Efficient Imaging Algorithms on Many-Core Platforms

Size: px
Start display at page:

Download "Efficient Imaging Algorithms on Many-Core Platforms"

Transcription

1 Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl,

2 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based models Image Deblurring Algorithmic problems Image Segmentation Modelling problems 2

3 An efficient multigrid solver in action HDR COMPRESSION 3

4 HDR Compression of 2D X-ray Images Data: Siemens AG, Healthcare Sector Original Image (960x960) HDR Compression 4

5 HDR Compression The dynamic range of an image refers to the ratio between the brightest and darkest portions of the image which is accurately captured or observed HDR compression is used to get more details out of the image based on»gradient Domain High Dynamic Range Compression«[Fattal/Lischinski/Werman], SIGGRAPH

6 HDR Compression Idea: Modify the magnitude of the image gradient by applying a position-dependent attenuating function Φ : 2 R R C = I Φ Φ is computed on different image resolutions 0..L by φ l = α I l I l α β Φ Φ 0 = φ L L = Φ = P l ( Φ φ l 1 l Φ + ) α determines which gradient magnitudes are left unchanged, β <1 is the attenuating factor of the larger gradients 6

7 Imaging in Gradient Space Energy functional E( u) Ω = min u( x) C d x Euler-Lagrange equations u 2 2 u = divc = f Solve by multigrid the PDE u = f in Ω u = 0 on Ω 7

8 General Software Features High dynamic range compression for 2D CT images on GPU/CPU Image histogram computation and windowing CPU/GPU Interactive computation on GPU with user-input parameters Interactive visualization of results with OpenGL on GPU 8

9 Runtime Distribution for one Frame transfer to device 7% setup RHS, output 10% transfer from device 17% multigrid solver 66% Frame is transfered to gradient space gradients are scaled processed image is restored 9

10 Frames per second for HDR Compression fps fps (solver) fps (CPU) x x x x x4096 CPU: Intel Core2 Quad Q9550@2.83GHz, OpenMP (4 cores), GPU: GTX

11 Optimized HDR Compression GTX 295/2 GTX 480 GTX 480 (wavefront) half of an NVIDIA GTX GB/s peak bandwidth compute capability 1.3 NVIDIA GTX GB/s peak bandwidth compute capability 2.0 (Fermi) fps for HDR compression (size 2048x2048) 11

12 HDR Compression Results Data: Siemens AG, Healthcare Sector Original Image (960x960) HDR Compression 12

13 HDR Compression Results Data: Siemens AG, Healthcare Sector Attenuating function Φ 13

14 Hierarchical Hybrid Grids (HHG) Solve 3D Poisson equation on an unstructured tetrahedral input grid Bey s Tetrahedral Refinement Finite element discretization Patch-wise regular refinement generates nested grid hierarchies naturally suitable for geometric multigrid algorithms 14

15 Data sets for 3D HDR Compression MRI data provided by Universitätsklinikum Erlangen Tetrahedral finite element mesh used in HHG 15

16 Strong Scaling for Multigrid Solver on Jugene Ratio computation : communication is about 3 : x512x x1024x x2048x1152 Runtime for one V(2,2) cycle in ms Setups: 512x512x unknowns = 40% mesh cover (16 patches per direction) 5646 cores 1024x1024x unknowns = 33% (32 patches per direction) cores 2048x2048x unknowns = 33% (32 patches per direction) cores 16

17 Performance for one V(2,2)-cycle PowerPC 450 Xeon 5550 M1060 C2050 GTX 480 2D const stencil (5p) Mu/s 1613 Mu/s 2D variable stencil (5p, complex) 86.2 Mu/s Mu/s 3D const stencil (7p) 7.4 Mu/s 26.8 Mu/s 93.2 Mu/s 3D variable stencil (7p) 11.2 Mu/s 32.9 Mu/s 88.3 Mu/s For strong scaling on Jugene (PowerPC 450) we achieve 2,7 Mu/s per node and in total 12,3 Gu/s in HHG! 17

18 Sparse coding IMAGE DENOISING 18

19 Image Denoising of 3D CT Volume Data: Siemens AG, Healthcare Sector 19

20 Noise Model Assumption: Relation between an original, unknown image u : Ω R d R and an observed image u 0 can be expressed by u 0 = u +η where η stands for the noise that is estimated locally. 20

21 Image Denoising Models Variational approach Requires solution of a nonlinear diffusion-based PDE Done by a multigrid solver Wavelet-based approach Thresholding of coefficients based on noise variance Haar wavelet shows to be most efficient Sparse Coding Image is coded patch-wise by a sparse representation in an overcomplete basis Coefficients are computed by batch-omp algorithm M. Mayer, A. Borsdorf, H. Koestler, J. Hornegger, and U. Ruede, Nonlinear Diffusion vs.wavelet Based Noise Reduction in CT Using Correlation Analysis, VMV

22 Patch-based Image Processing Image processing on many overlapping sub-blocks called patches M. Elad, Sparse and Redundant Representations from Theory to Applications in Signal and Image Processing, Springer,

23 Sample Dictionaries 23

24 Sparse Coding Patch x is represented by linear combination of few atoms of overcomplete dictionary D Dictionary D: matrix comprising prototype signal-atoms (extension beyond basis vectors spanning vector space) Find sparsest representation a for x: a = arg min a a 0 subject to Da x 2 2 ε 24

25 Batch-OMP Algorithm Solve overdetermined linear system while finding the sparsest solution in general NP-hard Efficient Orthogonal Matching Pursuit (OMP): Greedy algorithm, selects atoms sequentially Select atom with highest correlation to the current residual Project signal orthogonally to span of selected atoms More efficient Batch-OMP on GPU : No need to compute residual Progressive Cholesky update instead of full pseudoinverse computation Bartuschat, D. and Stürmer, M., Köstler, H.;An orthogonal matching pursuit algorithm for image denoising on the cell broadband engine, Parallel Processing and Applied Mathematics, ,

26 Batch-OMP Algorithm Find next atom (3,4,11) Matrix multiplication for initial data (1) substitutions (5-9) projection (10) Error update (12-13) R. Rubinstein, M. Zibulevsky, M. Elad, Efficient implementation of the K- SVD algorithm using batch orthogonal matching pursuit, Technion,

27 Contribution to overall Batch-OMP Runtime Fermi GPU Cell broadband engine 27

28 Patches per second for Batch-OMP 28

29 Performance Batch-OMP for single compute unit 29

30 Performance Multigrid vs. Batch-OMP To achieve for an image of size 2048 x 2048 the same no. of frames per second (120) as for our optimized multigrid solver we can use patches if we select only 1 atom patches if we select 16 atoms In this case we have around non-overlapping patches of size 8x8 in the image 30

31 Variational and sparse coding approach IMAGE DEBLURRING 31

32 Image Deblurring data provided by G. Donnert, MPI Göttingen 32

33 Image Deblurring Assumption: Image u is blurred (convolved) by PSF or kernel K resulting in blurred image x Ku = x In case of a noise free u the deblurred image is given by u = K 1 x In case of a noisy u we have to take into account (with original image u* and additive noise n) u = u * + n 33

34 Simple Variational Model for Image Deblurring Energy functional becomes 2 ) E[ u] = ( Ku x + α u Ω 2 2 dx Resulting Euler-Lagrange equations: ( α + K ) u = f in Ω u, n = 0 on Ω Drawback: PSF can have large support! 34

35 Image Deblurring Results Original image blurred and noisy image deblurred image From: Lou, Y., Bertozzi, A.L., Soatto, S.; Direct sparse deblurring, Journal of Mathematical Imaging and Vision, pp. 1-12,

36 Deblurring by Sparse Coding Idea: Use blurred dictionary D = KD Ku = x u Da KDa = D' a x Compute coefficients a with respect to D, but then restore the deblurred image by using D a = arg min a a subject to ' 0 D a x 2 2 ε No inverse problem has to be solved! 36

37 Image Deblurring Results 37

38 Deblurring by Sparse Coding Open problems: Patch boundaries Best dictionary learned from original, non-blurred data 38

39 Muscle fibres IMAGE SEGMENTATION 39

40 Image Segmentation Goal: Extract fibres from structural images of a mouse muscle obtained from extended volume imaging. Data provided by O. Röhrle, Universität Stuttgart from Dane Gerneke, Auckland Bioengineering Institute at the University of Auckland, New Zealand 40

41 Image Segmentation 41

42 Segmentation Process The following steps are employed during the segmentation process: Step 1: Pre-filtering of raw image data Step 2: Circle detection as initial rough approximation to the shape of a fibre Step 3: Finding the final contours of the muscle fibres by the method of active contours Step 4: Post-processing O. Roehrle, H. Koestler, and M. Loch, Segmentation of skeletal muscle fibers for applications in computational skeletal muscle mechanics, Computational Biomechanics for Medicine, Springer,

43 Automatic segmentation result 43

44 Future Work and Future Topics Image Deblurring Explore different dictionaries Solve boundary problems with ideas from domain decomposition Image Segmentation Include geometric/shape information in model 44

A parallel patch based algorithm for CT image denoising on the Cell Broadband Engine

A parallel patch based algorithm for CT image denoising on the Cell Broadband Engine A parallel patch based algorithm for CT image denoising on the Cell Broadband Engine Dominik Bartuschat, Markus Stürmer, Harald Köstler and Ulrich Rüde Friedrich-Alexander Universität Erlangen-Nürnberg,Germany

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

Multigrid algorithms on multi-gpu architectures

Multigrid algorithms on multi-gpu architectures Multigrid algorithms on multi-gpu architectures H. Köstler European Multi-Grid Conference EMG 2010 Isola d Ischia, Italy 20.9.2010 2 Contents Work @ LSS GPU Architectures and Programming Paradigms Applications

More information

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion

Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion Geometric Multigrid on Multicore Architectures: Performance-Optimized Complex Diffusion M. Stürmer, H. Köstler, and U. Rüde Lehrstuhl für Systemsimulation Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

How to Optimize Geometric Multigrid Methods on GPUs

How to Optimize Geometric Multigrid Methods on GPUs How to Optimize Geometric Multigrid Methods on GPUs Markus Stürmer, Harald Köstler, Ulrich Rüde System Simulation Group University Erlangen March 31st 2011 at Copper Schedule motivation imaging in gradient

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

A Fast GPU-based Method for Image Segmentation

A Fast GPU-based Method for Image Segmentation A Fast GPU-based Method for Image Segmentation H. Köstler 1, O. Röhrle 2 1 Lehrstuhl für Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg, Germany 2 Institut für Mechanik (Bauwesen), Lehrstuhl

More information

Histograms of Sparse Codes for Object Detection

Histograms of Sparse Codes for Object Detection Histograms of Sparse Codes for Object Detection Xiaofeng Ren (Amazon), Deva Ramanan (UC Irvine) Presented by Hossein Azizpour What does the paper do? (learning) a new representation local histograms of

More information

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG)

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) A parallel K-SVD implementation

More information

Numerical Algorithms on Multi-GPU Architectures

Numerical Algorithms on Multi-GPU Architectures Numerical Algorithms on Multi-GPU Architectures Dr.-Ing. Harald Köstler 2 nd International Workshops on Advances in Computational Mechanics Yokohama, Japan 30.3.2010 2 3 Contents Motivation: Applications

More information

Department of Electronics and Communication KMP College of Engineering, Perumbavoor, Kerala, India 1 2

Department of Electronics and Communication KMP College of Engineering, Perumbavoor, Kerala, India 1 2 Vol.3, Issue 3, 2015, Page.1115-1021 Effect of Anti-Forensics and Dic.TV Method for Reducing Artifact in JPEG Decompression 1 Deepthy Mohan, 2 Sreejith.H 1 PG Scholar, 2 Assistant Professor Department

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

Adaptive Reconstruction Methods for Low-Dose Computed Tomography

Adaptive Reconstruction Methods for Low-Dose Computed Tomography Adaptive Reconstruction Methods for Low-Dose Computed Tomography Joseph Shtok Ph.D. supervisors: Prof. Michael Elad, Dr. Michael Zibulevsky. Technion IIT, Israel, 011 Ph.D. Talk, Apr. 01 Contents of this

More information

Hierarchical Hybrid Grids

Hierarchical Hybrid Grids Hierarchical Hybrid Grids IDK Summer School 2012 Björn Gmeiner, Ulrich Rüde July, 2012 Contents Mantle convection Hierarchical Hybrid Grids Smoothers Geometric approximation Performance modeling 2 Mantle

More information

Inverse Problems and Machine Learning

Inverse Problems and Machine Learning Inverse Problems and Machine Learning Julian Wörmann Research Group for Geometric Optimization and Machine Learning (GOL) 1 What are inverse problems? 2 Inverse Problems cause/ excitation 3 Inverse Problems

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Automatic Generation of Algorithms and Data Structures for Geometric Multigrid Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Introduction Multigrid Goal: Solve a partial differential

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke 1 3 Robert Strzodka 2 Stefan Turek 1 dominik.goeddeke@math.uni-dortmund.de 1 Mathematics III: Applied Mathematics and Numerics, University

More information

Image Restoration and Background Separation Using Sparse Representation Framework

Image Restoration and Background Separation Using Sparse Representation Framework Image Restoration and Background Separation Using Sparse Representation Framework Liu, Shikun Abstract In this paper, we introduce patch-based PCA denoising and k-svd dictionary learning method for the

More information

EFFICIENT DICTIONARY LEARNING IMPLEMENTATION ON THE GPU USING OPENCL

EFFICIENT DICTIONARY LEARNING IMPLEMENTATION ON THE GPU USING OPENCL U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 3, 2016 ISSN 2286-3540 EFFICIENT DICTIONARY LEARNING IMPLEMENTATION ON THE GPU USING OPENCL Paul Irofti 1 Abstract The dictionary learning field offers a wide

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Nikolai Sakharnykh - NVIDIA San Jose Convention Center, San Jose, CA September 21, 2010 Introduction Tridiagonal solvers very popular

More information

Accelerating image registration on GPUs

Accelerating image registration on GPUs Accelerating image registration on GPUs Harald Köstler, Sunil Ramgopal Tatavarty SIAM Conference on Imaging Science (IS10) 13.4.2010 Contents Motivation: Image registration with FAIR GPU Programming Combining

More information

Efficient Implementation of the K-SVD Algorithm and the Batch-OMP Method

Efficient Implementation of the K-SVD Algorithm and the Batch-OMP Method Efficient Implementation of the K-SVD Algorithm and the Batch-OMP Method Ron Rubinstein, Michael Zibulevsky and Michael Elad Abstract The K-SVD algorithm is a highly effective method of training overcomplete

More information

Image Restoration Using DNN

Image Restoration Using DNN Image Restoration Using DNN Hila Levi & Eran Amar Images were taken from: http://people.tuebingen.mpg.de/burger/neural_denoising/ Agenda Domain Expertise vs. End-to-End optimization Image Denoising and

More information

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida

Learning Splines for Sparse Tomographic Reconstruction. Elham Sakhaee and Alireza Entezari University of Florida Learning Splines for Sparse Tomographic Reconstruction Elham Sakhaee and Alireza Entezari University of Florida esakhaee@cise.ufl.edu 2 Tomographic Reconstruction Recover the image given X-ray measurements

More information

Iterative CT Reconstruction Using Curvelet-Based Regularization

Iterative CT Reconstruction Using Curvelet-Based Regularization Iterative CT Reconstruction Using Curvelet-Based Regularization Haibo Wu 1,2, Andreas Maier 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab (LME), Department of Computer Science, 2 Graduate School in

More information

Large-scale Gas Turbine Simulations on GPU clusters

Large-scale Gas Turbine Simulations on GPU clusters Large-scale Gas Turbine Simulations on GPU clusters Tobias Brandvik and Graham Pullan Whittle Laboratory University of Cambridge A large-scale simulation Overview PART I: Turbomachinery PART II: Stencil-based

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Sparsity and image processing

Sparsity and image processing Sparsity and image processing Aurélie Boisbunon INRIA-SAM, AYIN March 6, Why sparsity? Main advantages Dimensionality reduction Fast computation Better interpretability Image processing pattern recognition

More information

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis

TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis TERM PAPER ON The Compressive Sensing Based on Biorthogonal Wavelet Basis Submitted By: Amrita Mishra 11104163 Manoj C 11104059 Under the Guidance of Dr. Sumana Gupta Professor Department of Electrical

More information

Reconstruction of Trees from Laser Scan Data and further Simulation Topics

Reconstruction of Trees from Laser Scan Data and further Simulation Topics Reconstruction of Trees from Laser Scan Data and further Simulation Topics Helmholtz-Research Center, Munich Daniel Ritter http://www10.informatik.uni-erlangen.de Overview 1. Introduction of the Chair

More information

Image Reconstruction from Multiple Sparse Representations

Image Reconstruction from Multiple Sparse Representations Image Reconstruction from Multiple Sparse Representations Robert Crandall Advisor: Professor Ali Bilgin University of Arizona Program in Applied Mathematics 617 N. Santa Rita, Tucson, AZ 85719 Abstract

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation

A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation , pp.162-167 http://dx.doi.org/10.14257/astl.2016.138.33 A Novel Image Super-resolution Reconstruction Algorithm based on Modified Sparse Representation Liqiang Hu, Chaofeng He Shijiazhuang Tiedao University,

More information

Two-Phase flows on massively parallel multi-gpu clusters

Two-Phase flows on massively parallel multi-gpu clusters Two-Phase flows on massively parallel multi-gpu clusters Peter Zaspel Michael Griebel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Workshop Programming of Heterogeneous

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences,

More information

Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit

Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Ron Rubinstein, Michael Zibulevsky and Michael Elad Abstract The K-SVD algorithm is a highly effective method of

More information

Re-rendering from a Dense/Sparse Set of Images

Re-rendering from a Dense/Sparse Set of Images Re-rendering from a Dense/Sparse Set of Images Ko Nishino Institute of Industrial Science The Univ. of Tokyo (Japan Science and Technology) kon@cvl.iis.u-tokyo.ac.jp Virtual/Augmented/Mixed Reality Three

More information

Sparse Models in Image Understanding And Computer Vision

Sparse Models in Image Understanding And Computer Vision Sparse Models in Image Understanding And Computer Vision Jayaraman J. Thiagarajan Arizona State University Collaborators Prof. Andreas Spanias Karthikeyan Natesan Ramamurthy Sparsity Sparsity of a vector

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

Sparse & Redundant Representations and Their Applications in Signal and Image Processing

Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparseland: An Estimation Point of View Michael Elad The Computer Science Department The Technion Israel Institute

More information

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences,

More information

Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging

Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging Guided Image Super-Resolution: A New Technique for Photogeometric Super-Resolution in Hybrid 3-D Range Imaging Florin C. Ghesu 1, Thomas Köhler 1,2, Sven Haase 1, Joachim Hornegger 1,2 04.09.2014 1 Pattern

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

CoE4TN3 Image Processing. Wavelet and Multiresolution Processing. Image Pyramids. Image pyramids. Introduction. Multiresolution.

CoE4TN3 Image Processing. Wavelet and Multiresolution Processing. Image Pyramids. Image pyramids. Introduction. Multiresolution. CoE4TN3 Image Processing Image Pyramids Wavelet and Multiresolution Processing 4 Introduction Unlie Fourier transform, whose basis functions are sinusoids, wavelet transforms are based on small waves,

More information

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria

Image deblurring by multigrid methods. Department of Physics and Mathematics University of Insubria Image deblurring by multigrid methods Marco Donatelli Stefano Serra-Capizzano Department of Physics and Mathematics University of Insubria Outline 1 Restoration of blurred and noisy images The model problem

More information

Asynchronous OpenCL/MPI numerical simulations of conservation laws

Asynchronous OpenCL/MPI numerical simulations of conservation laws Asynchronous OpenCL/MPI numerical simulations of conservation laws Philippe HELLUY 1,3, Thomas STRUB 2. 1 IRMA, Université de Strasbourg, 2 AxesSim, 3 Inria Tonus, France IWOCL 2015, Stanford Conservation

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Inverse Problems in Astrophysics

Inverse Problems in Astrophysics Inverse Problems in Astrophysics Part 1: Introduction inverse problems and image deconvolution Part 2: Introduction to Sparsity and Compressed Sensing Part 3: Wavelets in Astronomy: from orthogonal wavelets

More information

GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能

GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能 GAMER : a GPU-accelerated Adaptive-MEsh-Refinement Code for Astrophysics GPU 與自適性網格於天文模擬之應用與效能 Hsi-Yu Schive ( 薛熙于 ), Tzihong Chiueh ( 闕志鴻 ), Yu-Chih Tsai ( 蔡御之 ), Ui-Han Zhang ( 張瑋瀚 ) Graduate Institute

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut &

More information

τ-extrapolation on 3D semi-structured finite element meshes

τ-extrapolation on 3D semi-structured finite element meshes τ-extrapolation on 3D semi-structured finite element meshes European Multi-Grid Conference EMG 2010 Björn Gmeiner Joint work with: Tobias Gradl, Ulrich Rüde September, 2010 Contents The HHG Framework τ-extrapolation

More information

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction

GPU Implementation of Elliptic Solvers in NWP. Numerical Weather- and Climate- Prediction 1/8 GPU Implementation of Elliptic Solvers in Numerical Weather- and Climate- Prediction Eike Hermann Müller, Robert Scheichl Department of Mathematical Sciences EHM, Xu Guo, Sinan Shi and RS: http://arxiv.org/abs/1302.7193

More information

Author(s): Title: Journal: ISSN: Year: 2014 Pages: Volume: 25 Issue: 5

Author(s): Title: Journal: ISSN: Year: 2014 Pages: Volume: 25 Issue: 5 Author(s): Ming Yin, Junbin Gao, David Tien, Shuting Cai Title: Blind image deblurring via coupled sparse representation Journal: Journal of Visual Communication and Image Representation ISSN: 1047-3203

More information

Trainlets: Dictionary Learning in High Dimensions

Trainlets: Dictionary Learning in High Dimensions 1 Trainlets: Dictionary Learning in High Dimensions Jeremias Sulam, Student Member, IEEE, Boaz Ophir, Michael Zibulevsky, and Michael Elad, Fellow, IEEE Abstract Sparse representation has shown to be a

More information

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude

Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude Advanced phase retrieval: maximum likelihood technique with sparse regularization of phase and amplitude A. Migukin *, V. atkovnik and J. Astola Department of Signal Processing, Tampere University of Technology,

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

Modeling Multigrid Algorithms for Variational Imaging

Modeling Multigrid Algorithms for Variational Imaging Modeling Multigrid Algorithms for Variational Imaging, Harald Koestler, Reinhard German, Ulrich Ruede Computer Networks and Communication Systems -Nürnberg, Germany April 09, 2010 What do we do? Model

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay

Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay Jian Wang, Anja Borsdorf, Benno Heigl, Thomas Köhler, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-University

More information

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES

AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES AN ALGORITHM FOR BLIND RESTORATION OF BLURRED AND NOISY IMAGES Nader Moayeri and Konstantinos Konstantinides Hewlett-Packard Laboratories 1501 Page Mill Road Palo Alto, CA 94304-1120 moayeri,konstant@hpl.hp.com

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar

Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar Compressive Sensing Applications and Demonstrations: Synthetic Aperture Radar Shaun I. Kelly The University of Edinburgh 1 Outline 1 SAR Basics 2 Compressed Sensing SAR 3 Other Applications of Sparsity

More information

Sparse Modeling of Graph-Structured Data

Sparse Modeling of Graph-Structured Data Sparse Modeling of Graph-Structured Data and Images Michael Elad The Computer Science Department The Technion The 3rd Annual International TCE Conference Machine Learning & Big Data May 28-29, 2013 1 SPARSITY:

More information

Expected Patch Log Likelihood with a Sparse Prior

Expected Patch Log Likelihood with a Sparse Prior Expected Patch Log Likelihood with a Sparse Prior Jeremias Sulam and Michael Elad Computer Science Department, Technion, Israel {jsulam,elad}@cs.technion.ac.il Abstract. Image priors are of great importance

More information

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla SIAM PP 2016, April 13 th 2016 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer,

More information

Optimization of HOM Couplers using Time Domain Schemes

Optimization of HOM Couplers using Time Domain Schemes Optimization of HOM Couplers using Time Domain Schemes Workshop on HOM Damping in Superconducting RF Cavities Carsten Potratz Universität Rostock October 11, 2010 10/11/2010 2009 UNIVERSITÄT ROSTOCK FAKULTÄT

More information

Quality Guided Image Denoising for Low-Cost Fundus Imaging

Quality Guided Image Denoising for Low-Cost Fundus Imaging Quality Guided Image Denoising for Low-Cost Fundus Imaging Thomas Köhler1,2, Joachim Hornegger1,2, Markus Mayer1,2, Georg Michelson2,3 20.03.2012 1 Pattern Recognition Lab, Ophthalmic Imaging Group 2 Erlangen

More information

A GPU-based High-Performance Library with Application to Nonlinear Water Waves

A GPU-based High-Performance Library with Application to Nonlinear Water Waves Downloaded from orbit.dtu.dk on: Dec 20, 2017 Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

Survey of the Mathematics of Big Data

Survey of the Mathematics of Big Data Survey of the Mathematics of Big Data Issues with Big Data, Mathematics to the Rescue Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Math & Big Data Fall 2015 1 / 28 Introduction We survey some

More information

B. Tech. Project Second Stage Report on

B. Tech. Project Second Stage Report on B. Tech. Project Second Stage Report on GPU Based Active Contours Submitted by Sumit Shekhar (05007028) Under the guidance of Prof Subhasis Chaudhuri Table of Contents 1. Introduction... 1 1.1 Graphic

More information

Filters. Advanced and Special Topics: Filters. Filters

Filters. Advanced and Special Topics: Filters. Filters Filters Advanced and Special Topics: Filters Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong Kong ELEC4245: Digital Image Processing (Second Semester, 2016 17)

More information

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama Introduction to Computer Graphics Image Processing (1) June 8, 2017 Kenshi Takayama Today s topics Edge-aware image processing Gradient-domain image processing 2 Image smoothing using Gaussian Filter Smoothness

More information

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Roshan Dathathri Thejas Ramashekar Chandan Reddy Uday Bondhugula Department of Computer Science and Automation

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Trainlets: Dictionary Learning in High Dimensions

Trainlets: Dictionary Learning in High Dimensions 1 Trainlets: Dictionary Learning in High Dimensions Jeremias Sulam, Student Member, IEEE, Boaz Ophir, Michael Zibulevsky, and Michael Elad, Fellow, IEEE arxiv:102.00212v4 [cs.cv] 12 May 201 Abstract Sparse

More information

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Accelerating GPU computation through mixed-precision methods Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Outline Motivation Truncated Precision using CUDA Solving Linear

More information

Image Restoration. Diffusion Denoising Deconvolution Super-resolution Tomographic Reconstruction

Image Restoration. Diffusion Denoising Deconvolution Super-resolution Tomographic Reconstruction Image Restoration Image Restoration Diffusion Denoising Deconvolution Super-resolution Tomographic Reconstruction Diffusion Term Consider only the regularization term E-L equation: (Laplace equation) Steepest

More information

SIFT Descriptor Extraction on the GPU for Large-Scale Video Analysis. Hannes Fassold, Jakub Rosner

SIFT Descriptor Extraction on the GPU for Large-Scale Video Analysis. Hannes Fassold, Jakub Rosner SIFT Descriptor Extraction on the GPU for Large-Scale Video Analysis Hannes Fassold, Jakub Rosner 2014-03-26 2 Overview GPU-activities @ AVM research group SIFT descriptor extraction Algorithm GPU implementation

More information

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks

Multiple-View Object Recognition in Band-Limited Distributed Camera Networks in Band-Limited Distributed Camera Networks Allen Y. Yang, Subhransu Maji, Mario Christoudas, Kirak Hong, Posu Yan Trevor Darrell, Jitendra Malik, and Shankar Sastry Fusion, 2009 Classical Object Recognition

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

Optical Flow Estimation with CUDA. Mikhail Smirnov

Optical Flow Estimation with CUDA. Mikhail Smirnov Optical Flow Estimation with CUDA Mikhail Smirnov msmirnov@nvidia.com Document Change History Version Date Responsible Reason for Change Mikhail Smirnov Initial release Abstract Optical flow is the apparent

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs In Proceedings of ASIM 2005-18th Symposium on Simulation Technique, Sept. 2005. Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke dominik.goeddeke@math.uni-dortmund.de Universität

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

Architecture Aware Multigrid

Architecture Aware Multigrid Architecture Aware Multigrid U. Rüde (LSS Erlangen, ruede@cs.fau.de) joint work with D. Ritter, T. Gradl, M. Stürmer, H. Köstler, J. Treibig and many more students Lehrstuhl für Informatik 10 (Systemsimulation)

More information

3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs

3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs 3D Helmholtz Krylov Solver Preconditioned by a Shifted Laplace Multigrid Method on Multi-GPUs H. Knibbe, C. W. Oosterlee, C. Vuik Abstract We are focusing on an iterative solver for the three-dimensional

More information

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang

A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang A GPU-based Approximate SVD Algorithm Blake Foster, Sridhar Mahadevan, Rui Wang University of Massachusetts Amherst Introduction Singular Value Decomposition (SVD) A: m n matrix (m n) U, V: orthogonal

More information

Using GPUs for unstructured grid CFD

Using GPUs for unstructured grid CFD Using GPUs for unstructured grid CFD Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford e-research Centre Schlumberger Abingdon Technology Centre, February 17th, 2011

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Denoising an Image by Denoising its Components in a Moving Frame

Denoising an Image by Denoising its Components in a Moving Frame Denoising an Image by Denoising its Components in a Moving Frame Gabriela Ghimpețeanu 1, Thomas Batard 1, Marcelo Bertalmío 1, and Stacey Levine 2 1 Universitat Pompeu Fabra, Spain 2 Duquesne University,

More information

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA Adaptive Mesh Astrophysical Fluid Simulations on GPU San Jose 10/2/2009 Peng Wang, NVIDIA Overview Astrophysical motivation & the Enzo code Finite volume method and adaptive mesh refinement (AMR) CUDA

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

The walberla Framework: Multi-physics Simulations on Heterogeneous Parallel Platforms

The walberla Framework: Multi-physics Simulations on Heterogeneous Parallel Platforms The walberla Framework: Multi-physics Simulations on Heterogeneous Parallel Platforms Harald Köstler, Uli Rüde (LSS Erlangen, ruede@cs.fau.de) Lehrstuhl für Simulation Universität Erlangen-Nürnberg www10.informatik.uni-erlangen.de

More information