# INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

Save this PDF as:

Size: px
Start display at page:

Download "INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface"

## Transcription

1 Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that electromagnetic waves in matter travel at a speed that is reduced, and can be expressed in terms of the refractive index n: = where Maxwell s equations were used to predict that the refractive index is given by: = For non-ferromagnetic materials the relative permeability is very close to unity and then = where is the dielectric constant. The plane EM wave in matter has the relation between the perpendicular coupled electromagnetic fields = and travels in the E B direction. In the absence of any obstructions or media effects, electromagnetic radiation travels in straight lines. The fact that light travels in straight lines, and casts a sharp shadow, led Newton to believe that light involved particle motion not wave motion. Solutions of the wave equation also predict electromagnetic waves traveling in a straight line. For example, we saw that a plane wave of the form E = 0 b i sin( ) travels in the direction. However, last lecture it was shown that waves behave differently when obstructions are encountered. The difference between particle and wave motion is that, for obstructions comparable in size to the wavelength, waves are diffracted outwards at the edges. The angle of the first minimum for diffraction at a slit of width d is given by sin =. Diffraction effects become negligible when,whichis the realm of geometric optics. For many applications of wave propagation, such as optics, diffraction effects can be ignored, to first order, allowing use of geometrical optics, the topic of today s lecture. Although the propagation of waves can be predicted exactly using mathematical solutions of the wave equation, with known boundary conditions, you may Figure Huygens construction for propagation to the right of () aplanewave,and() an outgoing spherical wave. find it helpful to consider the Huygens construct of secondary wavelets to explain wave motion. The Huygens construct assumes that each point on a primary wavefront serves as the source of spherical secondary wavelets that advance with the speed and frequency of the primary wavefront. Figure illustrates the Huygens construct for the propagation of plane and spherical waves. The secondary wavefront is the locus of the secondary wavelets. Note that the wavelets do spread outwards into the shadow at the edge of the plane wave. Calculation of the secondary wavefront requires including the relative phases and amplitudes of the wavelets involved. The Huygens construct is useful in understanding reflection, refraction and diffraction. The trajectory taken by an electromagnetic wave also is predicted by Fermat s principle which states that the wave-front follows a path that minimizes the transit time. REFLECTION AND REFRACTION AT BOUNDARIES The reflection and transmission of electromagnetic waves incident normally at the boundary between two media has been discussed and the reflectivity and transmission calculated. When waves are incident upon a boundary at non-normal incidence, the reflected and transmitted waves are emitted at definite non-normal angles, and the reflectivity and transmission differ from the case of normal incidence discussed earlier. The angles of incidence, reflection and refraction are most conveniently measured with respect to the normal to the boundary surface. The plane of incidence is the surface defined by the incident ray and the normal to the surface. 33

2 Figure 3 Refraction of light by air-glass interface. Figure 2 Wave with velocity v in medium incident upon a boundary with medium 2 in which the wave has velocity v 2 The angle of incidence to the normal to the surface is the angle of reflection to the normal is, and the angle of refraction relative to the normal is Reflection Reflected and incident waves are in the same material and therefore have the same velocity. Therefore, using the Huygens construct shown in figure 2, it can be seen that the reflected wave is in the plane of incidence and the angle of reflection equals the angle of incidence. Refraction = The transmitted wave travels in a different medium, with different speed compared to the incident wave. Using the Huygens construct, one can see that in a given time the incident and transmitted waves travel the distances and respectively. Since the two wavefronts have a common hypotenuse, then we have the relation that gives the angle of refraction of the transmitted wave: sin sin = that is: sin = sin These two relations for the angles of reflection and refraction are true for any type of travelling wave. For electromagnetic waves, the velocity can be expressed in terms of the refractive index, that is = Using this, leads to Snell s Law that gives the refracted wave is in the plane of incidence at an angle of refraction given by: sin = sin (Snell s Law) As an example, consider light in air incident upon glass of refractive index =5 as shown in figure Figure 4 Total internal reflection when n 2 3. For normal incidence = = =0 For an incident angle =45, the angle of reflection is 45 and the angle of refraction is given by: sin = sin 45 5 which gives =283 At the maximum angle of incidence =90, then Snell s law gives =48 Critical angle When electromagnetic radiation strikes a boundary going from higher to lower refractive index, the transmitted wave is bent away from the normal at a larger angle than the angle of incidence as shown in figure 4. For incident angles at the critical angle, the angle of refraction is 90.Thatis, sin = 2 (Critical angle) For angles of incidence there is no solution to Snell s law since there is no angle for which the sine exceeds unity. For angles of incidence greater than the critical angle, the incident wave is totally internally reflected, there is no transmitted wave. Thus the surface behaves as a perfect mirror. Underwater swimmers are familiar with this phenomenon, they can see upwards through only an angular region of the water surface within =488 of the normal to the surface. For glass, =5, the critical angle is 34

3 Figure 5 80 reflector Figure 7 Polarization of reflected light. Figure 6 Total internal reflection in an optical fiber. Figure 8 mirror. Image formed by reflection from a plane =sin ( 5 )=48 Figure 5 shows that light can be totally internally reflected twice to exactly reverse the direction of travel using a right-angle prism. Four such prisms are used in binoculars to correct for inversion of the image by the lens. An important technical application of total internal reflection is the optical fiber illustrated in figure 6. This has applications in medicine as well as for long-distance transmission of signals. Polarization Since electromagnetic waves are transverse waves it can be shown that when the angle of reflection plus angle of refraction sum to 90,thereflected wave is plane polarized as illustrated in figure 7. The reflected wave is fully plane polarized at the Brewster angle given by: tan = 2 Plane mirror As shown in figure 8, radiation reflected from the mirror appears to emanate from a virtual image that is the same distance behind the mirror as is the object in front of the mirror. An important feature of the mirror image is that depth inversion results in a righthanded system, b i b j = k b having a left-handed mirror image where b i b j = k b This is illustrated in figure 9. The behaviour of physics under transformation of a right-handed system into a left-handed mirrorimage system is an important fundamental symmetry of nature. Concave mirrors Consider the concave spherical surface of radius shown in figure 0 Let the object be a distance and image a distance from the mirror. From elementary Polaroid sunglasses can be used to attenuate the polarized reflected light from a surface such as a window. REFLECTION AT SINGLE SURFACE Geometrical optics for reflective systems, that is when, is dominated by the statement that the reflected wave is in the plane of incidence and the angle of reflection equals the angle of incidence. Let us consider simple reflective systems. Figure 9 system. Mirror image of a right-handed coordinate 35

4 Figure 0 Geometry for a concave mirror. Figure 2 Virtual image for a concave mirror Sign convention Figure Magnification by a concave mirror. geometry the exterior angle of the triangle is: = + Similarly: = +2 Eliminating from these equations gives 2 = + Using the small angle approximation; gives: + = 2 Note that if then the image distance is called the focal length where: = 2 Written in terms of the focal length, the paraxial (small angle) approximation gives: + = (Mirror equation) Note that all paraxial rays from converge on and vise versa. For an object of height, the image is inverted and has height = as shown in figure The transverse magnification defined as the ratio of the image to object sizes is: = (Magnification) The sign convention used for reflective systems is important. The sign convention assumed is: I, O, r and f are positive if they are in front of the mirror, and negative behind the mirror. As an example, consider a concave mirror with = 0 =5, if =25 then: = = 5 25 = 4 25 Thus =625 and the magnification is: = = = 025 However, if =4, thatis,then = = 5 4 = 20 That is, = 20 it is a virtual image behind the mirror. The magnification = =+5 That is, the image is erect, not inverted as illustrated in figure 2. Ray tracing It is recommended that simple geometry contructions be used to trace rays through an optical system as illustrated in figure 3 since it gives a useful visual representation of the focussing properties of any optical system. The following are the suggested way to trace rays through a reflective system. ) A ray emitted parallel to the optical axis goes through the corresponding focal point as shown by the red ray- trajectory in figure 3. 2) A ray the passes through the nearby focal point becomes parallel to the optifcal axis as shown by the yellow ray-2 trajectory. 3) A ray that passes through the radius of curvature of the mirror is reflected back through the center of the mirror as shown by the purple ray-3. 36

5 Figure 3 Geometrical ray tracing for a concave mirror. Figure 5 Geometry for refraction at a single interface. REFRACTION AT A SINGLE BOUNDARY Geometric optics for refractive systems is dominated by Snell s Law, the refracted wave is in the plane of incidence at an angle of refraction given by: sin = sin (Snell s Law) Figure 4 Ray diagram for a convex mirror. Convex refracting surface Consider refraction at a spherical surface separating two media of refractive index and 2 as shown in figure 5. Refraction depends on Snell s law: 4) A ray that hits the mirror on the optical axis is reflected back at the same angle to the optical axios as shown by the blue ray-4. Figure 3 illustrates the focussing properties of a concave mirror for the cases leading to either a real or a virtual image. Convex mirrors Figure 4 shows the geometry for a convex mirror. Here the focal length and radius of curvature are negative since they are behind the mirror surface. Again assuming the paraxial approximation gives that + = where is positive, while and are negative. The magnification now is a positive number since and have opposite signs, thus the image is erect, not inverted. Applications The big advantage of reflecting mirrors is that there is no dispersion and mirrors are cheaper to build than lenses. Concave mirrors are used extensively for radio and optical telescopes. Convex mirrors are used as rear-view mirrors on cars because they have a wide angle and erect image. Whispering galleries are examples of use of concave mirrors to focus sound waves. sin = sin Assuming the small-angle approximation means that sin In the small-angle approximation Snell s law simplifies to: = 2 2 (Small-angle approximation) Now using elementary geometry one sees that: and = + = 2 + Substitution for 2 using Snell s law gives: Eliminating gives; = =( 2 ) The paraxial ray assumption allows the approximation that: Thus this gives the paraxial refraction equation: + 2 = ( 2 ) 37

6 Figure 7 Geometry for lateral magnification of a convex refracting surface. Figure 6 Refraction at a plane surface. Sign convention The sign convention assumed for refraction is: O: positive for a real object on the incident side of the surface, negative for a virtual object on the transmission side of the surface I: positive for a real image on the transmission side of the surface, negative for a virtual image on the incident side of the surface. r,f: positive if the center of curvature is on the transmission side, negative if the center of curvature in on the incident side. Note that the sign convention for reflection has the real image on the incident side as opposed to the lens where the real image is on the transmission side. Plane surface An interesting case of refraction at a single surface is for a plane surface for which = shown in figure 6. Using the above lens equation gives: + 2 =0 Thus the image distance is given by: = 2 For example, light coming from an object a distance below the surface of water creates a virtual image that appears to be a distance 33 below the surface. That is, the object appears closer to the surface. Using the paraxial approximation then the object size, and image size,, then using figure 7, and 2 plus Snells law = 2 2 gives a magnification: Figure 8 Refractive index versus wavelength for glass DISPERSION The variation of refractive index with frequency was discussed previously and is illustrated in figure 8. The angle of refraction depends on the refractive index as given by Snell s law. Thus the angle of refraction of blue light is greater than that of red light leading to a dispersion of the component colours or wavelengths of light as illustrated in figure 9. The rainbow is a nice example of total internal reflection plus dispersion as illustrated in figure 20. Total internal reflection leads to a maximum reflection at about relative to the angle of incidence of sunlight on a water droplet. Dispersion occurs due to refraction for the light beam entering and leaving the droplet. Thus one observes the rainbow at an angle relative to the sunlight with the red ring on the outside of the rainbow and violet on the inside of = = 2 Note that the magnification is unity for the case of a plane surface. 38 Figure 9 Dispersion of light by a prism.

7 Figure 20 Rainbow due to dispersion and total internal reflection in a raindrop. the rainbow. If you look carefully you will observe a secondary rainbow due to two internal reflections inside the raindrop. This secondary rainbow is outside the primary rainbow and, due to the second total internal reflection, has the opposite sequence of colors. SUMMARY The image formed by a spherical mirror or lens system has been derived leading to the lens formula. + = Care must be taken applying this simple formula to ensure that the sign convention is obeyed. The image properties of complicated lens or mirror systems can be obtained by cascading application of the thin lens formula to each lens or reflecting surface in series. Next lecture will combine geometric optics with diffraction effects for a discussion of optical instruments. Reading assignment: Giancoli, Chapter

### Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

### normal angle of incidence increases special angle no light is reflected

Reflection from transparent materials (Chapt. 33 last part) When unpolarized light strikes a transparent surface like glass there is both transmission and reflection, obeying Snell s law and the law of

### Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

### Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

### PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

### Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

### PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

### What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

### The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

### Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

### PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

### 9. RAY OPTICS AND OPTICAL INSTRUMENTS

9. RAY OPTICS AND OPTICAL INSTRUMENTS 1. Define the terms (a) ray of light & (b) beam of light A ray is defined as the straight line path joining the two points by which light is travelling. A beam is

### 1. What is the law of reflection?

Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

### Physics 11 - Waves Extra Practice Questions

Physics - Waves xtra Practice Questions. Wave motion in a medium transfers ) energy, only ) mass, only. both mass and energy. neither mass nor energy. single vibratory disturbance that moves from point

### Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

### Essential Physics I. Lecture 13:

Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

### PHYSICS 213 PRACTICE EXAM 3*

PHYSICS 213 PRACTICE EXAM 3* *The actual exam will contain EIGHT multiple choice quiz-type questions covering concepts from lecture (16 points), ONE essay-type question covering an important fundamental

### Light, Lenses, Mirrors

Light, Lenses, Mirrors Optics Light is Dual in nature- has both particle and wave properties. Light = range of frequencies of electromagnetic waves that stimulates the eye s retina Facts About Light It

### Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

### Refraction at a single curved spherical surface

Refraction at a single curved spherical surface This is the beginning of a sequence of classes which will introduce simple and complex lens systems We will start with some terminology which will become

### Light: Geometric Optics

Light: Geometric Optics Regular and Diffuse Reflection Sections 23-1 to 23-2. How We See Weseebecauselightreachesoureyes. There are two ways, therefore, in which we see: (1) light from a luminous object

### Optics Part 1. Vern Lindberg. March 5, 2013

Optics Part 1 Vern Lindberg March 5, 2013 This section of the course deals with geometrical optics refraction, reflection, mirrors, lenses, and aberrations. Physical optics, interference, diffraction,

### Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

### θ =θ i r n sinθ = n sinθ

θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

### Chapter 5 Mirrors and Lenses

Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

### Lecture Notes (Reflection & Mirrors)

Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

### Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

### Problems set # 13 Physics 169 May 12, 2015

Prof. Anchordoqui Problems set # 3 Physics 69 May 2, 205. Consider a ray of light traveling in vacuum from point P to P 2 by way of the point Q on a plane miror as shown in Fig.. Show that Fermat s principle

### Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

### L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from

### University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

### AP* Optics Free Response Questions

AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

### Figure 27a3See Answer T5. A convex lens used as a magnifying glass.

F1 Figure 27a (in Answer T5) shows a diagram similar to that required, but with different dimensions. The object is between the first focus and the lens. The image is erect and virtual. The lateral magnification

### Chapter 3: Mirrors and Lenses

Chapter 3: Mirrors and Lenses Chapter 3: Mirrors and Lenses Lenses Refraction Converging rays Diverging rays Converging Lens Ray tracing rules Image formation Diverging Lens Ray tracing Image formation

### Reflection and Refraction. Geometrical Optics

Reflection and Refraction Geometrical Optics Reflection Angle of incidence = Angle of reflection The angle of incidence,i, is always equal to the angle of reflection, r. The incident ray, reflected ray

### Lesson Plan Outline for Rainbow Science

Lesson Plan Outline for Rainbow Science Lesson Title: Rainbow Science Target Grades: Middle and High School Time Required: 120 minutes Background Information for Teachers and Students Rainbows are fascinating

### Reflection and Refraction

Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

### The Propagation of Light:

Lecture 8 Chapter 4 The Propagation of Light: Transmission Reflection Refraction Macroscopic manifestations of scattering and interference occurring at the atomic level Reflection Reflection Inside the

### The Law of Reflection

If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

### Where n = 0, 1, 2, 3, 4

Syllabus: Interference and diffraction introduction interference in thin film by reflection Newton s rings Fraunhofer diffraction due to single slit, double slit and diffraction grating Interference 1.

### Topic 7. Ray (Geometrical) Optics

Topic 7. Ray (Geometrical) Optics Reflection and Refraction Geometrical optics is that branch of optics which treats light as made up of rays that move in straight lines until they encounter an interface

### Experiment 3: Reflection

Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

### College Physics B - PHY2054C

Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

### Dispersion Polarization

Dispersion Polarization Phys Phys 2435: 22: Chap. 33, 31, Pg 1 Dispersion New Topic Phys 2435: Chap. 33, Pg 2 The Visible Spectrum Remember that white light contains all the colors of the s p e c t r u

### On Fig. 7.1, draw a ray diagram to show the formation of this image.

1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

### Refraction and Lenses. Honors Physics

Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

### Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

### Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

### Reflection and Image Formation by Mirrors

Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

### Understanding the Propagation of Light

[ Assignment View ] [ Eðlisfræði 2, vor 2007 33. The Nature and Propagation of Light Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after

### Discover how to solve this problem in this chapter.

A 2 cm tall object is 12 cm in front of a spherical mirror. A 1.2 cm tall erect image is then obtained. What kind of mirror is used (concave, plane or convex) and what is its focal length? www.totalsafes.co.uk/interior-convex-mirror-900mm.html

### The geometry of reflection and refraction Wave conversion and reflection coefficient

7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

### Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

### EM Spectrum, Reflection & Refraction Test

EM Spectrum, Reflection & Refraction Test Name: 1. For each of the diagrams below, an object is shown in position before a concave mirror. The shiny side is on the left, facing the object. For each case,

### MEFT / Quantum Optics and Lasers. Suggested problems from Fundamentals of Photonics Set 1 Gonçalo Figueira

MEFT / Quantum Optics and Lasers Suggested problems from Fundamentals of Photonics Set Gonçalo Figueira. Ray Optics.-3) Aberration-Free Imaging Surface Determine the equation of a convex aspherical nonspherical)

### Geometrical Optics. Name ID TA. Partners. Date Section. Please do not scratch, polish or touch the surface of the mirror.

Geometrical Optics Name ID TA Partners Date Section Please do not scratch, polish or touch the surface of the mirror. 1. Application of geometrical optics: 2. Real and virtual images: One easy method to

### The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction.

The path of light is bent. Refraction and Lenses These are not photographs, but rather computer generated graphics based on the artist s understanding of the index of refraction. The angle of incidence

### Optics Worksheet. Chapter 12: Optics Worksheet 1

Optics Worksheet Triangle Diagram: This represents a triangular prism. We want to follow the path of a light ray striking one of the surfaces as it passes through the prism and exits one of the other surfaces.

### of Nebraska - Lincoln

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Calculus-Based General Physics Instructional Materials in Physics and Astronomy 1975 Lenses and Mirrors Follow this and

### Light and all its colours

Light and all its colours Hold a CD to the light You can see all the colours of the rainbow The CD is a non-luminous body It is reflecting white light from the sun Where do the colours come from? Truth

### IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law Objective In this experiment, you are required to determine the refractive index of an acrylic trapezoid (or any block with

### Optics of Vision. MATERIAL TO READ Web: 1.

Optics of Vision MATERIAL TO READ Web: 1. www.physics.uoguelph.ca/phys1070/webst.html Text: Chap. 3, pp. 1-39 (NB: pg. 3-37 missing) Chap. 5 pp.1-17 Handbook: 1. study guide 3 2. lab 3 Optics of the eye

### Conceptual Physics Practice Page Reflection And Refraction

Physics Practice Page Reflection And Free PDF ebook Download: Physics Practice Page Download or Read Online ebook conceptual physics practice page reflection and refraction in PDF Format From The Best

### FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

### Physics 4C Chapter 33: Electromagnetic Waves

Physics 4C Chapter 33: Electromagnetic Waves Our greatest glory is not in never failing, but in rising up every time we fail. Ralph Waldo Emerson If you continue to do what you've always done, you'll continue

### Refraction of Light Finding the Index of Refraction and the Critical Angle

Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

### Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets.

POLARIZATION OF LIGHT REFERENCES Halliday, D. and Resnick, A., Physics, 4 th edition, New York: John Wiley & Sons, Inc, 1992, Volume II, Chapter 48-1, 48-2, 48-3. (2weights) (1weight-exercises 1 and 3

### Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

### LECTURE 13 REFRACTION. Instructor: Kazumi Tolich

LECTURE 13 REFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 26.5 Index of refraction Snell s law Total internal reflection Total polarization Index of refraction 3 The speed of light in

### Basic Waves, Sound & Light Waves, and the E & M Spectrum

Basic Waves, Sound & Light Waves, and the E & M Spectrum 1. What are the amplitude and wavelength of the wave shown below? A) amplitude = 0.10 m, wavelength = 0.30 m B) amplitude = 0.10 m, wavelength =

### OPTICS: Solutions to higher level questions

OPTICS: Solutions to higher level questions 2015 Question 12 (b) (i) Complete the path of the light ray through the section of the lens. See diagram: (ii) Draw a ray diagram to show the formation of a

### Total Internal Reflection

Total nternal Reflection Consider light moving from glass (n.5) to air (n.) i r n sin n sin n n incident ra r refracted ra reflected ra GLASS AR sin n sin n >.e., light is bent awa from the normal. as

### arxiv: v1 [physics.class-ph] 11 Feb 2012

arxiv:202.2404v [physics.class-ph] Feb 202 Refractive index of a transparent liquid measured with a concave mirror Introduction Amitabh Joshi and Juan D Serna 2 Department of Physics, Eastern Illinois

### College Physics 150. Chapter 25 Interference and Diffraction

College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

### Lab 9 - GEOMETRICAL OPTICS

161 Name Date Partners Lab 9 - GEOMETRICAL OPTICS OBJECTIVES Optics, developed in us through study, teaches us to see - Paul Cezanne Image rom www.weidemyr.com To examine Snell s Law To observe total internal

### Ray Optics. Lecture 23. Chapter 34. Physics II. Course website:

Lecture 23 Chapter 34 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.1-3 Ray Optics Ray Optics Wave

### Textbook Assignment #1: DUE Friday 5/9/2014 Read: PP Do Review Questions Pg 388 # 1-20

Page 1 of 38 Page 2 of 38 Unit Packet Contents Unit Objectives Notes 1: Waves Introduction Guided Practice: Waves Introduction (CD pp 89-90) Independent Practice: Speed of Waves Notes 2: Interference and

### Mirrors and Lenses - Ch 23 websheet 23.1

Name: Class: _ Date: _ ID: A Mirrors and Lenses - Ch 23 websheet 23. Multiple Choice Identify the choice that best completes the statement or answers the question.. What type of mirror is used whenever

### Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction.

Name: Light Refraction Read from Lesson 1 of the Refraction and Lenses chapter at The Physics Classroom: http://www.physicsclassroom.com/class/refrn/u14l1a.html http://www.physicsclassroom.com/class/refrn/u14l1b.html

### Reflection and Refraction

Relection and Reraction Object To determine ocal lengths o lenses and mirrors and to determine the index o reraction o glass. Apparatus Lenses, optical bench, mirrors, light source, screen, plastic or

### 3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection

Light Key Concepts How does light reflect from smooth surfaces and rough surfaces? What happens to light when it strikes a concave mirror? Which types of mirrors can produce a virtual image? Reflection

### Thick Lenses and the ABCD Formalism

Thick Lenses and the ABCD Formalism Thursday, 10/12/2006 Physics 158 Peter Beyersdorf Document info 12. 1 Class Outline Properties of Thick Lenses Paraxial Ray Matrices General Imaging Systems 12. 2 Thick

### The Lens. Refraction and The Lens. Figure 1a:

Lenses are used in many different optical devices. They are found in telescopes, binoculars, cameras, camcorders and eyeglasses. Even your eye contains a lens that helps you see objects at different distances.

### Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

### Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Experiment 6 Snell s Law 6.1 Objectives Use Snell s Law to determine the index of refraction of Lucite. Observe total internal reflection and calculate the critical angle. Explain the basis of how optical

### Phys 1020, Day 18: Questions? Cameras, Blmfld Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week!

Lights. Action. Phys 1020, Day 18: Questions? Cameras, Blmfld 15.1 Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week! 1 What have we learned in this section: 1) Lasers

### Place a straw in the glass of water and record your observations in each case.

Refraction Investigations You will find the Refraction slideshow notes helpful as you complete these investigations. How Refraction Affects What We See: Part 1 You probably won t find anyone who is not

### Refraction and Polarization of Light

Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

### first name (print) last name (print) brock id (ab17cd) (lab date)

(ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 3 Refraction of light In this Experiment you will learn that the bending of light crossing the boundary of two

### Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

### Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th

Coure Update http://www.phy.hawaii.edu/~varner/phys272-spr0/phyic272.html Reminder: ) Aignment #3 due Monday 2) Mirror & Lene 3) Review for Final: Wedneday, May 5th h R- R θ θ -R h Spherical Mirror Infinite

### Interference, Diffraction & Polarization

Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html light as waves so far, light has been treated as

### Refraction and Polarization of Light

Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

### REFRACTION THROUGH A PRISM

REFRCTION THROUGH PRISM Ray Optics-IV Physics Without Fear CONTENTS Refraction through a Prism ngle of Deviation Expression for Deviation produced by a Prism Variation of angle of deviation δ with angle

### Fresnel's biprism and mirrors

Fresnel's biprism and mirrors 1 Table of Contents Section Page Back ground... 3 Basic Experiments Experiment 1: Fresnel's mirrors... 4 Experiment 2: Fresnel's biprism... 7 2 Back ground Interference of

### A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will

Ray Diagrams Convex Mirror A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will. Quick Activity obtain a ray box and a curved

### Recall: Basic Ray Tracer

1 Recall: Ray Tracing Generate an image by backwards tracing the path of light through pixels on an image plane Simulate the interaction of light with objects Recall: Basic Ray Tracer Trace a primary ray

### AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as