Heuristic Evaluation Function. 11. Evaluation. Issues. Admissible Evaluations. Jonathan Schaeffer

Size: px
Start display at page:

Download "Heuristic Evaluation Function. 11. Evaluation. Issues. Admissible Evaluations. Jonathan Schaeffer"

Transcription

1 Heuristic Evaluation Function. Evaluation Jonathan Schaeffer Most of the magic in a single-agent searcher is in the evaluation function To obtain an optimal answer, we need an admissible lower bound Search tree size is strongly tied to the quality of the evaluation function Unlike Alpha-beta where the evaluation function influenced the quality of the answer, but not really the size of the search //0 Issues How do we obtain an admissible evaluation function? How do we improve the quality of the evaluation function? What happens with a non-admissible heuristic? Admissible Evaluations Consider a relaxed version of the application Eliminate a rule to simplify the calculation of the heuristic distance An exact solution to a relaxed problem is usually a good heuristic for the original problem //0 //0

2 Example Consider Manhattan Distance for pathfinding Original problem Move man to goal subject to obstacles Relaxed problem Move man to goal assuming no obstacles Methodology Define the problem formally Remove one of the restrictions Evaluate whether the resulting problem is easy to evaluate and whether the results are worthwhile Could be automated, although this is an ongoing research topic //0 //0 Multiple Heuristics There may be multiple good heuristics, each of which performs better in different circumstances Given N admissible heuristics, could compose a new, more powerful heuristic: H = MAX( h, h, h, h N ) Heuristic Evaluation Right now, best way is to do this by hand; automated techniques are still in their infancy Apply application-dependent knowledge to decide on a heuristic(s) //0 //0

3 Pattern Database [] Endgame databases are a perfect lower bound for a (small) subset of positions Pattern databases computer lower bounds for subsets (patterns) of a state Using extra data, can improve the lower bound estimate Pattern Databases Define a subset of the state Enumerate all possibilities for that subset and pre-compute optimal distances to solving that relaxed problem The larger the subset the more effective the heuristic //0 //0 0 Using a Pattern Database B B Pre-compute the minimum number of moves to achieve a subset of the goal state. Using a Pattern Database Many real-world problems have symmetries that can be exploited -puzzle symmetry reflect horizontally and vertically reflect along all four axis use the maximum of all lower bounds //0 //0

4 -puzzle: H0 Simplest heuristic evaluation function Value = 0 if a goal node Value = if not a goal node -puzzle: H Count the number of misplaced tiles Assumes cost of placing a misplaced tile is 0 H = 0 H = //0 //0 -puzzle: H Manhattan Distance Count number of horizontal and vertical moves to place each tile -puzzle: H Add in linear conflicts Two tiles in a row/column that have to swap positions ( and ) 0 H = Search = 0,0 nodes 0 H = 0 //0 //0

5 -puzzle: H Pattern databases Use the pattern database shown earlier 0 H = Search (F) =,0 nodes Search(C) =, nodes Experiments () Standard set of 00 test positions Korf, A* quickly runs out of memory ( MB) can only solve the easy problems Must use iterative deepening to reduce storage needs //0 //0 Experiments () Experiments () IDA* linear storage in search depth (0 MB) Transposition table entries, 0 bytes per entry ( MB) Endgame database all positions <= moves of the goal (0 MB) Pattern database all subsets of tiles (00 MB) //0 IDA* + TT + DB + TT + DB + PDB + TT+DB+PDB,0,0, ,,,000.,,,0.,,,.,, 0.0,, fold improvement! //0 0

6 Lessons Learned Eliminate unnecessary work Any improvements to a state s evaluation will pay enormous benefits in the search space/time tradeoffs e.g. linear conflicts: a subset of pattern databases but without the storage and runtime costs Space/Time Korf has a hypothesis that there is a linear relationship between execution time and storage used Extreme cases: 0 storage and complete storage In between, roughly doubling your storage can be used to reduce the tree by roughly a factor of two //0 //0 Non-admissible Heuristics Admissible heuristics guarantee optimality Non-admissible heuristics are OK as long as you do not mind the possibility of non-optimal solutions WIDA* Multiple the h value by a small constant >.0 This has the effect of concentrating search on paths where the h value is small For many applications, this results in (near)-optimal solutions, but with a much improved execution time //0 //0

7 References [] J. Culberson and J. Schaeffer. Pattern Databases, Computational Intelligence, vol., no., pp. -,. //0

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First?

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First? Moving On 10. Single-agent Search Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan Two-player adversary search is nice, but not all interesting problems can be mapped to games Large

More information

Lecture 5 Heuristics. Last Time: A* Search

Lecture 5 Heuristics. Last Time: A* Search CSE 473 Lecture 5 Heuristics CSE AI Faculty Last Time: A* Search Use an evaluation function f(n) for node n. f(n) = estimated total cost of path thru n to goal f(n) = g(n) + h(n) g(n) = cost so far to

More information

What is a Pattern Database? Pattern Databases. Success Story #1. Success Story #2. Robert Holte Computing Science Dept. University of Alberta

What is a Pattern Database? Pattern Databases. Success Story #1. Success Story #2. Robert Holte Computing Science Dept. University of Alberta What is a Pattern Database Pattern Databases Robert Holte Computing Science Dept. University of Alberta November, 00 PDB = a heuristic stored as a lookup table Invented by Culberson and Schaeffer (99)

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2. Problem Solving Agents. Problem Solving Agents: Assumptions Class Overview COMP 3501 / COMP 4704-4 Lecture 2 Prof. JGH 318 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions? Discrete

More information

Outline. Where Do Heuristics Come From? Part 3. Question. Max ing Multiple Heuristics

Outline. Where Do Heuristics Come From? Part 3. Question. Max ing Multiple Heuristics Outline Where Do Heuristics Come From? Part Robert C. Holte Computing Science Department University of Alberta 00, Robert Holte Heuristics/Holte Part, Slide Part : Introduction Part : Details Part : Pattern

More information

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty)

Informed search algorithms. Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Informed search algorithms Chapter 3 (Based on Slides by Stuart Russell, Dan Klein, Richard Korf, Subbarao Kambhampati, and UW-AI faculty) Intuition, like the rays of the sun, acts only in an inflexibly

More information

Informed Search Methods

Informed Search Methods Informed Search Methods How can we improve searching strategy by using intelligence? Map example: Heuristic: Expand those nodes closest in as the crow flies distance to goal 8-puzzle: Heuristic: Expand

More information

Partial Pattern Databases

Partial Pattern Databases Partial Pattern Databases Kenneth Anderson, Robert Holte, and Jonathan Schaeffer University of Alberta, Computing Science Department, Edmonton, Alberta, T6G 2E8, Canada {anderson, holte, jonathan}@cs.ualberta.ca

More information

Recursive Best-First Search with Bounded Overhead

Recursive Best-First Search with Bounded Overhead Recursive Best-First Search with Bounded Overhead Matthew Hatem and Scott Kiesel and Wheeler Ruml with support from NSF grant IIS-1150068 Wheeler Ruml (UNH) Recursive Best-First Search with Bounded Overhead

More information

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004

Today s s lecture. Lecture 3: Search - 2. Problem Solving by Search. Agent vs. Conventional AI View. Victor R. Lesser. CMPSCI 683 Fall 2004 Today s s lecture Search and Agents Material at the end of last lecture Lecture 3: Search - 2 Victor R. Lesser CMPSCI 683 Fall 2004 Continuation of Simple Search The use of background knowledge to accelerate

More information

Multiple Pattern Databases

Multiple Pattern Databases Multiple Pattern Databases R. C. Holte and Jack Newton University of Alberta Computing Science Department Edmonton, Alberta, T6G 2E8, Canada Email: {holte,newton}@cs.ualberta.ca A. Felner and R. Meshulam

More information

CS 188: Artificial Intelligence. Recap Search I

CS 188: Artificial Intelligence. Recap Search I CS 188: Artificial Intelligence Review of Search, CSPs, Games DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You

More information

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart

Informed Search. CS 486/686 University of Waterloo May 10. cs486/686 Lecture Slides 2005 (c) K. Larson and P. Poupart Informed Search CS 486/686 University of Waterloo May 0 Outline Using knowledge Heuristics Best-first search Greedy best-first search A* search Other variations of A* Back to heuristics 2 Recall from last

More information

Solving Sokoban Optimally using Pattern Databases for Deadlock Detection

Solving Sokoban Optimally using Pattern Databases for Deadlock Detection Solving Sokoban Optimally using Pattern Databases for Deadlock Detection André G. Pereira, Marcus Ritt, Luciana S. Buriol Institute of Informatics Federal University of Rio Grande do Sul, Brazil {agpereira,marcus.ritt,buriol

More information

Trees and DAGS. 4. Trees and DAGs. Cycles. Cycles

Trees and DAGS. 4. Trees and DAGs. Cycles. Cycles Trees and DGS 4. Trees and DGs Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan Many search trees are really search directed acyclic graphs (DGs) Detect cycles and eliminate them

More information

Finding Optimal Solutions to Sokoban Using Instance Dependent Pattern Databases

Finding Optimal Solutions to Sokoban Using Instance Dependent Pattern Databases Proceedings of the Sixth International Symposium on Combinatorial Search Finding Optimal Solutions to Sokoban Using Instance Dependent Pattern Databases André Grahl Pereira and Marcus Rolf Peter Ritt and

More information

Compressing Pattern Databases

Compressing Pattern Databases Compressing Pattern Databases Ariel Felner and Ram Meshulam Computer Science Department Bar-Ilan University Ramat-Gan, Israel 92500 Email: felner,meshulr1 @cs.biu.ac.il Robert C. Holte Computing Science

More information

Chapters 3-5 Problem Solving using Search

Chapters 3-5 Problem Solving using Search CSEP 573 Chapters 3-5 Problem Solving using Search First, they do an on-line search CSE AI Faculty Example: The 8-puzzle Example: The 8-puzzle 1 2 3 8 4 7 6 5 1 2 3 4 5 6 7 8 2 Example: Route Planning

More information

Informed Search Algorithms

Informed Search Algorithms Informed Search Algorithms CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2017, Semester 2 Introduction

More information

1 Introduction and Examples

1 Introduction and Examples 1 Introduction and Examples Sequencing Problems Definition A sequencing problem is one that involves finding a sequence of steps that transforms an initial system state to a pre-defined goal state for

More information

Informed search algorithms

Informed search algorithms Artificial Intelligence Topic 4 Informed search algorithms Best-first search Greedy search A search Admissible heuristics Memory-bounded search IDA SMA Reading: Russell and Norvig, Chapter 4, Sections

More information

Informed search methods

Informed search methods CS 2710 Foundations of AI Lecture 5 Informed search methods Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Announcements Homework assignment 2 is out Due on Tuesday, September 19, 2017 before the

More information

Heuristic Search and Advanced Methods

Heuristic Search and Advanced Methods Heuristic Search and Advanced Methods Computer Science cpsc322, Lecture 3 (Textbook Chpt 3.6 3.7) May, 15, 2012 CPSC 322, Lecture 3 Slide 1 Course Announcements Posted on WebCT Assignment1 (due on Thurs!)

More information

Artificial Intelligence Informed search. Peter Antal

Artificial Intelligence Informed search. Peter Antal Artificial Intelligence Informed search Peter Antal antal@mit.bme.hu 1 Informed = use problem-specific knowledge Which search strategies? Best-first search and its variants Heuristic functions? How to

More information

Problem Solving and Search

Problem Solving and Search Artificial Intelligence Problem Solving and Search Dae-Won Kim School of Computer Science & Engineering Chung-Ang University Outline Problem-solving agents Problem types Problem formulation Example problems

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Informed Search and Exploration Chapter 4 (4.1 4.2) A General Search algorithm: Chapter 3: Search Strategies Task : Find a sequence of actions leading from the initial state to

More information

CPS 170: Artificial Intelligence Search

CPS 170: Artificial Intelligence   Search CPS 170: Artificial Intelligence http://www.cs.duke.edu/courses/spring09/cps170/ Search Instructor: Vincent Conitzer Search We have some actions that can change the state of the world Change resulting

More information

Iterative-Expansion A*

Iterative-Expansion A* Iterative-Expansion A* Colin M. Potts and Kurt D. Krebsbach Department of Mathematics and Computer Science Lawrence University, Appleton, Wisconsin 54911 {colin.m.potts, kurt.krebsbach}@lawrence.edu Abstract

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Informed (Heuristic) Search. Idea: be smart about what paths to try.

Informed (Heuristic) Search. Idea: be smart about what paths to try. Informed (Heuristic) Search Idea: be smart about what paths to try. 1 Blind Search vs. Informed Search What s the difference? How do we formally specify this? A node is selected for expansion based on

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic Uninformed (blind) search algorithms can find an (optimal) solution to the problem,

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Searching with Partial Information

Searching with Partial Information Searching with Partial Information Above we (unrealistically) assumed that the environment is fully observable and deterministic Moreover, we assumed that the agent knows what the effects of each action

More information

A.I.: Informed Search Algorithms. Chapter III: Part Deux

A.I.: Informed Search Algorithms. Chapter III: Part Deux A.I.: Informed Search Algorithms Chapter III: Part Deux Best-first search Greedy best-first search A * search Heuristics Outline Overview Informed Search: uses problem-specific knowledge. General approach:

More information

CS 331: Artificial Intelligence Informed Search. Informed Search

CS 331: Artificial Intelligence Informed Search. Informed Search CS 331: Artificial Intelligence Informed Search 1 Informed Search How can we make search smarter? Use problem-specific knowledge beyond the definition of the problem itself Specifically, incorporate knowledge

More information

Learning from Multiple Heuristics

Learning from Multiple Heuristics Mehdi Samadi Computing Science University of Alberta Edmonton, Alberta, Canada T6G E8 msamadi@cs.ualberta.ca Learning from Multiple Heuristics Ariel Felner Information Systems Engineering Dept. Deutsche

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Admissible Heuristics Graph Search Consistent Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing

More information

Heuristic (Informed) Search

Heuristic (Informed) Search Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect..1 3 1 Search Algorithm #2 SEARCH#2 1. INSERT(initial-node,Open-List) 2. Repeat: a. If empty(open-list) then return failure

More information

Fringe Search: Beating A* at Pathfinding on Game Maps

Fringe Search: Beating A* at Pathfinding on Game Maps Fringe Search: Beating A* at Pathfinding on Game Maps Yngvi Björnsson Markus Enzenberger, Robert C. Holte and Jonathan Schaeffer School of Computer Science Department of Computing Science Reykjavik University

More information

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek

Lecture 9. Heuristic search, continued. CS-424 Gregory Dudek Lecture 9 Heuristic search, continued A* revisited Reminder: with A* we want to find the best-cost (C ) path to the goal first. To do this, all we have to do is make sure our cost estimates are less than

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A UNIT II REPRESENTATION OF KNOWLEDGE PART A 1. What is informed search? One that uses problem specific knowledge beyond the definition of the problem itself and it can find solutions more efficiently than

More information

Informed search strategies (Section ) Source: Fotolia

Informed search strategies (Section ) Source: Fotolia Informed search strategies (Section 3.5-3.6) Source: Fotolia Review: Tree search Initialize the frontier using the starting state While the frontier is not empty Choose a frontier node to expand according

More information

Advanced A* Improvements

Advanced A* Improvements Advanced A* Improvements 1 Iterative Deepening A* (IDA*) Idea: Reduce memory requirement of A* by applying cutoff on values of f Consistent heuristic function h Algorithm IDA*: 1. Initialize cutoff to

More information

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches

ITCS 6150 Intelligent Systems. Lecture 5 Informed Searches ITCS 6150 Intelligent Systems Lecture 5 Informed Searches Informed Searches We are informed (in some way) about future states and future paths We use this information to make better decisions about which

More information

Iterative-Expansion A*

Iterative-Expansion A* Iterative-Expansion A* Colin M. Potts and Kurt D. Krebsbach Department of Mathematics and Computer Science Lawrence University, Appleton, Wisconsin 54911 {colin.m.potts, kurt.krebsbach}@lawrence.edu March

More information

Informed Search and Exploration

Informed Search and Exploration Informed Search and Exploration Chapter 4 (4.1-4.3) CS 2710 1 Introduction Ch.3 searches good building blocks for learning about search But vastly inefficient eg: Can we do better? Breadth Depth Uniform

More information

Basic Search Algorithms

Basic Search Algorithms Basic Search Algorithms Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract The complexities of various search algorithms are considered in terms of time, space, and cost

More information

Enhanced Partial Expansion A*

Enhanced Partial Expansion A* Journal of Artificial Intelligence Research 50 (2014) 141-187 Submitted 9/13; published 5/14 Enhanced Partial Expansion A* Meir Goldenberg Ariel Felner Roni Stern Guni Sharon Ben-Gurion University of the

More information

Heuristic Search. Heuristic Search. Heuristic Search. CSE 3401: Intro to AI & LP Informed Search

Heuristic Search. Heuristic Search. Heuristic Search. CSE 3401: Intro to AI & LP Informed Search CSE 3401: Intro to AI & LP Informed Search Heuristic Search. Required Readings: Chapter 3, Sections 5 and 6, and Chapter 4, Section 1. In uninformed search, we don t try to evaluate which of the nodes

More information

CS 520: Introduction to Artificial Intelligence. Lectures on Search

CS 520: Introduction to Artificial Intelligence. Lectures on Search CS 520: Introduction to Artificial Intelligence Prof. Louis Steinberg Lecture : uninformed search uninformed search Review Lectures on Search Formulation of search problems. State Spaces Uninformed (blind)

More information

Ultra-Fast Optimal Pathfinding without Runtime Search

Ultra-Fast Optimal Pathfinding without Runtime Search Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Ultra-Fast Optimal Pathfinding without Runtime Search Adi Botea NICTA and the Australian National

More information

Heuris'c Search. Reading note: Chapter 4 covers heuristic search.

Heuris'c Search. Reading note: Chapter 4 covers heuristic search. Heuris'c Search Reading note: Chapter 4 covers heuristic search. Credits: Slides in this deck are drawn from or inspired by a multitude of sources including: Shaul Markovitch Jurgen Strum Sheila McIlraith

More information

Logistics. Heuristics & Constraint Satisfaction. Symbolic Integration. 573 Topics. Symbolic Integration. Search. E.g. x 2 e x dx = e x (x 2-2x+2) + C

Logistics. Heuristics & Constraint Satisfaction. Symbolic Integration. 573 Topics. Symbolic Integration. Search. E.g. x 2 e x dx = e x (x 2-2x+2) + C Logistics Heuristics & Constraint Satisfaction CSE 573 University of Washington Reading for Monday Ch 6 (Game playing) Guest Speaker Henry Kautz Mini Projects A. Game Playing Choose your own game Experiment

More information

Additive Pattern Database Heuristics

Additive Pattern Database Heuristics Journal of Artificial Intelligence Research 22 (2004) 279-318 Submitted 04/04; published 11/04 Additive Pattern Database Heuristics Ariel Felner felner@bgu.ac.il Department of Information Systems Engineering,

More information

Informed Search (Ch )

Informed Search (Ch ) Informed Search (Ch. 3.5-3.6) Informed search In uninformed search, we only had the node information (parent, children, cost of actions) Now we will assume there is some additional information, we will

More information

Artificial Intelligence Informed search. Peter Antal Tadeusz Dobrowiecki

Artificial Intelligence Informed search. Peter Antal Tadeusz Dobrowiecki Artificial Intelligence Informed search Peter Antal antal@mit.bme.hu Tadeusz Dobrowiecki tade@mit.bme.hu A.I. 9/17/2018 1 Informed = use problem-specific knowledge Which search strategies? Best-first search

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 7 Extra Credit Opportunity: Lecture Today 4:15pm Gates G01 Learning to See Without a Teacher Phillip Isola

More information

Abstraction-Based Heuristics with True Distance Computations

Abstraction-Based Heuristics with True Distance Computations Abstraction-Based Heuristics with True Distance Computations Ariel Felner and Max Barer Information Systems Engineering Deutsche Telekom Labs Ben-Gurion University Be er-sheva, Israel 85104 felner@bgu.ac.il

More information

Heuristic Search INTRODUCTION TO ARTIFICIAL INTELLIGENCE BIL 472 SADI EVREN SEKER

Heuristic Search INTRODUCTION TO ARTIFICIAL INTELLIGENCE BIL 472 SADI EVREN SEKER Heuristic Search INTRODUCTION TO ARTIFICIAL INTELLIGENCE BIL 7 SADI EVREN SEKER Review of Search - BFS Review of Search - DFS Review of Search - IDDFS DFS Remembering: IDDFS(root, A, B, goal) D, F, E,

More information

Early Work on Optimization-Based Heuristics for the Sliding Tile Puzzle

Early Work on Optimization-Based Heuristics for the Sliding Tile Puzzle Planning, Search, and Optimization: Papers from the 2015 AAAI Workshop Early Work on Optimization-Based Heuristics for the Sliding Tile Puzzle Ariel Felner ISE Department Ben-Gurion University Israel felner@bgu.ac.il

More information

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2: Search. Problem Solving Agents

Class Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 2: Search. Problem Solving Agents Class Overview COMP 3501 / COMP 4704-4 Lecture 2: Search Prof. 1 2 Problem Solving Agents Problem Solving Agents: Assumptions Requires a goal Assume world is: Requires actions Observable What actions?

More information

CS188: Artificial Intelligence, Fall 2008

CS188: Artificial Intelligence, Fall 2008 CS188: Artificial Intelligence, Fall 008 CS188 Spring 010Written SectionAssignment 1: Search 1 Due: September 11th at the beginning of lecture 1 Search algorithms in action ( ) 1 Graph Search Strategies

More information

Search. CS 3793/5233 Artificial Intelligence Search 1

Search. CS 3793/5233 Artificial Intelligence Search 1 CS 3793/5233 Artificial Intelligence 1 Basics Basics State-Space Problem Directed Graphs Generic Algorithm Examples Uninformed is finding a sequence of actions that achieve a goal from an initial state.

More information

Are We Smart Yet? (Where we try to choose smartly) R&N: Chap. 4, Sect

Are We Smart Yet? (Where we try to choose smartly) R&N: Chap. 4, Sect Heuristic (Informed) Search (Where we try to choose smartly) R&N: Chap., Sect.. Slides from Jean-Claude Latombe at Stanford University (used with permission) Recall that the ordering of FRINGE defines

More information

Lecture 3 - States and Searching

Lecture 3 - States and Searching Lecture 3 - States and Searching Jesse Hoey School of Computer Science University of Waterloo January 15, 2018 Readings: Poole & Mackworth Chapt. 3 (all) Searching Often we are not given an algorithm to

More information

Search. (Textbook Chpt ) Computer Science cpsc322, Lecture 2. May, 10, CPSC 322, Lecture 2 Slide 1

Search. (Textbook Chpt ) Computer Science cpsc322, Lecture 2. May, 10, CPSC 322, Lecture 2 Slide 1 Search Computer Science cpsc322, Lecture 2 (Textbook Chpt 3.0-3.4) May, 10, 2012 CPSC 322, Lecture 2 Slide 1 Colored Cards You need to have 4 colored index cards Come and get them from me if you still

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Informed Search Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair,

COMP9414/ 9814/ 3411: Artificial Intelligence. 5. Informed Search. Russell & Norvig, Chapter 3. UNSW c Alan Blair, COMP9414/ 9814/ 3411: Artificial Intelligence 5. Informed Search Russell & Norvig, Chapter 3. COMP9414/9814/3411 15s1 Informed Search 1 Search Strategies General Search algorithm: add initial state to

More information

Predicting the Performance of IDA* using Conditional Distributions

Predicting the Performance of IDA* using Conditional Distributions Journal of Artificial Intelligence Research 37 (2010) 41-83 Submitted 07/09; published 02/10 Predicting the Performance of IDA* using Conditional Distributions Uzi Zahavi Computer Science Department Bar-Ilan

More information

Informed search methods

Informed search methods Informed search methods Tuomas Sandholm Computer Science Department Carnegie Mellon University Read Section 3.5-3.7 of Russell and Norvig Informed Search Methods Heuristic = to find, to discover Heuristic

More information

Informed (heuristic) search (cont). Constraint-satisfaction search.

Informed (heuristic) search (cont). Constraint-satisfaction search. CS 1571 Introduction to AI Lecture 5 Informed (heuristic) search (cont). Constraint-satisfaction search. Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Administration PS 1 due today Report before

More information

University of Alberta. Levi Henrique Santana de Lelis. Doctor of Philosophy. Department of Computing Science

University of Alberta. Levi Henrique Santana de Lelis. Doctor of Philosophy. Department of Computing Science University of Alberta CLUSTER-AND-CONQUER: A PARADIGM FOR SOLVING STATE-SPACE PROBLEMS by Levi Henrique Santana de Lelis A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

More information

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies

4 INFORMED SEARCH AND EXPLORATION. 4.1 Heuristic Search Strategies 55 4 INFORMED SEARCH AND EXPLORATION We now consider informed search that uses problem-specific knowledge beyond the definition of the problem itself This information helps to find solutions more efficiently

More information

Informed search algorithms. Chapter 4, Sections 1 2 1

Informed search algorithms. Chapter 4, Sections 1 2 1 Informed search algorithms Chapter 4, Sections 1 2 Chapter 4, Sections 1 2 1 Outline Best-first search A search Heuristics Chapter 4, Sections 1 2 2 Review: Tree search function Tree-Search( problem, fringe)

More information

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017

Lecture 2: Fun with Search. Rachel Greenstadt CS 510, October 5, 2017 Lecture 2: Fun with Search Rachel Greenstadt CS 510, October 5, 2017 Reminder! Project pre-proposals due tonight Overview Uninformed search BFS, DFS, Uniform-Cost, Graph-Search Informed search Heuristics,

More information

Improving the Efficiency of Depth-First Search by Cycle Elimination

Improving the Efficiency of Depth-First Search by Cycle Elimination Improving the Efficiency of Depth-First Search by Cycle Elimination John F. Dillenburg and Peter C. Nelson * Department of Electrical Engineering and Computer Science (M/C 154) University of Illinois Chicago,

More information

Search and Games. Adi Botea. ANU Summer Schools in Logic and Learning February, 2009

Search and Games. Adi Botea. ANU Summer Schools in Logic and Learning February, 2009 Search and Games Adi Botea ANU Summer Schools in Logic and Learning February, 2009 Outline 1 Introduction 2 Problem Representation 3 Uninformed Search 4 Informed Search 5 Hierarchical Abstraction Outline

More information

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Informed Search. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Informed Search CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Outline Using knowledge Heuristics Bestfirst search Greedy bestfirst search A* search Variations of A* Back to heuristics

More information

Introduction to Artificial Intelligence. Informed Search

Introduction to Artificial Intelligence. Informed Search Introduction to Artificial Intelligence Informed Search Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Best-first search A search Heuristics B. Beckert:

More information

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday

Notes. Video Game AI: Lecture 5 Planning for Pathfinding. Lecture Overview. Knowledge vs Search. Jonathan Schaeffer this Friday Notes Video Game AI: Lecture 5 Planning for Pathfinding Nathan Sturtevant COMP 3705 Jonathan Schaeffer this Friday Planning vs localization We cover planning today Localization is just mapping a real-valued

More information

Heuristic Search: A* CPSC 322 Search 4 January 19, Textbook 3.6 Taught by: Vasanth

Heuristic Search: A* CPSC 322 Search 4 January 19, Textbook 3.6 Taught by: Vasanth Heuristic Search: A* CPSC 322 Search 4 January 19, 2011 Textbook 3.6 Taught by: Vasanth 1 Lecture Overview Recap Search heuristics: admissibility and examples Recap of BestFS Heuristic search: A* 2 Example

More information

Heuristic Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Heuristic Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Heuristic Search Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Recap: What is graph search? Start state Goal state Graph search: find a path

More information

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department

Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) Computer Science Department (CHAPTER-3-PART3) PROBLEM SOLVING AND SEARCH Searching algorithm Uninformed

More information

Using Lookaheads with Optimal Best-First Search

Using Lookaheads with Optimal Best-First Search Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Using Lookaheads with Optimal Best-First Search Roni Stern Tamar Kulberis Ariel Felner Information Systems Engineering

More information

Solving the Sokoban Problem (Artificial Intelligence 11)

Solving the Sokoban Problem (Artificial Intelligence 11) Solving the Sokoban Problem (Artificial Intelligence 11) M. Dorst, M. Gerontini, A. Marzinotto, R. Pana October 14, 2011 Matthijs Dorst 1985-02-05 dorst@kth.se Maria Gerontini 1988-01-26 mger@kth.se Radu-Mihai

More information

The Big Idea. Where Do Heuristics Come From? Puzzles. Applications. (Using Abstraction to Speed Up Search)

The Big Idea. Where Do Heuristics Come From? Puzzles. Applications. (Using Abstraction to Speed Up Search) Where Do Heuristics Come From? (Using Abstraction to Speed Up Search) Robert C. Holte Computing Science Department University of Alberta The Big Idea Create a simplified version of your problem. Use the

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 23 January, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3 4: More search algorithms CHAPTERS 3 4: MORE SEARCH ALGORITHMS DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 23 January, 2018 1 TABLE OF CONTENTS

More information

CSC384 Midterm Sample Questions

CSC384 Midterm Sample Questions CSC384 Midterm Sample Questions Fall 2016 1 Search Short Answer 1. It would seem that iterative deepening search should have a higher asymptotic time complexity than breadth-first search because every

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 04 p.1/39 Informed Search and Exploration Chapter 4 Ch. 04 p.2/39 Outline Best-first search A search Heuristics IDA search Hill-climbing Simulated annealing Ch. 04 p.3/39 Review: Tree search function

More information

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 7. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 7 Dr. Ted Ralphs ISE 418 Lecture 7 1 Reading for This Lecture Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Wolsey Chapter 7 CCZ Chapter 1 Constraint

More information

Informed Search and Exploration

Informed Search and Exploration Ch. 03 p.1/47 Informed Search and Exploration Sections 3.5 and 3.6 Ch. 03 p.2/47 Outline Best-first search A search Heuristics, pattern databases IDA search (Recursive Best-First Search (RBFS), MA and

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 37. Automated Planning: Abstraction and Pattern Databases Martin Wehrle Universität Basel May 13, 2016 Planning Heuristics We consider three basic ideas for general

More information

Exam Topics. Search in Discrete State Spaces. What is intelligence? Adversarial Search. Which Algorithm? 6/1/2012

Exam Topics. Search in Discrete State Spaces. What is intelligence? Adversarial Search. Which Algorithm? 6/1/2012 Exam Topics Artificial Intelligence Recap & Expectation Maximization CSE 473 Dan Weld BFS, DFS, UCS, A* (tree and graph) Completeness and Optimality Heuristics: admissibility and consistency CSPs Constraint

More information

Bounded Suboptimal Heuristic Search in Linear Space

Bounded Suboptimal Heuristic Search in Linear Space Proceedings of the Sixth International Symposium on Combinatorial Search Bounded Suboptimal Heuristic Search in Linear Space Matthew Hatem Department of Computer Science University of New Hampshire Durham,

More information

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA

Heuristic Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA Heuristic Search Rob Platt Northeastern University Some images and slides are used from: AIMA Recap: What is graph search? Start state Goal state Graph search: find a path from start to goal what are the

More information

Does Fast Beat Thorough? Comparing RTAA* and LSS-LRTA*

Does Fast Beat Thorough? Comparing RTAA* and LSS-LRTA* Does Fast Beat Thorough? Comparing and Shane Kochvi and Wheeler Ruml Department of Computer Science University of New Hampshire Durham, NH 3824 USA shl29 at wildcats.unh.edu and ruml at cs.unh.edu Abstract

More information

Partial-expansion A* with Selective Node Generation

Partial-expansion A* with Selective Node Generation Partial-expansion A* with Selective Node Generation Ariel Felner Nathan Sturtevant Meir Goldenberg CS Department Guni Sharon University of Denver (USA) Roni Stern, Tal Beja Sturtevant@cs.du.edu ISE Department

More information

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Midterm Exam Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Covers topics through Decision Trees and Random Forests (does not include constraint satisfaction) Closed book 8.5 x 11 sheet with notes

More information

Informed Search. Notes about the assignment. Outline. Tree search: Reminder. Heuristics. Best-first search. Russell and Norvig chap.

Informed Search. Notes about the assignment. Outline. Tree search: Reminder. Heuristics. Best-first search. Russell and Norvig chap. Notes about the assignment Informed Search Russell and Norvig chap. 4 If it says return True or False, return True or False, not "True" or "False Comment out or remove print statements before submitting.

More information

APHID: Asynchronous Parallel Game-Tree Search

APHID: Asynchronous Parallel Game-Tree Search APHID: Asynchronous Parallel Game-Tree Search Mark G. Brockington and Jonathan Schaeffer Department of Computing Science University of Alberta Edmonton, Alberta T6G 2H1 Canada February 12, 1999 1 Running

More information