiple Constraint Approach for Finite Element Analysis of Moment Frames with Radius-cut RBS Connections Dawit Hailu +, Adil Zekaria ++, Samuel Kinde +++ ABSTRACT After the 1994 Northridge earthquake

More information

8 Tutorial: The Slider Crank Mechanism

8 Tutorial: The Slider Crank Mechanism 8 Tutorial: The Slider Crank Mechanism Multi-Body Simulation With MotionView / MotionSolve 12.0 written by Dipl.-Ing. (FH) Markus Kriesch and Dipl.-Ing. (FH) André Wehr, Germany Note: Some MBD fundamentals

More information

Connection Elements and Connection Library

Connection Elements and Connection Library Connection Elements and Connection Library Lecture 2 L2.2 Overview Introduction Defining Connector Elements Understanding Connector Sections Understanding Connection Types Understanding Connector Local

More information

Taking into account Flexibility in Attitude Control 1

Taking into account Flexibility in Attitude Control 1 Taing into account Flexibility in Attitude Control 1 Dario Izzo a, Lorenzo Pettazzi b and Riccardo Bevilacqua b a ESA Advanced Concept Team (DG-X) ESTEC, Noorwij, The Netherlands b SpaceFlight Mechanics

More information

EXPLICIT DYNAMIC ANALYSIS OF A REINFORCED CONCRETE FRAME UP TO COLLAPSE

EXPLICIT DYNAMIC ANALYSIS OF A REINFORCED CONCRETE FRAME UP TO COLLAPSE EXPLICIT DYNAMIC ANALYSIS OF A REINFORCED CONCRETE FRAME UP TO COLLAPSE ABSTRACT: K. Kocamaz 1, K. Tuncay 2 and B. Binici 3 1 Res. Assist., Civil Eng. Department, Middle East Technical University, Ankara

More information

Introduction to FEM Modeling

Introduction to FEM Modeling Total Analysis Solution for Multi-disciplinary Optimum Design Apoorv Sharma midas NFX CAE Consultant 1 1. Introduction 2. Element Types 3. Sample Exercise: 1D Modeling 4. Meshing Tools 5. Loads and Boundary

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction...

TABLE OF CONTENTS SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 SECTION 3 WAVE REFLECTION AND TRANSMISSION IN RODS Introduction... TABLE OF CONTENTS SECTION 1 INTRODUCTION... 1 1.1 Introduction... 1 1.2 Objectives... 1 1.3 Report organization... 2 SECTION 2 BACKGROUND AND LITERATURE REVIEW... 3 2.1 Introduction... 3 2.2 Wave propagation

More information

Optimization of a complex flexible multibody systems with composite materials

Optimization of a complex flexible multibody systems with composite materials Multibody Syst Dyn (2007) 18: 117 144 DOI 10.1007/s11044-007-9086-y Optimization of a complex flexible multibody systems with composite materials JorgeA.C.Ambrósio Maria Augusta Neto Rogério P. Leal Received:

More information

Optimization of a two-link Robotic Manipulator

Optimization of a two-link Robotic Manipulator Optimization of a two-link Robotic Manipulator Zachary Renwick, Yalım Yıldırım April 22, 2016 Abstract Although robots are used in many processes in research and industry, they are generally not customized

More information

This is NOT a truss, this is a frame, consisting of beam elements. This changes several things

This is NOT a truss, this is a frame, consisting of beam elements. This changes several things CES 44 - Stress Analysis Spring 999 Ex. #, the following -D frame is to be analyzed using Sstan (read the online stan intro first, and Ch-6 in Hoit) 5 k 9 E= 9000 ksi 8 I= 600 in*in*in*in 5 A= 0 in*in

More information

LS-DYNA s Linear Solver Development Phase 1: Element Validation

LS-DYNA s Linear Solver Development Phase 1: Element Validation LS-DYNA s Linear Solver Development Phase 1: Element Validation Allen T. Li 1, Zhe Cui 2, Yun Huang 2 1 Ford Motor Company 2 Livermore Software Technology Corporation Abstract LS-DYNA is a well-known multi-purpose

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Zheng-Dong Ma & Noel C. Perkins Department of MEAM The University of Michigan

Zheng-Dong Ma & Noel C. Perkins Department of MEAM The University of Michigan A G e n e r a l T r a c k E l e m e n t F o r T r a c k e d V e h i c l e S i m u l a t i o n Zheng-Dong Ma & Noel C. Perkins Department of MEAM The University of Michigan Major Features of the Track Element

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence

LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence Allen T. Li 1, Zhe Cui 2, Yun Huang 2 1 Ford Motor Company 2 Livermore Software Technology Corporation Abstract This paper continues

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Simulation of 3D Polyarticulated Mechanisms Through Object- Oriented Approach

Simulation of 3D Polyarticulated Mechanisms Through Object- Oriented Approach Simulation of 3D Polyarticulated Mechanisms Through Object- Oriented Approach DUFOSSE Francois *, KROMER Valerie *, MIKOLAJCZAK Alain * and GUEURY Michel * * Equipe de Recherches en Interfaces Numeriques

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

Comparison of implicit and explicit nite element methods for dynamic problems

Comparison of implicit and explicit nite element methods for dynamic problems Journal of Materials Processing Technology 105 (2000) 110±118 Comparison of implicit and explicit nite element methods for dynamic problems J.S. Sun, K.H. Lee, H.P. Lee * Department of Mechanical and Production

More information

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES 17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES The Current Building Codes Use the Terminology: Principal Direction without a Unique Definition 17.1 INTRODUCTION { XE "Building Codes" }Currently

More information

Advanced Multi-Body Modeling of Rotor Blades Validation and Application

Advanced Multi-Body Modeling of Rotor Blades Validation and Application Advanced Multi-Body Modeling of Rotor s Validation and Application For efficient wind turbine energy production, larger rotors are required for which slender blades with increased flexibility are often

More information

Position Analysis

Position Analysis Position Analysis 2015-03-02 Position REVISION The position of a point in the plane can be defined by the use of a position vector Cartesian coordinates Polar coordinates Each form is directly convertible

More information

Application to Vehicles Dynamics. Taking into account local non linearity in MBS models. This document is the property of SAMTECH S.A.

Application to Vehicles Dynamics. Taking into account local non linearity in MBS models. This document is the property of SAMTECH S.A. Application to Vehicles Dynamics Taking into account local non linearity in MBS models This document is the property of SAMTECH S.A. Page 1 Tables of contents Introduction SAMTECH Expertise SAMTECH Methodology

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix Journal of Physics: Conference Series The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix To cite this article: Jeong Soo

More information

Introduction to the Finite Element Method (3)

Introduction to the Finite Element Method (3) Introduction to the Finite Element Method (3) Petr Kabele Czech Technical University in Prague Faculty of Civil Engineering Czech Republic petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele 1 Outline

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction This dissertation will describe the mathematical modeling and development of an innovative, three degree-of-freedom robotic manipulator. The new device, which has been named the

More information

Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods

Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods Robert LeMaster, Ph.D. 1 Abstract This paper describes a methodology by which fundamental concepts in the

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (2) May 26, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (2) May 26, 2016 Kenshi Takayama Physically-based deformations 2 Simple example: single mass & spring in 1D Mass m, position x, spring coefficient k, rest length

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

TOPOLOGY OPTIMIZATION OF ELASTOMER DAMPING DEVICES FOR STRUCTURAL VIBRATION REDUCTION

TOPOLOGY OPTIMIZATION OF ELASTOMER DAMPING DEVICES FOR STRUCTURAL VIBRATION REDUCTION 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK TOPOLOGY OPTIMIZATION OF ELASTOMER DAMPING DEVICES

More information

Lesson 6: Assembly Structural Analysis

Lesson 6: Assembly Structural Analysis Lesson 6: Assembly Structural Analysis In this lesson you will learn different approaches to analyze the assembly using assembly analysis connection properties between assembly components. In addition

More information