Math 102A Hw 3 P a (2 points)

Size: px
Start display at page:

Download "Math 102A Hw 3 P a (2 points)"

Transcription

1 Math 102 Hw 3 P a (2 points) If any pair of these lines are equal, the conclusion is immediate, so assume that we have three distinct lines such that l m and m n. Suppose, on the contrary, that l meets n at point P. P does not lie on m, because l m. Hence we have two distinct parallels n and l to m through P, which contradicts the uclidean parallel property of the affine plane. b (1 point) l is always parallel to itself (reflexive property) so if l = n, then the statement yields no new information. c (1 point) This question is not quite right, as elliptic geometry will be a counterexample. There should be some additional assumptions here. d (2 points) Let the set of points be {,,,, } and the set of lines be all two letter subsets. The Incidence xioms are readily verifed. y looking at figure 1 we can see that there are parallel lines. urthemore lines, and, but lines and share a common point, thus they are not parallel. So we do not have transitivity of parallelism in this model. igure 1 1

2 13 (2 points) part 1 y I3, every model for incidence geometry needs to have at least 3 noncollinear points, say {,, }. These pairwise determine 3 lines, and (see figure 2, first picture). Since each of these lines contains only 2 points, we need to add at least 3 more points into our model, say {,, } each lying on one of these lines (see figure 2, second picture). There is now a lack of lines in the new model. y I1 for each pair of points there needs to be a unique line passing through them. onsider first the pairs {, }, {, } and {, }. or each of these 3 pairs, the corresponding lines, and cannot contain any other of the already existing points (see figure 2, third picture). or example if contained the point then the lines and would intersect in 2 (or more) points contradicting proposition 2.1. G G igure 2 Therefore in order to have all lines contain at least 3 points, we need an additional point, say G. To keep the number of points at a minimum, we arrange G to lie on each of, and (see figure 2, third picture). inally, a check reveals that there are left over pairs of points with no lines passing through them, namely the pairs {, }, {, } and {, }. To remedy this, we add in another line into our model, one which contains all three of these points (see figure 2, fourth picture). It is easy to verify that all the axioms of incidence geometry hold. There are 7 points and 7 lines in this model. Observe that this is the projective plane associated to the 4 point affine plane, this is called the ano plane. 2

3 part 2 To construct the minimal geometry where the parallel postulate holds and where every line has at least three points, let s again start with the bare minimum of any model: three points {,, } and their associated lines, and (figure 3, first picture). We now continue the construction by focusing first on the parallel axiom. or the line and the point there has to be a line parallel to and containing. We add a point to our model and let be that line. Likewise, be the line parallel to and passing through. In addition, let be the line through the points {, } (figure 3, second picture). G H I igure 3 Neither of the lines so far contains 3 points. So we add the points {,, G, H, I} to ensure each line has 3 points (figure 3, third picture). We arrive at an interpretation which satisfies the parallel axiom and where each line has exactly 3 points. Unfortunately it fails the first incidence axiom. or example the points G and H don t have any lines passing through them. To remedy this we add four more lines into the picture (figure 3, fourth picture). case by case check shows that this is indeed a model of incidence geometry where the parallel axiom holdsand where every line has precisely 3 points. 3

4 14 a (1 point) To show this statement is not a theorem of incident geometry, we need only provide a model of Incidence geometry where such statement does not hold, i.e. a counterexample. Let the set of points be {,, } and the set of lines be all two letter subsets. The Incidence xioms are readily verifed. ut statement S fails, since lines and are two distinct lines, yet there is no point that does not lie on either or. b (2 point) Let l and m be any two distinct lines in a projective plane. Suppose that all points lie on either l or m. y the elliptical parallel property lines l and m meet at one point, call it Q. Since l m then there exist points Q in l that does not lie in m and point Q in m that does not lie in l. y I1 there exist a line through and, call this line n. Then n l since does not lie in l, likewise n m since does not lie in m. y the strengthened I2 every line has at least three distinct points lying on it. So n has a third point, call it. If lies on l there would be two distinct lines, l and n, through the points and, contrary to I1. Likewise if lies on m there would be two distinct lines passing through the points and. So point does not lie on either l or m, contrary to assumption that all points lie on l or m. Thus for any two distinct lines in a projective plane, there exist a point that does not lie on either of them. c (1 points) Let l and m be any two distinct lines in a finite projective plane. Let the points i lie on l and the points j lie on m. y statement S there exist a point P that does not lie on l or m. So for any i, I1 produces a unique line through the points i and P, call it n i. y the elliptic parallel property all lines meet, thus n i meets m at some point m j. Thus for each point i in l the line n i has found a point m j in m. So the number of points in l is less than or equal of those of m. y reversing the rolles of l and m, we find that the number of points in m is less than or equal of those of l. Since we are in a finite projective plane then the number of points in l and m are the same. Since l and m are arbitrary, we have that all lines have the same number of points lying on them. 4

5 d (1 points) Let l and m be any two distinct lines in a finite affine plane, and let be its projective completion. Then by adding an extra point at infinitiy to both l and m, the augmented lines l and m are still distinct and now lie in, a finite projective plane. y part c) we know that l and m have the same number of points lying on them. So by removing the one point at inifinity to both l and m, we get back l and m and now lie back in, and so again have the same number of points. So all lines in a finite affine plane have the same number of points lying on them. P.145 (2 points) 1 Incorrect 2 orrect 3 orrect 4 Incorrect 5 Incorrect 5

Provide a drawing. Mark any line with three points in blue color.

Provide a drawing. Mark any line with three points in blue color. Math 3181 Name: Dr. Franz Rothe August 18, 2014 All3181\3181_fall14h1.tex Homework has to be turned in this handout. For extra space, use the back pages, or blank pages between. The homework can be done

More information

Projective geometry and the extended Euclidean plane

Projective geometry and the extended Euclidean plane Chapter 2 Projective geometry and the extended Euclidean plane Math 4520, Fall 2017 As we can see from Hilbert s treatment, a completely worked out axiom system for geometry in the plane is quite complicated.

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

The statement implies that any three intersection points of two distinct planes lie on a line.

The statement implies that any three intersection points of two distinct planes lie on a line. Math 3181 Dr. Franz Rothe February 23, 2015 All3181\3181_spr15ts1.tex 1 Solution of Test Name: Problem 1.1. The second part of Hilbert s Proposition 1 states: Any two different planes have either no point

More information

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n.

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n. Math 532, 736I: Modern Geometry Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel Part 1: 1. Axioms for a finite AFFINE plane of order n. AA1: There exist at least 4 points, no

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

2 Solution of Homework

2 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 6, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Solution of Homework

More information

MAT 3271: Selected Solutions to the Assignment 6

MAT 3271: Selected Solutions to the Assignment 6 Chapter 2: Major Exercises MAT 3271: Selected Solutions to the Assignment 6 1. Since a projective plan is a model of incidence geometry, Incidence Axioms 1-3 and Propositions 2.1-2.5 (which follow logically

More information

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms:

Definition 2 (Projective plane). A projective plane is a class of points, and a class of lines satisfying the axioms: Math 3181 Name: Dr. Franz Rothe January 30, 2014 All3181\3181_spr14h2.tex Homework has to be turned in this handout. The homework can be done in groups up to three due February 11/12 2 Homework 1 Definition

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

2-5 Postulates and Paragraph Proofs

2-5 Postulates and Paragraph Proofs Determine whether each statement is always, sometimes, or never true. Explain your reasoning. 7. The intersection of three planes is a line. If three planes intersect, then their intersection may be a

More information

2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom

2.1 Angles, Lines and Parallels & 2.2 Congruent Triangles and Pasch s Axiom 2 Euclidean Geometry In the previous section we gave a sketch overview of the early parts of Euclid s Elements. While the Elements set the standard for the modern axiomatic approach to mathematics, it

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed:

Problem 3.1 (Building up geometry). For an axiomatically built-up geometry, six groups of axioms needed: Math 3181 Dr. Franz Rothe September 29, 2016 All3181\3181_fall16h3.tex Names: Homework has to be turned in this handout. For extra space, use the back pages, or put blank pages between. The homework can

More information

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters..

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.. Chapter 1 Points, Lines & Planes s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Question 1. Incidence matrix with gaps Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 2016 www-m10.ma.tum.de/projektivegeometriess16

More information

1 Solution of Homework I

1 Solution of Homework I Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13h1.tex 1 Solution of Homework I 10 Problem 1.1. As far as two-dimensional geometry is concerned, Hilbert s Proposition 1 reduces to one simple statement:

More information

A Communications Network???

A Communications Network??? A Communications Network??? A Communications Network What are the desirable properties of the switching box? 1. Every two users must be connected at a switch. 2. Every switch must "look alike". 3. The

More information

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry

Synthetic Geometry. 1.1 Foundations 1.2 The axioms of projective geometry Synthetic Geometry 1.1 Foundations 1.2 The axioms of projective geometry Foundations Def: A geometry is a pair G = (Ω, I), where Ω is a set and I a relation on Ω that is symmetric and reflexive, i.e. 1.

More information

Chapter 1 Tools of Geometry

Chapter 1 Tools of Geometry Chapter 1 Tools of Geometry Goals: 1) learn to draw conclusions based on patterns 2) learn the building blocks for the structure of geometry 3) learn to measure line segments and angles 4) understand the

More information

Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C.

Betweenness and the Crossbar Theorem. Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Betweenness and the Crossbar Theorem Lemma: Let A, B, and C be distinct points. If A*B*C, then neither A*C*B nor B*A*C. Suppose that both A*B*C and A*C*B. Thus AB+BC =AC, and AC +CB = AB. From this we

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

What makes geometry Euclidean or Non-Euclidean?

What makes geometry Euclidean or Non-Euclidean? What makes geometry Euclidean or Non-Euclidean? I-1. Each two distinct points determine a line I-2. Three noncollinear points determine a plane The 5 Axioms of I-3. If two points lie in a plane, then any

More information

On the number of distinct directions of planes determined by n points in R 3

On the number of distinct directions of planes determined by n points in R 3 On the number of distinct directions of planes determined by n points in R 3 Rom Pinchasi August 27, 2007 Abstract We show that any set of n points in R 3, that is not contained in a plane, determines

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

2 Solution of Homework II

2 Solution of Homework II Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13h2.tex 2 Solution of Homework II 10 Problem 2.1. Prove the Four-point Theorem directly from the Three-point Theorem and the Plane separation Theorem. Answer.

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

1 Matchings with Tutte s Theorem

1 Matchings with Tutte s Theorem 1 Matchings with Tutte s Theorem Last week we saw a fairly strong necessary criterion for a graph to have a perfect matching. Today we see that this condition is in fact sufficient. Theorem 1 (Tutte, 47).

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction Chapter 2 Splitting Operation and n-connected Matroids The splitting operation on an n-connected binary matroid may not yield an n-connected binary matroid. In this chapter, we provide a necessary and

More information

Laguerre Planes: A Basic Introduction

Laguerre Planes: A Basic Introduction Laguerre Planes: A Basic Introduction Tam Knox Spring 2009 1 1 Introduction Like a projective plane, a Laguerre plane is a type of incidence structure, defined in terms of sets of elements and an incidence

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Inversive Plane Geometry

Inversive Plane Geometry Inversive Plane Geometry An inversive plane is a geometry with three undefined notions: points, circles, and an incidence relation between points and circles, satisfying the following three axioms: (I.1)

More information

Topics in geometry Exam 1 Solutions 7/8/4

Topics in geometry Exam 1 Solutions 7/8/4 Topics in geometry Exam 1 Solutions 7/8/4 Question 1 Consider the following axioms for a geometry: There are exactly five points. There are exactly five lines. Each point lies on exactly three lines. Each

More information

Hawraa Abbas Almurieb. Axiomatic Systems

Hawraa Abbas Almurieb. Axiomatic Systems 2 Axiomatic Systems 2.1. Introduction to Axiomatic Systems We need undefined terms for any axiomatic system to build the axioms upon them. Which are basic worlds or things for the system. 2.1.1 Definitions

More information

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false. Chapter 1 Line and Angle Relationships 1.1 Sets, Statements and Reasoning Definitions 1. A statement is a set of words and/or symbols that collectively make a claim that can be classified as true or false.

More information

arxiv:submit/ [math.co] 9 May 2011

arxiv:submit/ [math.co] 9 May 2011 arxiv:submit/0243374 [math.co] 9 May 2011 Connectivity and tree structure in finite graphs J. Carmesin R. Diestel F. Hundertmark M. Stein 6 May, 2011 Abstract We prove that, for every integer k 0, every

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function?

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function? Meeting 1 Introduction to Functions Part 1 Graphing Points on a Plane (REVIEW) A plane is a flat, two-dimensional surface. We describe particular locations, or points, on a plane relative to two number

More information

USA Mathematical Talent Search Round 2 Solutions Year 23 Academic Year

USA Mathematical Talent Search Round 2 Solutions Year 23 Academic Year 1//3. Find all the ways of placing the integers 1,, 3,..., 16 in the boxes below, such that each integer appears in exactly one box, and the sum of every pair of neighboring integers is a perfect square.

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

A Reduction of Conway s Thrackle Conjecture

A Reduction of Conway s Thrackle Conjecture A Reduction of Conway s Thrackle Conjecture Wei Li, Karen Daniels, and Konstantin Rybnikov Department of Computer Science and Department of Mathematical Sciences University of Massachusetts, Lowell 01854

More information

3 Solution of Homework

3 Solution of Homework Math 3181 Name: Dr. Franz Rothe February 25, 2014 All3181\3181_spr14h3.tex Homework has to be turned in this handout. The homework can be done in groups up to three due March 11/12 3 Solution of Homework

More information

Week 9-10: Connectivity

Week 9-10: Connectivity Week 9-0: Connectiity October 3, 206 Vertex Connectiity Let G = (V, E) be a graph. Gien two ertices x, y V. Two (x, y)-path are said to be internally disjoint if they hae no internal ertices in common.

More information

Embeddability of Arrangements of Pseudocircles into the Sphere

Embeddability of Arrangements of Pseudocircles into the Sphere Embeddability of Arrangements of Pseudocircles into the Sphere Ronald Ortner Department Mathematik und Informationstechnologie, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700-Leoben, Austria Abstract

More information

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs.

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs. 18.438 Advanced Combinatorial Optimization September 17, 2009 Lecturer: Michel X. Goemans Lecture 3 Scribe: Aleksander Madry ( Based on notes by Robert Kleinberg and Dan Stratila.) In this lecture, we

More information

A digital pretopology and one of its quotients

A digital pretopology and one of its quotients Volume 39, 2012 Pages 13 25 http://topology.auburn.edu/tp/ A digital pretopology and one of its quotients by Josef Šlapal Electronically published on March 18, 2011 Topology Proceedings Web: http://topology.auburn.edu/tp/

More information

Honors 213. Third Hour Exam. Name

Honors 213. Third Hour Exam. Name Honors 213 Third Hour Exam Name Monday, March 27, 2000 100 points Page 1 Please note: Because of multiple exams given Monday, this exam will be returned by Thursday, March 30. 1. (5 pts.) Define what it

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes.

Basics of Geometry Unit 1 - Notes. Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. asics of Geometry Unit 1 - Notes Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically

More information

1 Matchings in Graphs

1 Matchings in Graphs Matchings in Graphs J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 Definition Two edges are called independent if they are not adjacent

More information

Three applications of Euler s formula. Chapter 10

Three applications of Euler s formula. Chapter 10 Three applications of Euler s formula Chapter 10 A graph is planar if it can be drawn in the plane R without crossing edges (or, equivalently, on the -dimensional sphere S ). We talk of a plane graph if

More information

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles.

Geometry Definitions, Postulates, and Theorems. Chapter 3: Parallel and Perpendicular Lines. Section 3.1: Identify Pairs of Lines and Angles. Geometry Definitions, Postulates, and Theorems Chapter : Parallel and Perpendicular Lines Section.1: Identify Pairs of Lines and Angles Standards: Prepare for 7.0 Students prove and use theorems involving

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Crossing Families. Abstract

Crossing Families. Abstract Crossing Families Boris Aronov 1, Paul Erdős 2, Wayne Goddard 3, Daniel J. Kleitman 3, Michael Klugerman 3, János Pach 2,4, Leonard J. Schulman 3 Abstract Given a set of points in the plane, a crossing

More information

Click the mouse button or press the Space Bar to display the answers.

Click the mouse button or press the Space Bar to display the answers. Click the mouse button or press the Space Bar to display the answers. 2-5 Objectives You will learn to: Identify and use basic postulates about points, lines, and planes. Write paragraph proofs. Vocabulary

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Topology - I. Michael Shulman WOMP 2004

Topology - I. Michael Shulman WOMP 2004 Topology - I Michael Shulman WOMP 2004 1 Topological Spaces There are many different ways to define a topological space; the most common one is as follows: Definition 1.1 A topological space (often just

More information

Face Width and Graph Embeddings of face-width 2 and 3

Face Width and Graph Embeddings of face-width 2 and 3 Face Width and Graph Embeddings of face-width 2 and 3 Instructor: Robin Thomas Scribe: Amanda Pascoe 3/12/07 and 3/14/07 1 Representativity Recall the following: Definition 2. Let Σ be a surface, G a graph,

More information

Combinatorial Maps. University of Ljubljana and University of Primorska and Worcester Polytechnic Institute. Maps. Home Page. Title Page.

Combinatorial Maps. University of Ljubljana and University of Primorska and Worcester Polytechnic Institute. Maps. Home Page. Title Page. Combinatorial Maps Tomaz Pisanski Brigitte Servatius University of Ljubljana and University of Primorska and Worcester Polytechnic Institute Page 1 of 30 1. Maps Page 2 of 30 1.1. Flags. Given a connected

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Lower estimate of the square-to-linear ratio for regular Peano curves

Lower estimate of the square-to-linear ratio for regular Peano curves DOI 10.1515/dma-2014-0012 Discrete Math. Appl. 2014; 24 (3):123 12 Konstantin E. Bauman Lower estimate of the square-to-linear ratio for regular Peano curves Abstract: We prove that the square-to-linear

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

Euclid s Axioms. 1 There is exactly one line that contains any two points.

Euclid s Axioms. 1 There is exactly one line that contains any two points. 11.1 Basic Notions Euclid s Axioms 1 There is exactly one line that contains any two points. Euclid s Axioms 1 There is exactly one line that contains any two points. 2 If two points line in a plane then

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

Notes for Recitation 8

Notes for Recitation 8 6.04/8.06J Mathematics for Computer Science October 5, 00 Tom Leighton and Marten van Dijk Notes for Recitation 8 Build-up error Recall a graph is connected iff there is a path between every pair of its

More information

ON THE CONSTRUCTION OF ORTHOGONAL ARRAYS

ON THE CONSTRUCTION OF ORTHOGONAL ARRAYS Hacettepe Journal of Mathematics and Statistics Volume 31 (2002), 45 51 ON THE CONSTRUCTION OF ORTHOGONAL ARRAYS Hülya Bayrak and Aslıhan Alhan Received 04. 10. 2001 Abstract In this study, the geometric

More information

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008 Outline Hyperplane Arrangements Counting Regions

More information

Math 187 Sample Test II Questions

Math 187 Sample Test II Questions Math 187 Sample Test II Questions Dr. Holmes October 2, 2008 These are sample questions of kinds which might appear on Test II. There is no guarantee that all questions on the test will look like these!

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

Lecture 20 : Trees DRAFT

Lecture 20 : Trees DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/12/2011 Lecture 20 : Trees Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed graphs. Today we continue this discussion,

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Terms, notation, and representation Student Activity Sheet 1; use with Overview

Terms, notation, and representation Student Activity Sheet 1; use with Overview Student: Class: Date: Student Activity Sheet 1; use with Overview 1. REEVVI IEEW Graph the following points on the coordinate plane. A (1,4) B (-5,0) C (0,8) D (3,-5) E (0,-2) F (-8,-4) G (4,0) H (-7,7)

More information

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1

Planar graphs. Math Prof. Kindred - Lecture 16 Page 1 Planar graphs Typically a drawing of a graph is simply a notational shorthand or a more visual way to capture the structure of the graph. Now we focus on the drawings themselves. Definition A drawing of

More information

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms

Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms Unit 1 asics of Geometry Objective- the students will be able to use undefined terms and definitions to work with points, lines and planes. Undefined Terms 1. Point has no dimension, geometrically looks

More information

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line.

GEOMETRY POSTULATES AND THEOREMS. Postulate 1: Through any two points, there is exactly one line. GEOMETRY POSTULATES AND THEOREMS Postulate 1: Through any two points, there is exactly one line. Postulate 2: The measure of any line segment is a unique positive number. The measure (or length) of AB

More information

I can identify, name, and draw points, lines, segments, rays, and planes. I can apply basic facts about points, lines, and planes.

I can identify, name, and draw points, lines, segments, rays, and planes. I can apply basic facts about points, lines, and planes. Page 1 of 9 Are You Ready Chapter 1 Pretest & skills Attendance Problems Graph each inequality. 1. x > 3 2. 2 < x < 6 3. x > 1 or x < 0 Vocabulary undefined term point line plane collinear coplanar segment

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang Solving and CS6015 / LARP 2018 ACK : Linear Algebra and Its Applications - Gilbert Strang Introduction Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b and it was

More information

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points

On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points On the Minimum Number of Convex Quadrilaterals in Point Sets of Given Numbers of Points Hu Yuzhong Chen Luping Zhu Hui Ling Xiaofeng (Supervisor) Abstract Consider the following problem. Given n, k N,

More information

Card Games in an Undergraduate Geometry Course. Dr. Cherith Tucker, Oklahoma Baptist University MAA MathFest, July 28, 2017

Card Games in an Undergraduate Geometry Course. Dr. Cherith Tucker, Oklahoma Baptist University MAA MathFest, July 28, 2017 Card Games in an Undergraduate Geometry Course Dr. Cherith Tucker, Oklahoma Baptist University MAA MathFest, July 28, 2017 Presentation Overview The Game of SET Brief Introduction to the Game of SET Incidence

More information

Integrated Math, Part C Chapter 1 SUPPLEMENTARY AND COMPLIMENTARY ANGLES

Integrated Math, Part C Chapter 1 SUPPLEMENTARY AND COMPLIMENTARY ANGLES Integrated Math, Part C Chapter SUPPLEMENTARY AND COMPLIMENTARY ANGLES Key Concepts: By the end of this lesson, you should understand:! Complements! Supplements! Adjacent Angles! Linear Pairs! Vertical

More information

Notebook Assignments

Notebook Assignments Notebook Assignments These six assignments are a notebook using techniques from class in the single concrete context of graph theory. This is supplemental to your usual assignments, and is designed for

More information

EXTERNAL VISIBILITY. 1. Definitions and notation. The boundary and interior of

EXTERNAL VISIBILITY. 1. Definitions and notation. The boundary and interior of PACIFIC JOURNAL OF MATHEMATICS Vol. 64, No. 2, 1976 EXTERNAL VISIBILITY EDWIN BUCHMAN AND F. A. VALENTINE It is possible to see any eleven vertices of an opaque solid regular icosahedron from some appropriate

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

Geometry Tutor Worksheet 4 Intersecting Lines

Geometry Tutor Worksheet 4 Intersecting Lines Geometry Tutor Worksheet 4 Intersecting Lines 1 Geometry Tutor - Worksheet 4 Intersecting Lines 1. What is the measure of the angle that is formed when two perpendicular lines intersect? 2. What is the

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Sections p.

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Sections p. CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Sections 10.1-10.3 p. 1/106 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

Simple Graph. General Graph

Simple Graph. General Graph Graph Theory A graph is a collection of points (also called vertices) and lines (also called edges), with each edge ending at a vertex In general, it is allowed for more than one edge to have the same

More information

2017 SOLUTIONS (PRELIMINARY VERSION)

2017 SOLUTIONS (PRELIMINARY VERSION) SIMON MARAIS MATHEMATICS COMPETITION 07 SOLUTIONS (PRELIMINARY VERSION) This document will be updated to include alternative solutions provided by contestants, after the competition has been mared. Problem

More information

Lecture 5: More Examples/Applications of Quasirandom Graphs

Lecture 5: More Examples/Applications of Quasirandom Graphs Random and Quasirandom Graphs Instructor: Padraic Bartlett Lecture 5: More Examples/Applications of Quasirandom Graphs Week 4 Mathcamp 2012 In our last class, we saw that the Paley graphs were an example

More information