Exercise Lab: Where is the Himalaya eroding? Using GIS/DEM analysis to reconstruct surfaces, incision, and erosion

Size: px
Start display at page:

Download "Exercise Lab: Where is the Himalaya eroding? Using GIS/DEM analysis to reconstruct surfaces, incision, and erosion"

Transcription

1 Exercise Lab: Where is the Himalaya eroding? Using GIS/DEM analysis to reconstruct surfaces, incision, and erosion 1) Start ArcMap and ensure that the 3D Analyst and the Spatial Analyst are loaded and activated in the Options menu. 2) Load Hydro1K DEM of the Himalaya region: Click on plus sign and select h1k_dem (SRTM V3, 1km gridcell size) 3) Create a hillshade within ArcMap: 3D Analyst >Surface Analysis > Hillshade a. Select Output Raster, name it h1k_dem_hs and save in same directory. Use standard options, no need to change any values. [NOTE: It is essential that you give your grids and files meaningful names we will create quite a few files and you may lose track of things if you cannot identify what a grid stands for]. 4) Drag hillshade layer below ( under ) the surface DEM. Let s change the DEM properties to make it look more appealing. Double click on h1k_dem a. Select Tab Symbology, change color to something you like. b. Select Tab Display and change value of Transparen to 45% (or similar). 5) Now you have a hillshade view of the Himalaya with draped over elevation. 6) Let s import the Apatite FissionTrack data and some results from Pete Reiner s exercise. [Note: This is very useful for importing any types of data with coordinates (GPS data, field observations, Monzanite concentration, data from a paper, table, etc).] a. You will need a CSV ( comma delimited file save as option in Excel). Make sure that the first line contains the column labels without any space and or special characters ([]! etc.). This involves some editing in Excel. [I am using the file Himalaya_all_FT_data_mod.csv. In case this doesn t work for you, I also provide the file called XYHimalaya_all_FT_data_mod.shp that contains some results from Pete s exercise.] b. Open ArcCatalog and navigate to the directory in which you have saved the file. Right click on *.csv File and Select Create Feature Class >From XY Table. If there is an error opening the file is 99.9% related to not allowed characters. c. Select Longitude as X Field, Latitude as Y Field. You won t need a Z Field. Use a meaningful filename. IT is advisable to defin a spatial reference frame. The file we are using is in a Geographic projection (WGS84). Click on Advanced Geometry Options and on Edit in the next window. SELECT a predefined coordinate system by navigating to Geographic Coordinate Systems, World, WGS1984.prj. Press OK on all windows. d. If you click on Refresh (View > Refresh), you should have a new point shapefile in your folder. Add this shapefile to your ArcMap view (press plus sign in ArcMap window). e. The locations of the samples are plotted on the map. Let s change their colors to show something more meaningful: Double click on shapefile. In the Symbology Tab, select Quantities > Graduated colors. In the Fields: section, select Value: ACentralAge and a meaningful colorscale. You can change the size and layout of the points by clicking on 1

2 Symbol (below the Color Ramp:) >Properties for all symbols. Note the spatial distribution of young cooling ages. f. Let s select the calculated erate (Erosion Rate) from Pete s modeling. What are the differences along strike? 7) Load the provided shapefile (all_er_data.shp) that contains several compiled CRN and sediment flux based erosion rate data (Vance et al., 2003; Bookhagen et al., 2007; Niemi et al., 2005; Garzanti et al., 2007). Create a meaningful colorscale and visually compare the data to the long term exhumation rates and the derived topographic indices. It may make sense to chose the some colorscale, but different symbology or sizes. Do the AFT exhumation rates and CRN erosion rates correlate? Compare the data to first order topographic indices. 8) Next, we would like to create a hillslope map a. Select 3D Analyst >Surface Analysis >Slope, output measurements should be degree and the slope map will be saved in the same directory, labeled (for example) h1k_dem_sl. b. Change the color scale to stretched, and the transparent value. Turn off the DEM layer. Are the slopes realistic? Keep in mind that we are using 1 km data. 9) Local relief is slightly more complex, but also contains more valuable information a. Use the focalmin and focalmax commands that find the min (or max) elevation within a given radius. Subtracting min from max elevation gives you relief b. There are several ways of doing this, the easiest may be to start the help and select the Index Tab. Search for focal statistics tool/command and open the tool. c. Input raster is your DEM (h1k_dem), output raster is v3_mx3km, neighborhood is a circle, settings are 3 cells (3x1 km = 3 km radius), statistic type is MAXIMUM. d. Repeat this with minimum elevation (output raster is v3_mi3km, statistic type is MINIMUM. e. Repeat with a radius of 5 km (Note the larger the radius the longer the calculation takes). f. Subtract the two newly formed grids in the Raster Calculator (Spatial Analyst > Raster Calculator). Type: v3_rel3km = [v3_mx3km] [v3_mi3km] g. Repeat calculation for 5 km radius h. Change the color scale (you can use a classified color scale if you like) i. Where are the maximum relief amounts? j. Similarly, you can create a mean elevation for a 5 or 10 km circle by choosing the statistic type MEAN. You will need to change the radius to 5 or 10 pixels. [Note that the 10 pixel circle will take a while to calculate.] 10) Create an envelope surface (can be used to reconstruct eroded volume) and the geophysical relief amounts ( reconstructed surface minus present day topography). We follow Small and Anderson [1998] and define geophysical relief to be the mean elevation difference between two surfaces: a smooth surface connecting the highest points in the current landscape and the current topography itself. This difference defines the average volume of rock eroded from 2

3 beneath the topographic envelope. Geophysical relief differs from local or ordinary relief (as used in the previous sections), which is the maximum elevation difference between valley bottoms and adjacent ridge crests. a. Open the Focal statistics tool/command (described above) and calculate the maximum elevation within radii of 10, 20, and 25 km (statistic type: MAXIMUM). [Note that there are more sophisticated ways of creating an envelope surface but most of them would require significant manual editing the described method here will work very well as a first order approach.] b. Open the Raster Calculator window (see above) and subtract the present day topography from the 10, 20, and 25 km maximum surface ( envelope surfaces ): grel10km = [v3_mx10km] [h1k_dem]. Repeat this for each radius. c. In order to display the results in a meaningful way, you will have to change the colorscale. Also, you should change the Stretched Type to Histogram Equalize in the Layer Properties > Symbology section (where you change the color). This will emphasize the regions with high amounts, as there are large regions with low geophysical relief. d. Where are the regions with the largest amount of rock removed? Is the amount of rock removed homogenous along strike of the Himalaya? 11) Load the rainfall data (t9806a) and display it in a red blue scale. [Note the merging of two datasets at ~36N this is where the TRMM dataset ends and I have used a different, lower resolution satellite to fill in the gaps. There are some artifacts in the higher latitudes]. The rainfall data is processed and calibrated to m/yr. OPTIONAL (if time permits) 12) Load the rainfall data (t9806a) and display it in a red blue scale. [Note the merging of two datasets at ~36N this is where the TRMM dataset ends and I have used a different, lower resolution satellite to fill in the gaps. There are some artifacts in the higher latitudes]. The rainfall data is processed and calibrated to m/yr. We will use the rainfall data to create realistic discharge that will be converted into a specific stream power amounts (hydrologic processing). [NOTE: There are several tools available for ArcMap that make things easier, for example, the Arc Hydro Toolbox. I refrain from using them, as it helps going through these steps at least once. The following few steps are easy but powerful to create a rivernetwork from your DEM.] a. Create a hydrological correct DEM by filling all sinks in the grid. This is essential to ensure that all rivers flow downstream and that there exist no artificially closed basins. Open the Help and search for the Fill tool/command. Input surface is h1k_dem, output surface is h1k_dem_fil, no need to set a Z limit. [NOTE: This will take > 1 minute, please be patient.] b. Calculate the flow direction. Each cell flows into a neighboring cell. This is an intermediate step (you will not look at the data) and it will be used as input for the next command. It basically is a direction grid indicating in which neighboring cell the water flows. Open the Help and search for the Flow Direction tool/command, open Tool: Input surface is [h1k_dem_fil], output is [h1k_dem_fdr], no need to select any of the 3

4 optional settings. [Note that the flat areas have unrealistic values and do not represent the proper flow direction.] c. Calculate the flow accumulation. This is the integration part that integrates all data from the upstream areas. In other words, it is making rivers where the landscape converges. Open the Flow Accumulation tool/command: Input flow direction raster is [h1k_dem_fdr], output accumulation raster is: [h1k_dem_fac]. The first time we run this, we do not use a weight raster. Re run the flow accumulation with the rainfall grid as weight raster (output: [h1k_dem_fact]). This will result in actual discharge amount. [In addition and in a later step, we can use the geophysical relief as weighting factor to calculate the integrated amount of eroded rock volume (i.e., the total catchment eroded volume). ] d. [Optional] Next, we can convert the flowaccumulation grid into a stream order coverage. This will weigh the streams with larger streams having higher numbers (Strahler Order). Use the Stream Order tool/command, input stream raster is the flow accumulation grid [h1k_dem_fac], flow direction raster is [h1k_dem_fdr], output raster is [h1k_dem_sto], Method of stream ordering is STRAHLER. As an additional step, you can convert the stream order grid into a line coverage with Stream to Feature tool/command, where you select the stream order grid as stream flow grid. The resulting file is a vector file. You can then change the color scale to match the stream order (i.e., increasing stream order with darker colors). Also, you can use the command Basin tool/command to create the outlines of the drainage basins. e. In order to have discharge values in m 3 /s, you will need to multiply the rainfall weighted flowaccumulation grid with 2*1000/(60*60*24*365). (gridcell size in m 2 divided by the seconds in one year). Use the Raster calculator: h1k_dem_fatcmy = [h1k_dem_fact] * (1000 * 1000) / (60 * 60 * 24 * 365). This is used as an input for the specific stream power calculation. f. Repeat the discharge scaling for the non weighted flowaccumulation grid, assuming that there is homogenous rainfall everywhere i.e. no steep rainfall gradient and dry Tibetan Plateau. Raster calculator: h1k_dem_facmy = [h1k_dem_fac] * (1000 * 1000) / (60 * 60 * 24 * 365). This is used as an input for the specific stream power calculation. g. Convert the slope map into a slope map with units m/m. This will be used as an input into the specific stream power calculation. First, create slope map with slopes in degree (3D Analyst >Surface Analysis >Slope) or use the one already created [h1k_dem_sl]. In the Raster Calculator, take the tan of the slope in percent: h1k_dem_slp = ATan([h1k_dem_sl]). h. Create a channel width map with discharge 0.4 : in the Raster Calculator, type h1k_cw = Pow([h1k_dem_facmy], 0.4). Channel width is a power law of discharge (i.e., the higher the discharge, the wider the channel) and is for the Himalaya 6 * discharge 0.4 (taken from Craddock et al., 2007 usually an exponent between 0.3 and 0.5). i. Specific Stream Power (SSP) is defined as SSP = density * gravity * channel slope * discharge / channel width. We will use a density of 1000 kg m 3, gravity of 9.81 m s 2. We substitute channel slope with hillslope (this is not correct, but we are using 1 km data 4

5 and rivers are generally not as wide as 1km with a 90 m dataset, rivers can be more accurately depicted ), discharge is taken directly from the weighted and scaled flowaccumulation in m3 s 1, channel width is in m. In the Raster Calculator, type: ssp_t = 1000 * 9.1 * [h1k_dem_slp] * [h1k_dem_factmy] / [h1k_cw]. Similarly, create a SSP map with homogenous rainfall and discharge: ssp_nt = 1000 * 9.1 * [h1k_dem_slp] * [h1k_dem_factmy] / [h1k_cw] j. It is best to display the SSP map in a classified color scale (double click on ssp_t or ssp_nt, seect the Symbology Tagb and a classified 5

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

Lab 7: Bedrock rivers and the relief structure of mountain ranges

Lab 7: Bedrock rivers and the relief structure of mountain ranges Lab 7: Bedrock rivers and the relief structure of mountain ranges Objectives In this lab, you will analyze the relief structure of the San Gabriel Mountains in southern California and how it relates to

More information

Stream network delineation and scaling issues with high resolution data

Stream network delineation and scaling issues with high resolution data Stream network delineation and scaling issues with high resolution data Roman DiBiase, Arizona State University, May 1, 2008 Abstract: In this tutorial, we will go through the process of extracting a stream

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

Stream Network and Watershed Delineation using Spatial Analyst Hydrology Tools

Stream Network and Watershed Delineation using Spatial Analyst Hydrology Tools Stream Network and Watershed Delineation using Spatial Analyst Hydrology Tools Prepared by Venkatesh Merwade School of Civil Engineering, Purdue University vmerwade@purdue.edu January 2018 Objective The

More information

Field-Scale Watershed Analysis

Field-Scale Watershed Analysis Conservation Applications of LiDAR Field-Scale Watershed Analysis A Supplemental Exercise for the Hydrologic Applications Module Andy Jenks, University of Minnesota Department of Forest Resources 2013

More information

CRC Website and Online Book Materials Page 1 of 16

CRC Website and Online Book Materials Page 1 of 16 Page 1 of 16 Appendix 2.3 Terrain Analysis with USGS DEMs OBJECTIVES The objectives of this exercise are to teach readers to: Calculate terrain attributes and create hillshade maps and contour maps. use,

More information

Mapping the Thickness of the Rocky Flats Alluvium and Reconstructing the Pleistocene Rocky Flats Paleogeography (with Spatial Analyst).

Mapping the Thickness of the Rocky Flats Alluvium and Reconstructing the Pleistocene Rocky Flats Paleogeography (with Spatial Analyst). Exercise 8 Mapping the Thickness of the Rocky Flats Alluvium and Reconstructing the Pleistocene Rocky Flats Paleogeography (with Spatial Analyst). Due: Thursday, February 15, 2018 Goal: Creating Rasters

More information

Making flow direction data

Making flow direction data Step 4. Making flow direction data Training Module 1) The first step in hydrology analysis is making flow direction data. On Arc Toolbox window, click symbol + on Spatial Analyst Tools Hydrology, double

More information

Lab 11: Terrain Analyses

Lab 11: Terrain Analyses Lab 11: Terrain Analyses What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. There is a mix of old and new functions used in this lab. We ll explain

More information

16) After contour layer is chosen, on column height_field, choose Elevation, and on tag_field column, choose <None>. Click OK button.

16) After contour layer is chosen, on column height_field, choose Elevation, and on tag_field column, choose <None>. Click OK button. 16) After contour layer is chosen, on column height_field, choose Elevation, and on tag_field column, choose . Click OK button. 17) The process of TIN making will take some time. Various process

More information

Delineating the Stream Network and Watersheds of the Guadalupe Basin

Delineating the Stream Network and Watersheds of the Guadalupe Basin Delineating the Stream Network and Watersheds of the Guadalupe Basin Francisco Olivera Department of Civil Engineering Texas A&M University Srikanth Koka Department of Civil Engineering Texas A&M University

More information

Lecture 21 - Chapter 8 (Raster Analysis, part2)

Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Today: Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed,

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

INTRODUCTION TO GIS WORKSHOP EXERCISE

INTRODUCTION TO GIS WORKSHOP EXERCISE 111 Mulford Hall, College of Natural Resources, UC Berkeley (510) 643-4539 INTRODUCTION TO GIS WORKSHOP EXERCISE This exercise is a survey of some GIS and spatial analysis tools for ecological and natural

More information

Working with Elevation Data URPL 969 Applied GIS Workshop: Rethinking New Orleans After Hurricane Katrina Spring 2006

Working with Elevation Data URPL 969 Applied GIS Workshop: Rethinking New Orleans After Hurricane Katrina Spring 2006 Working with Elevation Data URPL 969 Applied GIS Workshop: Rethinking New Orleans After Hurricane Katrina Spring 2006 This GIS lab exercise will explore Light Detection And Ranging (LiDAR) data for New

More information

Using GIS to Site Minimal Excavation Helicopter Landings

Using GIS to Site Minimal Excavation Helicopter Landings Using GIS to Site Minimal Excavation Helicopter Landings The objective of this analysis is to develop a suitability map for aid in locating helicopter landings in mountainous terrain. The tutorial uses

More information

Geographic Surfaces. David Tenenbaum EEOS 383 UMass Boston

Geographic Surfaces. David Tenenbaum EEOS 383 UMass Boston Geographic Surfaces Up to this point, we have talked about spatial data models that operate in two dimensions How about the rd dimension? Surface the continuous variation in space of a third dimension

More information

GIS LAB 8. Raster Data Applications Watershed Delineation

GIS LAB 8. Raster Data Applications Watershed Delineation GIS LAB 8 Raster Data Applications Watershed Delineation This lab will require you to further your familiarity with raster data structures and the Spatial Analyst. The data for this lab are drawn from

More information

GIS Fundamentals: Supplementary Lessons with ArcGIS Pro

GIS Fundamentals: Supplementary Lessons with ArcGIS Pro Station Analysis (parts 1 & 2) What You ll Learn: - Practice various skills using ArcMap. - Combining parcels, land use, impervious surface, and elevation data to calculate suitabilities for various uses

More information

This tutorial shows how to extract longitudinal profiles using ArcMap 10.1 and how to plot them with R, an open-source software.

This tutorial shows how to extract longitudinal profiles using ArcMap 10.1 and how to plot them with R, an open-source software. JESSE S. HILL 2013 UNC-CH This tutorial shows how to extract longitudinal profiles using ArcMap 10.1 and how to plot them with R, an open-source software. R is freely available at: cran.us.r-project.org/

More information

Lab 11: Terrain Analyses

Lab 11: Terrain Analyses Lab 11: Terrain Analyses What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. There is a mix of old and new functions used in this lab. We ll explain

More information

Terrain Analysis. Using QGIS and SAGA

Terrain Analysis. Using QGIS and SAGA Terrain Analysis Using QGIS and SAGA Tutorial ID: IGET_RS_010 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial

More information

I. An Intro to ArcMap Version 9.3 and 10. 1) Arc Map is basically a build your own Google map

I. An Intro to ArcMap Version 9.3 and 10. 1) Arc Map is basically a build your own Google map I. An Intro to ArcMap Version 9.3 and 10 What is Arc Map? 1) Arc Map is basically a build your own Google map a. Display and manage geo-spatial data (maps, images, points that have a geographic location)

More information

Lesson 8 : How to Create a Distance from a Water Layer

Lesson 8 : How to Create a Distance from a Water Layer Created By: Lane Carter Advisor: Paul Evangelista Date: July 2011 Software: ArcGIS 10 Lesson 8 : How to Create a Distance from a Water Layer Background This tutorial will cover the basic processes involved

More information

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Talk about class project (copy follow_along_data\ch8a_class_ex into U:\ArcGIS\ if needed) Catch up with lecture 20

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Exercise 5. Height above Nearest Drainage Flood Inundation Analysis

Exercise 5. Height above Nearest Drainage Flood Inundation Analysis Exercise 5. Height above Nearest Drainage Flood Inundation Analysis GIS in Water Resources, Fall 2018 Prepared by David G Tarboton Purpose The purpose of this exercise is to learn how to calculation the

More information

Part 6b: The effect of scale on raster calculations mean local relief and slope

Part 6b: The effect of scale on raster calculations mean local relief and slope Part 6b: The effect of scale on raster calculations mean local relief and slope Due: Be done with this section by class on Monday 10 Oct. Tasks: Calculate slope for three rasters and produce a decent looking

More information

Exercise 5. Height above Nearest Drainage Flood Inundation Analysis

Exercise 5. Height above Nearest Drainage Flood Inundation Analysis Exercise 5. Height above Nearest Drainage Flood Inundation Analysis GIS in Water Resources, Fall 2016 Prepared by David G Tarboton Purpose The purpose of this exercise is to illustrate the use of TauDEM

More information

Exercise 6 Using the NHDPlus Raster Data Sets Last Updated 3/12/2014

Exercise 6 Using the NHDPlus Raster Data Sets Last Updated 3/12/2014 Exercise 6 Using the NHDPlus Raster Data Sets Last Updated 3/12/2014 Within this document, the term NHDPlus is used when referring to NHDPlus Version 2.1 (unless otherwise noted). The NHDPlus includes

More information

WMS 9.1 Tutorial Watershed Modeling DEM Delineation Learn how to delineate a watershed using the hydrologic modeling wizard

WMS 9.1 Tutorial Watershed Modeling DEM Delineation Learn how to delineate a watershed using the hydrologic modeling wizard v. 9.1 WMS 9.1 Tutorial Learn how to delineate a watershed using the hydrologic modeling wizard Objectives Read a digital elevation model, compute flow directions, and delineate a watershed and sub-basins

More information

STUDENT PAGES GIS Tutorial Treasure in the Treasure State

STUDENT PAGES GIS Tutorial Treasure in the Treasure State STUDENT PAGES GIS Tutorial Treasure in the Treasure State Copyright 2015 Bear Trust International GIS Tutorial 1 Exercise 1: Make a Hand Drawn Map of the School Yard and Playground Your teacher will provide

More information

Developing an Interactive GIS Tool for Stream Classification in Northeast Puerto Rico

Developing an Interactive GIS Tool for Stream Classification in Northeast Puerto Rico Developing an Interactive GIS Tool for Stream Classification in Northeast Puerto Rico Lauren Stachowiak Advanced Topics in GIS Spring 2012 1 Table of Contents: Project Introduction-------------------------------------

More information

Basics of Using LiDAR Data

Basics of Using LiDAR Data Conservation Applications of LiDAR Basics of Using LiDAR Data Exercise #2: Raster Processing 2013 Joel Nelson, University of Minnesota Department of Soil, Water, and Climate This exercise was developed

More information

I.1. Digitize landslide region and micro-topography using satellite image

I.1. Digitize landslide region and micro-topography using satellite image I. Data Preparation At this part, it will be shown the stages of process on preparing all types of data which required in making of landslide potential and banjir bandang hazard map. I.1. Digitize landslide

More information

Conservation Applications of LiDAR. Terrain Analysis. Workshop Exercises

Conservation Applications of LiDAR. Terrain Analysis. Workshop Exercises Conservation Applications of LiDAR Terrain Analysis Workshop Exercises 2012 These exercises are part of the Conservation Applications of LiDAR project a series of hands on workshops designed to help Minnesota

More information

L7 Raster Algorithms

L7 Raster Algorithms L7 Raster Algorithms NGEN6(TEK23) Algorithms in Geographical Information Systems by: Abdulghani Hasan, updated Nov 216 by Per-Ola Olsson Background Store and analyze the geographic information: Raster

More information

Step by step guide in running sedimentation analysis in SedNet: A guide for Pulot Watershed Sedimentation Analysis

Step by step guide in running sedimentation analysis in SedNet: A guide for Pulot Watershed Sedimentation Analysis Step by step guide in running sedimentation analysis in SedNet: A guide for Pulot Watershed Sedimentation Analysis I. Data Requirements The input data identified were classified into base data, physical

More information

Lab 18c: Spatial Analysis III: Clip a raster file using a Polygon Shapefile

Lab 18c: Spatial Analysis III: Clip a raster file using a Polygon Shapefile Environmental GIS Prepared by Dr. Zhi Wang, CSUF EES Department Lab 18c: Spatial Analysis III: Clip a raster file using a Polygon Shapefile These instructions enable you to clip a raster layer in ArcMap

More information

George Mason University Department of Civil, Environmental and Infrastructure Engineering

George Mason University Department of Civil, Environmental and Infrastructure Engineering George Mason University Department of Civil, Environmental and Infrastructure Engineering Dr. Celso Ferreira Prepared by Lora Baumgartner December 2015 Revised by Brian Ross July 2016 Exercise Topic: GIS

More information

Exercise # 6: Using the NHDPlus Raster Data Sets Last Updated 3/28/2006

Exercise # 6: Using the NHDPlus Raster Data Sets Last Updated 3/28/2006 Exercise # 6: Using the NHDPlus Raster Data Sets Last Updated 3/28/2006 The NHDPlus includes several raster (grid) data sets. Several of these are primarily used in analytical processes that are beyond

More information

Lab 1: Introduction to ArcGIS

Lab 1: Introduction to ArcGIS Lab 1: Introduction to ArcGIS Objectives In this lab you will: 1) Learn the basics of the software package we will be using for the remainder of the semester, and 2) Discover the role that climate and

More information

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox

More information

Improved Applications with SAMB Derived 3 meter DTMs

Improved Applications with SAMB Derived 3 meter DTMs Improved Applications with SAMB Derived 3 meter DTMs Evan J Fedorko West Virginia GIS Technical Center 20 April 2005 This report sums up the processes used to create several products from the Lorado 7

More information

Downloading and importing DEM data from ASTER or SRTM (~30m resolution) into ArcMap

Downloading and importing DEM data from ASTER or SRTM (~30m resolution) into ArcMap Downloading and importing DEM data from ASTER or SRTM (~30m resolution) into ArcMap Step 1: ASTER or SRTM? There has been some concerns about the quality of ASTER data, nicely exemplified in the following

More information

Workshop Exercises for Digital Terrain Analysis with LiDAR for Clean Water Implementation

Workshop Exercises for Digital Terrain Analysis with LiDAR for Clean Water Implementation Workshop Exercises for Digital Terrain Analysis with LiDAR for Clean Water Implementation This manual is designed to accompany lecture and handout materials provided at a series of workshops offered in

More information

Introduction to GIS 2011

Introduction to GIS 2011 Introduction to GIS 2011 Digital Elevation Models CREATING A TIN SURFACE FROM CONTOUR LINES 1. Start ArcCatalog from either Desktop or Start Menu. 2. In ArcCatalog, create a new folder dem under your c:\introgis_2011

More information

Lab 7c: Rainfall patterns and drainage density

Lab 7c: Rainfall patterns and drainage density Lab 7c: Rainfall patterns and drainage density This is the third of a four-part handout for class the last two weeks before spring break. Due: Be done with this by class on 11/3. Task: Extract your watersheds

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are found in the

More information

GEO 465/565 Lab 6: Modeling Landslide Susceptibility

GEO 465/565 Lab 6: Modeling Landslide Susceptibility 1 GEO 465/565 Lab 6: Modeling Landslide Susceptibility This lab will give you more practice in understanding and building a GIS analysis model. Recall from class lecture that a GIS analysis model is a

More information

George Mason University Department of Civil, Environmental and Infrastructure Engineering

George Mason University Department of Civil, Environmental and Infrastructure Engineering George Mason University Department of Civil, Environmental and Infrastructure Engineering Dr. Celso Ferreira Prepared by Lora Baumgartner December 2015 Revised by Brian Ross July 2016 Exercise Topic: Getting

More information

In this lab, you will create two maps. One map will show two different projections of the same data.

In this lab, you will create two maps. One map will show two different projections of the same data. Projection Exercise Part 2 of 1.963 Lab for 9/27/04 Introduction In this exercise, you will work with projections, by re-projecting a grid dataset from one projection into another. You will create a map

More information

Ex. 4: Locational Editing of The BARC

Ex. 4: Locational Editing of The BARC Ex. 4: Locational Editing of The BARC Using the BARC for BAER Support Document Updated: April 2010 These exercises are written for ArcGIS 9.x. Some steps may vary slightly if you are working in ArcGIS

More information

Importing GPS points and Hyperlinking images.

Importing GPS points and Hyperlinking images. Geol 3050 GIS for Geologists Exercise 15 Exercise 15 Making a Virtual Fieldtrip: Importing GPS points and Hyperlinking images. Due: Thursday, March 22. Goal: A) Get familiar with importing GPS points and

More information

Tools. (figure 3A) 3) Shaded Relief Derivative. c. HydroSHED DS DEM

Tools. (figure 3A) 3) Shaded Relief Derivative. c. HydroSHED DS DEM Topographic Modeling Tools Available Tools (figure 3A) 1) Dataa Extraction 2) Aspect Derivative 3) Shaded Relief Derivative 4) Color Shaded Relief 5) Slope Derivativee 6) Slope Classification Derivative

More information

Raster: The Other GIS Data

Raster: The Other GIS Data Raster_The_Other_GIS_Data.Docx Page 1 of 11 Raster: The Other GIS Data Objectives Understand the raster format and how it is used to model continuous geographic phenomena. Understand how projections &

More information

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater.

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater. Overview: In this week's lab you will identify areas within Webster Township that are most vulnerable to surface and groundwater contamination by conducting a risk analysis with raster data. You will create

More information

Spatial Analysis Exercise GIS in Water Resources Fall 2011

Spatial Analysis Exercise GIS in Water Resources Fall 2011 Spatial Analysis Exercise GIS in Water Resources Fall 2011 Prepared by David G. Tarboton and David R. Maidment Goal The goal of this exercise is to serve as an introduction to Spatial Analysis with ArcGIS.

More information

Lab 1: Landuse and Hydrology, learning ArcGIS

Lab 1: Landuse and Hydrology, learning ArcGIS Lab 1: Landuse and Hydrology, learning ArcGIS The following lab exercises are designed to give you experience using ArcMap in order to visualize and analyze datasets that are relevant to important geomorphological/

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model v. 9.1 WMS 9.1 Tutorial Integrate stream flow with your GSSHA overland flow model Objectives Learn how to add hydraulic channel routing to your GSSHA model and how to define channel properties. Learn how

More information

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4 Data Assembly, Part II GIS Cyberinfrastructure Module Day 4 Objectives Continuation of effective troubleshooting Create shapefiles for analysis with buffers, union, and dissolve functions Calculate polygon

More information

Lab 11: Terrain Analysis

Lab 11: Terrain Analysis Lab 11: Terrain Analysis What You ll Learn: Basic terrain analysis functions, including watershed, viewshed, and profile processing. You should read chapter 11 in the GIS Fundamentals textbook before performing

More information

New Media in Landscape Architecture: Advanced GIS

New Media in Landscape Architecture: Advanced GIS New Media in Landscape Architecture: Advanced GIS - Projections and Transformations - Version 10.2, English ANHALT UNIVERSITY OF APPLIED SCIENCES Hochschule Anhalt Author: Dr. Matthias Pietsch Tutorial-Version:

More information

Delineating Watersheds from a Digital Elevation Model (DEM)

Delineating Watersheds from a Digital Elevation Model (DEM) Delineating Watersheds from a Digital Elevation Model (DEM) (Using example from the ESRI virtual campus found at http://training.esri.com/courses/natres/index.cfm?c=153) Download locations for additional

More information

GIS Virtual Workshop: Buffering

GIS Virtual Workshop: Buffering This workshop will teach the different methods of buffering data. They will include: Basic buffering of data Merging buffering zones Clipping the buffer Concentric rings around the object You will find

More information

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis

Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Tutorial 18: 3D and Spatial Analyst - Creating a TIN and Visual Analysis Module content 18.1. Creating a TIN 18.2. Spatial Analyst Viewsheds, Slopes, Hillshades and Density. 18.1 Creating a TIN Sometimes

More information

I CALCULATIONS WITHIN AN ATTRIBUTE TABLE

I CALCULATIONS WITHIN AN ATTRIBUTE TABLE Geology & Geophysics REU GPS/GIS 1-day workshop handout #4: Working with data in ArcGIS You will create a raster DEM by interpolating contour data, create a shaded relief image, and pull data out of the

More information

A Second Look at DEM s

A Second Look at DEM s A Second Look at DEM s Overview Detailed topographic data is available for the U.S. from several sources and in several formats. Perhaps the most readily available and easy to use is the National Elevation

More information

3 Dimensional modeling of shelf margin clinoforms of the southwest Karoo Basin, South Africa.

3 Dimensional modeling of shelf margin clinoforms of the southwest Karoo Basin, South Africa. 3 Dimensional modeling of shelf margin clinoforms of the southwest Karoo Basin, South Africa. Joshua F Dixon A. Introduction The Karoo Basin of South Africa contains some of the best exposed shelf margin

More information

GeoEarthScope NoCAL San Andreas System LiDAR pre computed DEM tutorial

GeoEarthScope NoCAL San Andreas System LiDAR pre computed DEM tutorial GeoEarthScope NoCAL San Andreas System LiDAR pre computed DEM tutorial J Ramón Arrowsmith Chris Crosby School of Earth and Space Exploration Arizona State University ramon.arrowsmith@asu.edu http://lidar.asu.edu

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

Geographical Information Systems Institute. Center for Geographic Analysis, Harvard University. LAB EXERCISE 1: Basic Mapping in ArcMap

Geographical Information Systems Institute. Center for Geographic Analysis, Harvard University. LAB EXERCISE 1: Basic Mapping in ArcMap Harvard University Introduction to ArcMap Geographical Information Systems Institute Center for Geographic Analysis, Harvard University LAB EXERCISE 1: Basic Mapping in ArcMap Individual files (lab instructions,

More information

CSTools Guide (for ArcGIS version 10.2 and 10.3)

CSTools Guide (for ArcGIS version 10.2 and 10.3) CSTools Guide (for ArcGIS version 10.2 and 10.3) 1. Why to use Orientation Analysis and Cross section tools (CSTools) in ArcGIS? 2 2. Data format 2 2.1 Coordinate Systems 2 3. How to get the tools into

More information

Tutorial 1: Downloading elevation data

Tutorial 1: Downloading elevation data Tutorial 1: Downloading elevation data Objectives In this exercise you will learn how to acquire elevation data from the website OpenTopography.org, project the dataset into a UTM coordinate system, and

More information

Hot Spot / Kernel Density Analysis: Calculating the Change in Uganda Conflict Zones

Hot Spot / Kernel Density Analysis: Calculating the Change in Uganda Conflict Zones Hot Spot / Kernel Density Analysis: Calculating the Change in Uganda Conflict Zones Created by Patrick Florance. Revised on 10/22/18 for 10.6.1 OVERVIEW... 1 SETTING UP... 1 ENABLING THE SPATIAL ANALYST

More information

User s guide (version 1) ST:REAM Model (SEPA version) and Datasets

User s guide (version 1) ST:REAM Model (SEPA version) and Datasets User s guide (version 1) ST:REAM Model (SEPA version) and Datasets A- What do we need? 1) To run the model: Excel 2003 or later. 2) If you are planning to use the pre-elaborated Scotland Dataset you will

More information

J.Welhan 5/07. Watershed Delineation Procedure

J.Welhan 5/07. Watershed Delineation Procedure Watershed Delineation Procedure 1. Prepare the DEM: - all grids should be in the same projection; if not, then reproject (or define and project); if in UTM, all grids must be in the same zone (if not,

More information

GY301 Geomorphology Lab 5 Topographic Map: Final GIS Map Construction

GY301 Geomorphology Lab 5 Topographic Map: Final GIS Map Construction GY301 Geomorphology Lab 5 Topographic Map: Final GIS Map Construction Introduction This document describes how to take the data collected with the total station for the campus topographic map project and

More information

Map Algebra Exercise (Beginner) ArcView 9

Map Algebra Exercise (Beginner) ArcView 9 Map Algebra Exercise (Beginner) ArcView 9 1.0 INTRODUCTION The location of the data set is eastern Africa, more specifically in Nakuru District in Kenya (see Figure 1a). The Great Rift Valley runs through

More information

Exercise 4: Extracting Information from DEMs in ArcMap

Exercise 4: Extracting Information from DEMs in ArcMap Exercise 4: Extracting Information from DEMs in ArcMap Introduction This exercise covers sample activities for extracting information from DEMs in ArcMap. Topics include point and profile queries and surface

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Raster GIS applications

Raster GIS applications Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface DEM: cell value = elevation (also slope/aspect/hillshade/curvature) Thematic layer: cell value = category or measured

More information

Module: Rasters. 8.1 Lesson: Working with Raster Data Follow along: Loading Raster Data CHAPTER 8

Module: Rasters. 8.1 Lesson: Working with Raster Data Follow along: Loading Raster Data CHAPTER 8 CHAPTER 8 Module: Rasters We ve used rasters for digitizing before, but raster data can also be used directly. In this module, you ll see how it s done in QGIS. 8.1 Lesson: Working with Raster Data Raster

More information

Lab 9. Raster Analyses. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lab 9. Raster Analyses. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lab 9 Raster Analyses Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University How to Interpolate Surface Turn on the Spatial Analyst extension: Tools > Extensions >

More information

UNDERSTAND HOW TO SET UP AND RUN A HYDRAULIC MODEL IN HEC-RAS CREATE A FLOOD INUNDATION MAP IN ARCGIS.

UNDERSTAND HOW TO SET UP AND RUN A HYDRAULIC MODEL IN HEC-RAS CREATE A FLOOD INUNDATION MAP IN ARCGIS. CE 412/512, Spring 2017 HW9: Introduction to HEC-RAS and Floodplain Mapping Due: end of class, print and hand in. HEC-RAS is a Hydrologic Modeling System that is designed to describe the physical properties

More information

A Practical Guide to Using QGIS

A Practical Guide to Using QGIS A Practical Guide to Using QGIS 1.1 INTRODUCTION Quantum GIS (QGIS) is a useful mapping software that enables the compilation and displaying of spatial data in the form of a map. Gaining experience in

More information

Introduction to GIS A Journey Through Gale Crater

Introduction to GIS A Journey Through Gale Crater Introduction to GIS A Journey Through Gale Crater In this lab you will be learning how to use ArcMap, one of the most common commercial software packages for GIS (Geographic Information System). Throughout

More information

GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9

GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9 GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9 This lab explains how work with a Global 30-Arc-Second (GTOPO30) digital elevation model (DEM) from the U.S. Geological Survey. This dataset can

More information

GIS IN ECOLOGY: MORE RASTER ANALYSES

GIS IN ECOLOGY: MORE RASTER ANALYSES GIS IN ECOLOGY: MORE RASTER ANALYSES Contents Introduction... 2 More Raster Application Functions... 2 Data Sources... 3 Tasks... 4 Raster Recap... 4 Viewshed Determining Visibility... 5 Hydrology Modeling

More information

Raster Data Model & Analysis

Raster Data Model & Analysis Topics: 1. Understanding Raster Data 2. Adding and displaying raster data in ArcMap 3. Converting between floating-point raster and integer raster 4. Converting Vector data to Raster 5. Querying Raster

More information

5. TxDOT Hydrology Extension System Operation

5. TxDOT Hydrology Extension System Operation 5. TxDOT Hydrology Extension System Operation 5.1 System Requirement The TxDOT Hydrology Extension is an ArcView Extension written in the Avenue script used in the ArcView environment. All contents of

More information

v TUFLOW-2D Hydrodynamics SMS Tutorials Time minutes Prerequisites Overview Tutorial

v TUFLOW-2D Hydrodynamics SMS Tutorials Time minutes Prerequisites Overview Tutorial v. 12.2 SMS 12.2 Tutorial TUFLOW-2D Hydrodynamics Objectives This tutorial describes the generation of a TUFLOW project using the SMS interface. This project utilizes only the two dimensional flow calculation

More information

Layer Variables for RSF-type Modelling Applications

Layer Variables for RSF-type Modelling Applications Layer Variables for RSF-type Modelling Applications These instructions for ArcGIS 9.x enable you to create expressions for use in Spatial Analyst s Raster Calculator that result in output grids of continuous

More information

Surface Analysis. Data for Surface Analysis. What are Surfaces 4/22/2010

Surface Analysis. Data for Surface Analysis. What are Surfaces 4/22/2010 Surface Analysis Cornell University Data for Surface Analysis Vector Triangulated Irregular Networks (TIN) a surface layer where space is partitioned into a set of non-overlapping triangles Attribute and

More information

Learn how to delineate a watershed using the hydrologic modeling wizard

Learn how to delineate a watershed using the hydrologic modeling wizard v. 10.1 WMS 10.1 Tutorial Learn how to delineate a watershed using the hydrologic modeling wizard Objectives Import a digital elevation model, compute flow directions, and delineate a watershed and sub-basins

More information

Construction of Water Table Maps Using GIS

Construction of Water Table Maps Using GIS Geology 309 Construction of Water Table Maps Using GIS Geographic Information Systems (GIS) provide useful tools that enable easy construction of water table maps. In this exercise you will use lake elevation

More information

Spatial Analysis with Raster Datasets

Spatial Analysis with Raster Datasets Spatial Analysis with Raster Datasets Francisco Olivera, Ph.D., P.E. Srikanth Koka Lauren Walker Aishwarya Vijaykumar Keri Clary Department of Civil Engineering April 21, 2014 Contents Brief Overview of

More information

Using HEC-RAS and HEC-GeoRAS for River Modeling Adapted by E. Maurer, using an exercise by V. Merwade, Purdue Univ.

Using HEC-RAS and HEC-GeoRAS for River Modeling Adapted by E. Maurer, using an exercise by V. Merwade, Purdue Univ. Introduction Using HEC-RAS and HEC-GeoRAS for River Modeling Adapted by E. Maurer, using an exercise by V. Merwade, Purdue Univ. This tutorial uses the output from HEC_GeoRAS from a prior exercise as input

More information

RiparianZone = buffer( River, 100 Feet )

RiparianZone = buffer( River, 100 Feet ) GIS Analysts perform spatial analysis when they need to derive new data from existing data. In GIS I, for example, you used the vector approach to derive a riparian buffer feature (output polygon) around

More information