An iteration of Branch and Bound One iteration of Branch and Bound consists of the following four steps: Some definitions. Branch and Bound.

Size: px
Start display at page:

Download "An iteration of Branch and Bound One iteration of Branch and Bound consists of the following four steps: Some definitions. Branch and Bound."

Transcription

1 ranch and ound xamples and xtensions epartment of Management ngineering Technical University of enmark ounding ow do we get ourselves a bounding function? Relaxation. Leave out some constraints. Keep the same objective function f. So now we maximize f over a larger solution space P. If all original constraints are satisfied we have an incumbent. hange the objective function f to g. ere gx) fx) for all x S. Optimality of g does not automaticly guarantee optimality of f. Use the two above at the same time. 3 Some definitions branching is a division of the original feasible set S into subsets S1... SK. branching is valid if K i=1 S i = S It is possible to determine and optimize over each set Si branching is called partitive if the sets Si are disjoint. 2 n iteration of ranch and ound One iteration of ranch and ound consists of the following four steps: 1. Selection of the node to be processed. 2. ound calculation. 3. Pruning? 4. ranching. 4 1

2 Strategy for branching In many situations there is not only one variable/candidate for branching. The question is which to choose. ranch on most fractional variable. ranch on least fractional variable. stimate the cost of forcing xj to become integer. These are all heuristic strategies, there is no guaranteed best strategy. Mostly mentioned strategies S: epth irst Search strategy: select among the active nodes one of those with the largest level. S: readth irst Search strategy: select among the active nodes one of those with the lowest level. es: est irst Search strategy: select among the active nodes one of those with the lowest bound. (sometime also called global best node selection). 7 Strategy for selecting the next subproblem In choosing a search strategy we might consider two different goals: Minimizing overall solution time. inding a good feasible solution to our original problem. 6 The est irst Search strategy One way to minimize overall solution time is to try to minimize the size of the search tree. subproblem (& node) is critical if the bound exceeds the value of the optimal solution. critical node must always be examined. Only nodes with values larger than or equal to the optimum will be searched. No superfluous calculations take place in est irst Search after the optimum has been found. 8 5

3 ranch and ound for TSP Input: distance matrix for a digraf = V ) with n vertices (so dij may be different from dji). If the edge i j) is in then dij equals the distance from i to j, otherwise dij equals. Output: The length d) of a shortest directed circuit in visiting each vertex exactly once, and an n-vector of edges v1 v2)... vn 1 vn)). Method: &: ounding function, search and branching strategy is described below. TSP xample Mathematical formulation of the TSP min st. n n dijxij i=1 n j=1i=j n j=1 i=1i=j ij S xij = 1 i 1... n} xij = 1 j 1... n} xij S 1 S V xij 0 1} i j 1... n} 10 TSP Lower bound calculation

4 TSP - & omponents I ounding function: Perform row and column reductions as for the assignment problem subtract the smallest element in each row from all row elements and then the smallest element in each column of the resulting matrix from all column elements. The sum of the subtracted elements constitutes a lower bound for the length of the optimal TSP tour. 13 TSP - & omponents III Search strategy: epth first: xamine the subproblem with the included edge first. ecause i j) is most expensive to leave out, there is a fair chance that the other subproblems is pruned in a later iteration. 15 TSP - & omponents II ranching: ind that 0-position i j) in the reduced matrix, for which the sum of the next-smallest elements in row i and column j is largest ( the most expensive edge to leave out in a new solution ). onstruct two subproblems: one in which i j) is forced into the solution (remove row i and column j from the matrix and set dji to ), and one in which i j) is excluded from the solution (set dij equal to ). 14 TSP ranching on 6 3) 1-branch 0-branch

5 TSP numeration tree with solution L=81 +(6,3) (6,3) L=81 L=129 +(6,3); +(4,6) +(6,3); (4,6) L=81 L=113 +(6,3); +(4,6); +(2,1) +(6,3); +(4,6); (2,1) L=84 L=101 +(6,3); +(4,6); +(2,1); +(1,4) +(6,3); +(4,6); +(2,1); (1,4) L=112 Solution with value 104! 17 ounds One way to identify a bound for the TSP is by relaxing constraints. This could be to allow subtours. This bound is although known to be rather weak. n alternative is the 1 tree relaxation. 19 The Symmetric TSP min s.t. ij) j ij S dijxij xij = 2 i n} xij S 1 S V xij 0 1 i j) 18 The 1-tree bound Identify a special vertex 1 (this can be any vertex of the graph). 1 and all edges incident with 1 are removed from. or the remaining graph determine the minimum spanning tree T. Now the two smallest edges e1 and e2 incident with 1 are added to T producing T1 (called a 1 tree) 20

6 Why is T1 a bound? We need to convince ourselves that the total cost of T1 is a lower bound of the value of an optimal tour. Note that a amiltonian tour can be divided into two edges e 1 and e 2 that are incident with 1 and the rest of the tour (let us call it T ). So the set of amiltonian tours is a subset of 1-trees of. Since e1 e2 are the two smallest edges incident to 1 + d d de e2 e + d e. urthermore as T is a 2 tree dt ) dt ). 21 TSP of ornholm So the cost of T1 is less that or equal to the cost of any amiltonian tour. In the case T1 is a tour we have found the optimal solution and can prune by bounding. otherwise we need to bound tree bound of ornholm Tree in rest of dge left out by Kruskal s MST algorithm 1 tree edge ost of 1 tree = 97 24

7 Strengthening the bound Idea: Vertices of T1 with high degree are incident with too many attractive edges. Vertices of degree 1 have on the other hand too many unattractive edges. efine πi as the degree of vertex i minus 2. Note that i V π i equals 0 since T1 has n edges and therefore the degree sum is 2n. or each edge i j) we transform the cost to d ij = d ij + πi + πj. 25 ow do we branch? Observe that in the case our 1-tree is not a tour at least one vertex has degree 3 or more. So choose a vertex v with degree 3 or more. or each edge ui v) generate a subproblem where ui v) is excluded from the set of edges. 27 Strengthen the bound Modified distance matrix: ost of 1 tree = ranching on ornholm xclude (,) xclude (,) xclude (,) ost of 1 tree = 98 The optimal tour! ost of 1 tree =

8 Using & as a heuristic rom the root-node of the &-tree we have a (global) upper bound u. When we compute an initial solution at root node or bound by optimality we have a global lower bound l. This gives us the opportunity to estimate the worst-case deviation from the optimum. 29 Keys to success ave a good bounding function. If several are available the stronger the better even if it is computationally harder to solve. et a good incumbent early (never underestimate the value of a good initial solution). xperiment, experiment, experiment. 31 Optimization-based heuristics Stop the & when the estimate on the deviation is below a certain threshold. on t investigate all branches in the &-tree (especially applied within inary integer programming) eam Search: Usefull technique if memory is limited. Set an upper limit α on active nodes that are stored. If this limit is reached only keep the α best. 30

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Practice Final Exam 1

Practice Final Exam 1 Algorithm esign Techniques Practice Final xam Instructions. The exam is hours long and contains 6 questions. Write your answers clearly. You may quote any result/theorem seen in the lectures or in the

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

Spanning Tree. Lecture19: Graph III. Minimum Spanning Tree (MSP)

Spanning Tree. Lecture19: Graph III. Minimum Spanning Tree (MSP) Spanning Tree (015) Lecture1: Graph III ohyung Han S, POSTH bhhan@postech.ac.kr efinition and property Subgraph that contains all vertices of the original graph and is a tree Often, a graph has many different

More information

of optimization problems. In this chapter, it is explained that what network design

of optimization problems. In this chapter, it is explained that what network design CHAPTER 2 Network Design Network design is one of the most important and most frequently encountered classes of optimization problems. In this chapter, it is explained that what network design is? The

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

UNIT 4 Branch and Bound

UNIT 4 Branch and Bound UNIT 4 Branch and Bound General method: Branch and Bound is another method to systematically search a solution space. Just like backtracking, we will use bounding functions to avoid generating subtrees

More information

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far:

Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: Last topic: Summary; Heuristics and Approximation Algorithms Topics we studied so far: I Strength of formulations; improving formulations by adding valid inequalities I Relaxations and dual problems; obtaining

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Branch and Bound. Live-node: A node that has not been expanded. It is similar to backtracking technique but uses BFS-like search.

Branch and Bound. Live-node: A node that has not been expanded. It is similar to backtracking technique but uses BFS-like search. Branch and Bound Definitions: Branch and Bound is a state space search method in which all the children of a node are generated before expanding any of its children. Live-node: A node that has not been

More information

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.!

TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! TSP! Find a tour (hamiltonian circuit) that visits! every city exactly once and is of minimal cost.! Local Search! TSP! 1 3 5 6 4 What should be the neighborhood?! 2-opt: Find two edges in the current

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Modified Order Crossover (OX) Operator

Modified Order Crossover (OX) Operator Modified Order Crossover (OX) Operator Ms. Monica Sehrawat 1 N.C. College of Engineering, Israna Panipat, Haryana, INDIA. Mr. Sukhvir Singh 2 N.C. College of Engineering, Israna Panipat, Haryana, INDIA.

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

7KH9HKLFOH5RXWLQJSUREOHP

7KH9HKLFOH5RXWLQJSUREOHP 7K9KO5RXWJSUREOP Given a set of vehicles with a certain capacity located at a depot and a set of customers with different demands at various locations, the vehicle routing problem (VRP) is how to satisfy

More information

Constructive and destructive algorithms

Constructive and destructive algorithms Constructive and destructive algorithms Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Constructive algorithms In combinatorial optimization problems every

More information

Mathematics for Decision Making: An Introduction. Lecture 4

Mathematics for Decision Making: An Introduction. Lecture 4 Mathematics for Decision Making: An Introduction Lecture 4 Matthias Köppe UC Davis, Mathematics January 15, 2009 4 1 Modeling the TSP as a standard optimization problem, I A key observation is that every

More information

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management Mathematical Tools for Engineering and Management Lecture 8 8 Dec 0 Overview Models, Data and Algorithms Linear Optimization Mathematical Background: Polyhedra, Simplex-Algorithm Sensitivity Analysis;

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Lagrangian Relaxation in CP

Lagrangian Relaxation in CP Lagrangian Relaxation in CP Willem-Jan van Hoeve CPAIOR 016 Master Class Overview 1. Motivation for using Lagrangian Relaxations in CP. Lagrangian-based domain filtering Example: Traveling Salesman Problem.

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

COMP 8620 Advanced Topics in AI

COMP 8620 Advanced Topics in AI OMP 8620 dvanced Topics in Lecturers: Philip Kilby & Jinbo uang 25/07/2008 1 Part 1: Search Lecturer: r Philip Kilby Philip.Kilby@nicta.com.au Weeks 1-71 (Week 7 is assignment seminars) Part 2: Probabilistic

More information

Search Algorithms. IE 496 Lecture 17

Search Algorithms. IE 496 Lecture 17 Search Algorithms IE 496 Lecture 17 Reading for This Lecture Primary Horowitz and Sahni, Chapter 8 Basic Search Algorithms Search Algorithms Search algorithms are fundamental techniques applied to solve

More information

mywbut.com Uninformed Search

mywbut.com Uninformed Search Uninformed Search 1 2.4 Search Searching through a state space involves the following: set of states Operators and their costs Start state test to check for goal state We will now outline the basic search

More information

Improving the Held and Karp Approach with Constraint Programming

Improving the Held and Karp Approach with Constraint Programming Improving the Held and Karp Approach with Constraint Programming Pascal Benchimol 1, Jean-Charles Régin 2, Louis-Martin Rousseau 1, Michel Rueher 2, Willem-Jan van Hoeve 3 1 CIRRELT,École Polytechnique

More information

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi 15.082 and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi On bounding in optimization In solving network flow problems, we not only

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Approximation Algorithms

Approximation Algorithms 18.433 Combinatorial Optimization Approximation Algorithms November 20,25 Lecturer: Santosh Vempala 1 Approximation Algorithms Any known algorithm that finds the solution to an NP-hard optimization problem

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP) TSP-0 Traveling Salesperson Problem (TSP) Input: Undirected edge weighted complete graph G = (V, E, W ), where W : e R +. Tour: Find a path that starts at vertex 1, visits every vertex exactly once, and

More information

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne Two-level Logic Synthesis and Optimization Giovanni De Micheli Integrated Systems Centre EPF Lausanne This presentation can be used for non-commercial purposes as long as this note and the copyright footers

More information

CAD Algorithms. Shortest Path

CAD Algorithms. Shortest Path lgorithms Shortest Path lgorithms Mohammad Tehranipoor epartment September 00 Shortest Path Problem: ind the best way of getting from s to t where s and t are vertices in a graph. est: Min (sum of the

More information

Backtracking and Branch-and-Bound

Backtracking and Branch-and-Bound Backtracking and Branch-and-Bound Usually for problems with high complexity Exhaustive Search is too time consuming Cut down on some search using special methods Idea: Construct partial solutions and extend

More information

Overview. H. R. Alvarez A., Ph. D.

Overview. H. R. Alvarez A., Ph. D. Network Modeling Overview Networks arise in numerous settings: transportation, electrical, and communication networks, for example. Network representations also are widely used for problems in such diverse

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

TIM 206 Lecture Notes Integer Programming

TIM 206 Lecture Notes Integer Programming TIM 206 Lecture Notes Integer Programming Instructor: Kevin Ross Scribe: Fengji Xu October 25, 2011 1 Defining Integer Programming Problems We will deal with linear constraints. The abbreviation MIP stands

More information

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD 1 DESIGN AND ANALYSIS OF ALGORITHMS UNIT II Objectives GREEDY METHOD Explain and detail about greedy method Explain the concept of knapsack problem and solve the problems in knapsack Discuss the applications

More information

Lecture 3: Totally Unimodularity and Network Flows

Lecture 3: Totally Unimodularity and Network Flows Lecture 3: Totally Unimodularity and Network Flows (3 units) Outline Properties of Easy Problems Totally Unimodular Matrix Minimum Cost Network Flows Dijkstra Algorithm for Shortest Path Problem Ford-Fulkerson

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Graph Applications, Class Notes, CS 3137 1 Traveling Salesperson Problem Web References: http://www.tsp.gatech.edu/index.html http://www-e.uni-magdeburg.de/mertens/tsp/tsp.html TSP applets A Hamiltonian

More information

Minimum spanning trees

Minimum spanning trees Carlos Moreno cmoreno @ uwaterloo.ca EI-3 https://ece.uwaterloo.ca/~cmoreno/ece5 Standard reminder to set phones to silent/vibrate mode, please! During today's lesson: Introduce the notion of spanning

More information

Greedy Algorithms. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms

Greedy Algorithms. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms Greedy Algorithms A greedy algorithm is one where you take the step that seems the best at the time while executing the algorithm. Previous Examples: Huffman coding, Minimum Spanning Tree Algorithms Coin

More information

CS 5114: Theory of Algorithms. Graph Algorithms. A Tree Proof. Graph Traversals. Clifford A. Shaffer. Spring 2014

CS 5114: Theory of Algorithms. Graph Algorithms. A Tree Proof. Graph Traversals. Clifford A. Shaffer. Spring 2014 epartment of omputer Science Virginia Tech lacksburg, Virginia opyright c 04 by lifford. Shaffer : Theory of lgorithms Title page : Theory of lgorithms lifford. Shaffer Spring 04 lifford. Shaffer epartment

More information

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University

Integer Programming. Xi Chen. Department of Management Science and Engineering International Business School Beijing Foreign Studies University Integer Programming Xi Chen Department of Management Science and Engineering International Business School Beijing Foreign Studies University Xi Chen (chenxi0109@bfsu.edu.cn) Integer Programming 1 / 42

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

Algorithm Design Techniques. Hwansoo Han

Algorithm Design Techniques. Hwansoo Han Algorithm Design Techniques Hwansoo Han Algorithm Design General techniques to yield effective algorithms Divide-and-Conquer Dynamic programming Greedy techniques Backtracking Local search 2 Divide-and-Conquer

More information

Local search. Heuristic algorithms. Giovanni Righini. University of Milan Department of Computer Science (Crema)

Local search. Heuristic algorithms. Giovanni Righini. University of Milan Department of Computer Science (Crema) Local search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Exchange algorithms In Combinatorial Optimization every solution x is a subset of E An exchange

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 Reading: Section 9.2 of DPV. Section 11.3 of KT presents a different approximation algorithm for Vertex Cover. Coping

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Branch-and-bound: an example

Branch-and-bound: an example Branch-and-bound: an example Giovanni Righini Università degli Studi di Milano Operations Research Complements The Linear Ordering Problem The Linear Ordering Problem (LOP) is an N P-hard combinatorial

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

Mathematical Thinking

Mathematical Thinking Mathematical Thinking Chapter 2 Hamiltonian Circuits and Spanning Trees It often happens in mathematics that what appears to be a minor detail in the statement of a problem can have a profound effect on

More information

A region is each individual area or separate piece of the plane that is divided up by the network.

A region is each individual area or separate piece of the plane that is divided up by the network. Math 135 Networks and graphs Key terms Vertex (Vertices) ach point of a graph dge n edge is a segment that connects two vertices. Region region is each individual area or separate piece of the plane that

More information

the Further Mathematics network V SUMMARY SHEET DECISION MATHS Algorithms Input A and B (positive integers)

the Further Mathematics network  V SUMMARY SHEET DECISION MATHS Algorithms Input A and B (positive integers) the urther Mathematics network www.fmnetwork.org.uk V 07 SUMMRY SHT ISION MTHS lgorithms The main ideas are covered in Q dexcel MI OR The main ideas in this topic are Understanding and implementing a variety

More information

Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations

Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations Celso C. Ribeiro Isabel Rosseti Reinaldo C. Souza Universidade Federal Fluminense, Brazil July 2012 1/45 Contents

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

On the Phase Coupling Problem between Data Memory Layout Generation and Address Pointer Assignment

On the Phase Coupling Problem between Data Memory Layout Generation and Address Pointer Assignment On the Phase Coupling Problem between Data Memory Layout Generation and Address Pointer Assignment Bernhard Wess and Thomas Zeitlhofer Institute of Communications and Radio-Frequency Engineering INSTITUT

More information

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold S1800: raph lgorithms (2nd Part) Professor Kevin old Summary So ar readth-irst Search (S) and epth-irst Search (S) are two efficient algorithms for finding paths on graphs. S also finds the shortest path.

More information

Greedy algorithms is another useful way for solving optimization problems.

Greedy algorithms is another useful way for solving optimization problems. Greedy Algorithms Greedy algorithms is another useful way for solving optimization problems. Optimization Problems For the given input, we are seeking solutions that must satisfy certain conditions. These

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Artificial Intelligence Fall, 2010 MSSHUSETTS INSTITUTE OF TEHNOLOY epartment of Electrical Engineering and omputer Science 6.0 rtificial Intelligence Fall, 00 Search Me! Recitation, Thursday September Prof. ob erwick. ifference between

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

SUMMARY SHEET DECISION MATHS. Algorithms. Input A and B (positive integers) Let Q = int(b/a) Let R1 = B A Q

SUMMARY SHEET DECISION MATHS. Algorithms. Input A and B (positive integers) Let Q = int(b/a) Let R1 = B A Q the urther Mathematics network www.fmnetwork.org.uk V 07 SUMMRY SHT ISION MTHS lgorithms The main ideas are covered in Q dexcel MI OR The main ideas in this topic are Understanding and implementing a variety

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

1 The Traveling Salesman Problem

1 The Traveling Salesman Problem Comp 260: Advanced Algorithms Tufts University, Spring 2018 Prof. Lenore Cowen Scribe: Duc Nguyen Lecture 3a: The Traveling Salesman Problem 1 The Traveling Salesman Problem The Traveling Salesman Problem

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

NP-complete Reductions

NP-complete Reductions NP-complete Reductions 1. Prove that 3SAT P DOUBLE-SAT, i.e., show DOUBLE-SAT is NP-complete by reduction from 3SAT. The 3-SAT problem consists of a conjunction of clauses over n Boolean variables, where

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

Primal Dual Schema Approach to the Labeling Problem with Applications to TSP

Primal Dual Schema Approach to the Labeling Problem with Applications to TSP 1 Primal Dual Schema Approach to the Labeling Problem with Applications to TSP Colin Brown, Simon Fraser University Instructor: Ramesh Krishnamurti The Metric Labeling Problem has many applications, especially

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

APPM 4120/5120 Exam #2 Practice Solutions Spring 2015

APPM 4120/5120 Exam #2 Practice Solutions Spring 2015 APPM 4120/5120 Exam #2 Practice Solutions Spring 2015 You are not allowed to use textbooks, class notes. Problem #1 (20 points): Consider the following activity-on-arc project network, where the 12 arcs

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Notes for Lecture 20

Notes for Lecture 20 U.C. Berkeley CS170: Intro to CS Theory Handout N20 Professor Luca Trevisan November 13, 2001 Notes for Lecture 20 1 Duality As it turns out, the max-flow min-cut theorem is a special case of a more general

More information