IQR = number. summary: largest. = 2. Upper half: Q3 =

Size: px
Start display at page:

Download "IQR = number. summary: largest. = 2. Upper half: Q3 ="

Transcription

1 Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team Determine the 5 number summary for this data set and create a boxplot of the results. You should get IQR number summary: 1. Put data in order from smallest to largest.. Determine the median (Q) by choosing the center number if there is an odd number of data points or choosing the two center numbers and gettingg the average if there is an even number of data points. The center numbers are 168 so Q Divide the data set in half. If there is an even number of data points, the data separates into two halves. If there is an odd number of data points, the center number is included in each half. 4. Determine the median of the lower half of data (Q1) and the median off the upper half of data (Q3). Lower half: Q Upper half: Q To complete the 5 number summary, find minimum and maximum values: 157, 164.5, 168, 17, 180 Determine outliers: 1. Calculate IQR Q3 Q

2 . Find lower limit (LL) and upper limit (UL) using the following equations. Any values in the data set that are less than LL and greater than UL will be outliers. LL Q1 (1.5 X IQR) (1.5 X 7.5) UL Q3 + (1.5 X IQR) 17 + (1.5 X 7.5) No number in the data set is less than or greater than 183.5, so there are no outliers. Graph the box plot: 1. Draw an x axis with a scale that can include all data points from least to greatest Draw large vertical bars above the values for Q1, Q, and Q Draw horizontal bars above and below the vertical lines to complete the box There are no outliers, so draw smaller vertical bars above the values for min and max and connect them to the box If there is an outlier, draw an asterisk above its value and place the smaller vertical bar above the next value closest to the box (adjacent value) that is not an outlier.

3 Step by step regression Sports analysts were interested to see if golfers average driving distance (how far they hit the ball off the tee) is related to their driving accuracy (% of drives that land in the fairway). They took data from 10 of the world s top golfers. Distance (x ) Accuracy (y ) Multiply each x and y value: 316 X , 304 X , etc. Distance (x ) Accuracy (y ) xy x

4 . Square each x value and record the product in the last column: , , etc. Distance (x ) Accuracy (y ) xy x Sum each column and record the number at the bottom of each column. Distance (x ) Accuracy (y ) xy x The symbols used to indicate each sum are: x 3030 y xy x

5 4. Use these values to replace symbols in the equation for slope (b 1 ). n sample size 10 b 1 xy x x x) ( y / n / n b (3030)(597.5) / (3030) /10 Solving the equation for slope: 1. Multiply 3030 X on top and square 3030 on bottom. b / /10. Divide each of these numbers by 10 (n). b Subtract on top and bottom then divide. b Solving the equation for y intercept (b 0 ): 1. Replace the symbols with the appropriate value. y b1 x b0 n b ( 0.49)(3030) 10. Multiply 0.49 X b ( ) If slope is negative, replace the two negatives with a positive and sum (if slope is positive, subtract). Then, divide by 10 (n). b

6 Graphing a scatterplot: 1. Create an x and y axis that will encompass all data point. For x values, a range of 90 to 30 will be sufficient, and for y values a range of 50 to 70 will do.. Plot data points. For the first one, go to 316 on the x axis and up to 54.6 (about 55) on the y axis (this is the dataa point on the far right of the graph). 6

7 Plotting the regression equation: The regression equation is ŷ x 1. Choose at least 3 values for x to put into the equation. They should cover a range that will produce a line that stretches across most of the scatterplot. Values of 95, 305, and 315 will provide such a line with this data set.. Put each of these x values in the equation and solve for ŷ. For x 95, multiply 0.49 X 95 then subtract from x ŷ As with the scatterplot data points, place each of these points on the graph. Use different shapess than what was used for the scatterplot points. 4. Connect the 3 regression line points with a line. 7

8 Step by step regression coefficient (r ) Use the same data on golfers to calculate a regression coefficient. Calculate SST: 1. Calculate mean of y then subtract the mean from each y value. For the data below, , , etc. Distance (x ) Accuracy (y ) y y y Square each of these values. For the data below, , , etc. Sum these values to get SST ( y y) Distance (x ) Accuracy (y ) y y ( y y) y

9 Calculate SSR: 1. Place each x value into the regression equation to calculate ŷ values. ŷ x 08.8 (0.49)(316) ŷ 08.8 (0.49)(304) , etc. Distance (x ) Accuracy (y ) ŷ Subtract the mean of y (59.8) from each ŷ value. Below, , , etc. Distance (x ) Accuracy (y ) ŷ yˆ y

10 3. Square each of these values. For the data below, , , etc. Sum these values to get SSR ( y ˆ y) Calculate r : ˆ Distance (x ) Accuracy (y ) ŷ y y ( yˆ y) r SSR SST

11 Calculate μ: Step by step calculate population mean (μ) and standard deviation (σ) using table data Let s consider age distribution for only Major champions during the Open Era for male professional tennis players. There have been 180 Open champions since What is the population mean (μ) and standard deviation (σ) for age for male champions in Majors. 1. Sum column (Count) then divide each number in the column by the sum. P(X17) 3/ P(X18) / , etc.. Multiply each Age (x) by its probability [P(Xx)]. x P(Xx) x P(Xx) , etc. 3. Sum the 4 th column [Σ x P(Xx)] to get μ Age (x ) Count Rel Freq x P(Xx ) P(Xx ) x μ (x μ) (x μ) P(x )

12 Calculate σ: 1. In the 5 th column, subtract each Age (x) from the population mean (μ). x μ x μ , etc.. In the 6 th column, square each of these values. (x μ) ( 7.5) 56.5 (x μ) ( 6.5) 4.5, etc. 3. In the last column, multiply these values by values in the 3 rd column [P(Xx)]. Shorthand notation for P(Xx) is P(x) and that is used in the last column to save space. (x μ) P (x) (x μ) P (x) , etc. 4. Sum the last column [Σ (x μ) P (x) ] to get population variance σ then take the square root to get population standard deviation σ Age (x ) Count Rel Freq x P(Xx ) P(Xx ) x μ (x μ) (x μ) P(x )

13 Steps for finding areas under the Normal Curve 1. Determine if you are starting with x values of interest or an area (or %) of interest. a) If you see >, <, or between x values you will be calculating an area (%). Go to step. b) If you see top or bottom %, you will be calculating an x value. Go to step 3.. If you begin with x values: a) For each x value (you will have one or two), use z formula to get z scores then get area(s) from tables. z x µ σ b) Decide if you need > (greater than, to right on area curve), < (less than, to left on area curve), or between two values. i) If you have >, calculate 1 area and you are done. ii) If you have <, you are done once you get area from the table. iii) If you need an area between values, subtract the smaller area from the larger one to get a positive number. Then you are done. 3. If you begin with %, you will be working the problem in the opposite direction compared to step. a) First, determine if you need top % or bottom %. i) If you need top %, transform % to decimal (divide by 100), then calculate 1 decimal. Example: Need top 15%. Decimal is 0.15 and This will be the area that you will need to find in the table (among the many numbers in the center, not in the z column). Next, find 0.85 in the table. The exact value may not be in the table so find the one that is nearest. Next, go to the z column and find the corresponding z score. This is the number you will use in the z formula (above). ii) If you need bottom %, transform % to decimal. This will be the area that you will need to find in the table. Find the corresponding z score in the z column to use in the formula. b) You should have a number for all but one variable in the z formula. You need to solve the formula to find the x value for your final answer. You can use the rearranged formula I gave you in class that has x isolated on one side: x µ + ( z σ ) 13

14 Step by step confidence intervals The current mean height (μ) of men in the U.S. that are 0 years of age is 69.5 inches with a standard deviation (σ) of.8 inches. Using population SD (σ): I randomly chose 30 male heights (I estimated height from the first 30 men on my cell phone contact list). From this sample, I calculated a sample mean ( x ) of 70.5 and a sample SD (s) of.3. Calculate a 90% CI using population SD, σ. 1. Identify the proper numbers that will replace symbols in the equation. Pay close attention to whether you need to use population or sample mean and standard deviation. For the equation using σ x ± z α / σ n x 70.5, z for 90% 1.64, σ.8, and n 30. Replace symbols with numbers ± 1.64(.8 ) Solve. a) Take square root of n b) Divide σ by that number c) Multiply z by that number d) Subtract that number from x e) Add the number to x ( ) % Confidence Interval (CI) is 69.7 to 71.3 inches 14

15 Using sample SD (s): Calculate a 90% CI using sample SD, s. 1. Identify the proper numbers that will replace symbols in the equation. Pay close attention to whether you need to use population or sample mean and standard deviation. For the equation using s x ± tα / s n x 70.5, t for 90% (df n , use column for t 0.05 ), s.3, and n 30. Replace symbols with numbers ± 1.699(.3 ) Solve. a) Take square root of n b) Divide σ by that number c) Multiply z by that number d) Subtract that number from x ( ) e) Add the number to x % Confidence Interval (CI) is 69.4 to 71.6 inches 15

16 Step by step hypothesis tests using z and t For a population of female college students (N 3,64) at a small mid western college, population mean (μ) is 64.4 and population SD (σ) is.4. Using population SD (σ): We collected height for women at another college on the East Coast. We would like to determine if the average height for women at this college is the same as average height at the Mid western college above. We randomly measured height for 0 women at the East Coast college and calculated an average height of 65. inches ( x ) with a sample SD of.68 (s). Using a significance level of 10% (α 0.10), are we very confident that the mean height is the same for both colleges? First, test the hypothesis assuming the standard deviation at the East Coast college is the same as the Mid western college (use σ). 1. Identify the proper numbers that will replace symbols in the equation. Pay close attention to whether you need to use population or sample mean and standard deviation. For the equation using σ x µ z 0 σ n x 65., μ 64.4, σ.4, and n 0, z for 90% 1.64 (compare your test z score to this number to see if there is a significant difference in mean heights). Replace symbols with numbers Solve. a) On bottom, take square root of n b) Divide σ by that number c) On top, subtract d) Divide the top number by the bottom number Compare the test z score you calculated with the critical z score of If your number is >1.64 or < 1.64, then there is a significant difference between mean heights of women at the colleges. Test z 1.48 falls between these values so there is not a significant difference and we do not reject the null hypothesis (H 0 ) that they are the same. 16

17 Using sample SD (s): Using a significance level of 10% (α 0.10), are we very confident that the mean height is the same for both colleges? This time, test the hypothesis using the sample standard deviation at the East Coast college (use s). Our critical test value of t will be This is from the t table with df 19 (n 1 or 0 1) and column for 90% confidence level (t 0.05 ). So if our test t value is < 1.79 or >1.79 we will reject our null hypothesis. 1. Identify the proper numbers that will replace symbols in the equation. Pay close attention to whether you need to use population or sample mean and standard deviation. For the equation using s x µ t 0 s n x 65., μ 64.4, s.68, and n 0, t for 90% and n of (above). Replace symbols with numbers Solve. a) On bottom, take square root of n b) Divide s by that number c) On top, subtract d) Divide the top number by the bottom number Compare the test t score you calculated with the critical t score of Because 1.33 is < 1.79, we do not reject the null hypothesis that average height is the same at both colleges and conclude that they are the same considering our data. 17

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010 THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL STOR 455 Midterm September 8, INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE

More information

Measures of Dispersion

Measures of Dispersion Lesson 7.6 Objectives Find the variance of a set of data. Calculate standard deviation for a set of data. Read data from a normal curve. Estimate the area under a curve. Variance Measures of Dispersion

More information

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES

STP 226 ELEMENTARY STATISTICS NOTES PART 2 - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES STP 6 ELEMENTARY STATISTICS NOTES PART - DESCRIPTIVE STATISTICS CHAPTER 3 DESCRIPTIVE MEASURES Chapter covered organizing data into tables, and summarizing data with graphical displays. We will now use

More information

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015

MAT 142 College Mathematics. Module ST. Statistics. Terri Miller revised July 14, 2015 MAT 142 College Mathematics Statistics Module ST Terri Miller revised July 14, 2015 2 Statistics Data Organization and Visualization Basic Terms. A population is the set of all objects under study, a sample

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

2) In the formula for the Confidence Interval for the Mean, if the Confidence Coefficient, z(α/2) = 1.65, what is the Confidence Level?

2) In the formula for the Confidence Interval for the Mean, if the Confidence Coefficient, z(α/2) = 1.65, what is the Confidence Level? Pg.431 1)The mean of the sampling distribution of means is equal to the mean of the population. T-F, and why or why not? True. If you were to take every possible sample from the population, and calculate

More information

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order.

Prepare a stem-and-leaf graph for the following data. In your final display, you should arrange the leaves for each stem in increasing order. Chapter 2 2.1 Descriptive Statistics A stem-and-leaf graph, also called a stemplot, allows for a nice overview of quantitative data without losing information on individual observations. It can be a good

More information

Measures of Position

Measures of Position Measures of Position In this section, we will learn to use fractiles. Fractiles are numbers that partition, or divide, an ordered data set into equal parts (each part has the same number of data entries).

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

No. of blue jelly beans No. of bags

No. of blue jelly beans No. of bags Math 167 Ch5 Review 1 (c) Janice Epstein CHAPTER 5 EXPLORING DATA DISTRIBUTIONS A sample of jelly bean bags is chosen and the number of blue jelly beans in each bag is counted. The results are shown in

More information

How individual data points are positioned within a data set.

How individual data points are positioned within a data set. Section 3.4 Measures of Position Percentiles How individual data points are positioned within a data set. P k is the value such that k% of a data set is less than or equal to P k. For example if we said

More information

15 Wyner Statistics Fall 2013

15 Wyner Statistics Fall 2013 15 Wyner Statistics Fall 2013 CHAPTER THREE: CENTRAL TENDENCY AND VARIATION Summary, Terms, and Objectives The two most important aspects of a numerical data set are its central tendencies and its variation.

More information

Selected Introductory Statistical and Data Manipulation Procedures. Gordon & Johnson 2002 Minitab version 13.

Selected Introductory Statistical and Data Manipulation Procedures. Gordon & Johnson 2002 Minitab version 13. Minitab@Oneonta.Manual: Selected Introductory Statistical and Data Manipulation Procedures Gordon & Johnson 2002 Minitab version 13.0 Minitab@Oneonta.Manual: Selected Introductory Statistical and Data

More information

Measures of Position. 1. Determine which student did better

Measures of Position. 1. Determine which student did better Measures of Position z-score (standard score) = number of standard deviations that a given value is above or below the mean (Round z to two decimal places) Sample z -score x x z = s Population z - score

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures

STA Rev. F Learning Objectives. Learning Objectives (Cont.) Module 3 Descriptive Measures STA 2023 Module 3 Descriptive Measures Learning Objectives Upon completing this module, you should be able to: 1. Explain the purpose of a measure of center. 2. Obtain and interpret the mean, median, and

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion 6-3 I Will... Find measures of dispersion of sets of data. Find standard deviation and analyze normal distribution. Day 1: Dispersion Vocabulary Measures of Variation (Dispersion

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I Part II 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I. 4 th Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I. 4 th Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I 4 th Nine Weeks, 2016-2017 1 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for

More information

+ Statistical Methods in

+ Statistical Methods in 9/4/013 Statistical Methods in Practice STA/MTH 379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Discovering Statistics

More information

IT 403 Practice Problems (1-2) Answers

IT 403 Practice Problems (1-2) Answers IT 403 Practice Problems (1-2) Answers #1. Using Tukey's Hinges method ('Inclusionary'), what is Q3 for this dataset? 2 3 5 7 11 13 17 a. 7 b. 11 c. 12 d. 15 c (12) #2. How do quartiles and percentiles

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

Chapter 5snow year.notebook March 15, 2018

Chapter 5snow year.notebook March 15, 2018 Chapter 5: Statistical Reasoning Section 5.1 Exploring Data Measures of central tendency (Mean, Median and Mode) attempt to describe a set of data by identifying the central position within a set of data

More information

Lecture 3 Questions that we should be able to answer by the end of this lecture:

Lecture 3 Questions that we should be able to answer by the end of this lecture: Lecture 3 Questions that we should be able to answer by the end of this lecture: Which is the better exam score? 67 on an exam with mean 50 and SD 10 or 62 on an exam with mean 40 and SD 12 Is it fair

More information

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false.

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. ST512 Fall Quarter, 2005 Exam 1 Name: Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. 1. (42 points) A random sample of n = 30 NBA basketball

More information

Descriptive Statistics

Descriptive Statistics Chapter 2 Descriptive Statistics 2.1 Descriptive Statistics 1 2.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Display data graphically and interpret graphs:

More information

UNIT 1A EXPLORING UNIVARIATE DATA

UNIT 1A EXPLORING UNIVARIATE DATA A.P. STATISTICS E. Villarreal Lincoln HS Math Department UNIT 1A EXPLORING UNIVARIATE DATA LESSON 1: TYPES OF DATA Here is a list of important terms that we must understand as we begin our study of statistics

More information

Section 6.3: Measures of Position

Section 6.3: Measures of Position Section 6.3: Measures of Position Measures of position are numbers showing the location of data values relative to the other values within a data set. They can be used to compare values from different

More information

Univariate Statistics Summary

Univariate Statistics Summary Further Maths Univariate Statistics Summary Types of Data Data can be classified as categorical or numerical. Categorical data are observations or records that are arranged according to category. For example:

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency lowest value + highest value midrange The word average: is very ambiguous and can actually refer to the mean,

More information

23.2 Normal Distributions

23.2 Normal Distributions 1_ Locker LESSON 23.2 Normal Distributions Common Core Math Standards The student is expected to: S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate

More information

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies.

The first few questions on this worksheet will deal with measures of central tendency. These data types tell us where the center of the data set lies. Instructions: You are given the following data below these instructions. Your client (Courtney) wants you to statistically analyze the data to help her reach conclusions about how well she is teaching.

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ when the population standard deviation is known and population distribution is normal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses

More information

Math 14 Lecture Notes Ch. 6.1

Math 14 Lecture Notes Ch. 6.1 6.1 Normal Distribution What is normal? a 10-year old boy that is 4' tall? 5' tall? 6' tall? a 25-year old woman with a shoe size of 5? 7? 9? an adult alligator that weighs 200 pounds? 500 pounds? 800

More information

CHAPTER 3: Data Description

CHAPTER 3: Data Description CHAPTER 3: Data Description You ve tabulated and made pretty pictures. Now what numbers do you use to summarize your data? Ch3: Data Description Santorico Page 68 You ll find a link on our website to a

More information

UNIT 1: NUMBER LINES, INTERVALS, AND SETS

UNIT 1: NUMBER LINES, INTERVALS, AND SETS ALGEBRA II CURRICULUM OUTLINE 2011-2012 OVERVIEW: 1. Numbers, Lines, Intervals and Sets 2. Algebraic Manipulation: Rational Expressions and Exponents 3. Radicals and Radical Equations 4. Function Basics

More information

Chapter 3. Descriptive Measures. Slide 3-2. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 3. Descriptive Measures. Slide 3-2. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 3 Descriptive Measures Slide 3-2 Section 3.1 Measures of Center Slide 3-3 Definition 3.1 Mean of a Data Set The mean of a data set is the sum of the observations divided by the number of observations.

More information

appstats6.notebook September 27, 2016

appstats6.notebook September 27, 2016 Chapter 6 The Standard Deviation as a Ruler and the Normal Model Objectives: 1.Students will calculate and interpret z scores. 2.Students will compare/contrast values from different distributions using

More information

Maths Revision Worksheet: Algebra I Week 1 Revision 5 Problems per night

Maths Revision Worksheet: Algebra I Week 1 Revision 5 Problems per night 2 nd Year Maths Revision Worksheet: Algebra I Maths Revision Worksheet: Algebra I Week 1 Revision 5 Problems per night 1. I know how to add and subtract positive and negative numbers. 2. I know how to

More information

Female Brown Bear Weights

Female Brown Bear Weights CC-20 Normal Distributions Common Core State Standards MACC.92.S-ID..4 Use the mean and standard of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that

More information

Regression Analysis and Linear Regression Models

Regression Analysis and Linear Regression Models Regression Analysis and Linear Regression Models University of Trento - FBK 2 March, 2015 (UNITN-FBK) Regression Analysis and Linear Regression Models 2 March, 2015 1 / 33 Relationship between numerical

More information

Chapter 2 Describing, Exploring, and Comparing Data

Chapter 2 Describing, Exploring, and Comparing Data Slide 1 Chapter 2 Describing, Exploring, and Comparing Data Slide 2 2-1 Overview 2-2 Frequency Distributions 2-3 Visualizing Data 2-4 Measures of Center 2-5 Measures of Variation 2-6 Measures of Relative

More information

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data

Chapter 2. Descriptive Statistics: Organizing, Displaying and Summarizing Data Chapter 2 Descriptive Statistics: Organizing, Displaying and Summarizing Data Objectives Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

More information

Chapter 3 Practice Test

Chapter 3 Practice Test 1. Complete parts a c for each quadratic function. a. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex. b. Make a table of values that includes the vertex.

More information

DAY 52 BOX-AND-WHISKER

DAY 52 BOX-AND-WHISKER DAY 52 BOX-AND-WHISKER VOCABULARY The Median is the middle number of a set of data when the numbers are arranged in numerical order. The Range of a set of data is the difference between the highest and

More information

WHOLE NUMBER AND DECIMAL OPERATIONS

WHOLE NUMBER AND DECIMAL OPERATIONS WHOLE NUMBER AND DECIMAL OPERATIONS Whole Number Place Value : 5,854,902 = Ten thousands thousands millions Hundred thousands Ten thousands Adding & Subtracting Decimals : Line up the decimals vertically.

More information

Descriptive Statistics: Box Plot

Descriptive Statistics: Box Plot Connexions module: m16296 1 Descriptive Statistics: Box Plot Susan Dean Barbara Illowsky, Ph.D. This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

College Prep Algebra II Summer Packet

College Prep Algebra II Summer Packet Name: College Prep Algebra II Summer Packet This packet is an optional review which is highly recommended before entering CP Algebra II. It provides practice for necessary Algebra I topics. Remember: When

More information

Brief Guide on Using SPSS 10.0

Brief Guide on Using SPSS 10.0 Brief Guide on Using SPSS 10.0 (Use student data, 22 cases, studentp.dat in Dr. Chang s Data Directory Page) (Page address: http://www.cis.ysu.edu/~chang/stat/) I. Processing File and Data To open a new

More information

Week 4: Describing data and estimation

Week 4: Describing data and estimation Week 4: Describing data and estimation Goals Investigate sampling error; see that larger samples have less sampling error. Visualize confidence intervals. Calculate basic summary statistics using R. Calculate

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

10.4 Measures of Central Tendency and Variation

10.4 Measures of Central Tendency and Variation 10.4 Measures of Central Tendency and Variation Mode-->The number that occurs most frequently; there can be more than one mode ; if each number appears equally often, then there is no mode at all. (mode

More information

CHAPTER 2 DESCRIPTIVE STATISTICS

CHAPTER 2 DESCRIPTIVE STATISTICS CHAPTER 2 DESCRIPTIVE STATISTICS 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is how the data is spread or distributed over the range of the data values. This is one of

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display CURRICULUM MAP TEMPLATE Priority Standards = Approximately 70% Supporting Standards = Approximately 20% Additional Standards = Approximately 10% HONORS PROBABILITY AND STATISTICS Essential Questions &

More information

Confidence Intervals: Estimators

Confidence Intervals: Estimators Confidence Intervals: Estimators Point Estimate: a specific value at estimates a parameter e.g., best estimator of e population mean ( ) is a sample mean problem is at ere is no way to determine how close

More information

To calculate the arithmetic mean, sum all the values and divide by n (equivalently, multiple 1/n): 1 n. = 29 years.

To calculate the arithmetic mean, sum all the values and divide by n (equivalently, multiple 1/n): 1 n. = 29 years. 3: Summary Statistics Notation Consider these 10 ages (in years): 1 4 5 11 30 50 8 7 4 5 The symbol n represents the sample size (n = 10). The capital letter X denotes the variable. x i represents the

More information

SLStats.notebook. January 12, Statistics:

SLStats.notebook. January 12, Statistics: Statistics: 1 2 3 Ways to display data: 4 generic arithmetic mean sample 14A: Opener, #3,4 (Vocabulary, histograms, frequency tables, stem and leaf) 14B.1: #3,5,8,9,11,12,14,15,16 (Mean, median, mode,

More information

Lecture 1: Statistical Reasoning 2. Lecture 1. Simple Regression, An Overview, and Simple Linear Regression

Lecture 1: Statistical Reasoning 2. Lecture 1. Simple Regression, An Overview, and Simple Linear Regression Lecture Simple Regression, An Overview, and Simple Linear Regression Learning Objectives In this set of lectures we will develop a framework for simple linear, logistic, and Cox Proportional Hazards Regression

More information

3. Data Analysis and Statistics

3. Data Analysis and Statistics 3. Data Analysis and Statistics 3.1 Visual Analysis of Data 3.2.1 Basic Statistics Examples 3.2.2 Basic Statistical Theory 3.3 Normal Distributions 3.4 Bivariate Data 3.1 Visual Analysis of Data Visual

More information

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0 y=-3/4x+4 and y=2 x I need to graph the functions so I can clearly describe the graphs Specifically mention any key points on the graphs, including intercepts, vertex, or start/end points. What is the

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

REVIEW OF 6 TH GRADE

REVIEW OF 6 TH GRADE Name: Period: Advanced Unit 1: REVIEW OF 6 TH GRADE CW-HW Packet Page 1 of 33 Fractions Wksht 1 Find the LCM of the numbers. 1) 3, 8 2) 5, 15 3) 7, 12 Find the GCF of the numbers. 4) 42, 86 5) 122, 76

More information

Slide 2 / 222. Algebra II. Quadratic Functions

Slide 2 / 222. Algebra II. Quadratic Functions Slide 1 / 222 Slide 2 / 222 Algebra II Quadratic Functions 2014-10-14 www.njctl.org Slide 3 / 222 Table of Contents Key Terms Explain Characteristics of Quadratic Functions Combining Transformations (review)

More information

Algebra 1 Notes Quarter

Algebra 1 Notes Quarter Algebra 1 Notes Quarter 3 2014 2015 Name: ~ 1 ~ Table of Contents Unit 9 Exponent Rules Exponent Rules for Multiplication page 6 Negative and Zero Exponents page 10 Exponent Rules Involving Quotients page

More information

IAT 355 Visual Analytics. Data and Statistical Models. Lyn Bartram

IAT 355 Visual Analytics. Data and Statistical Models. Lyn Bartram IAT 355 Visual Analytics Data and Statistical Models Lyn Bartram Exploring data Example: US Census People # of people in group Year # 1850 2000 (every decade) Age # 0 90+ Sex (Gender) # Male, female Marital

More information

STAT 2607 REVIEW PROBLEMS Word problems must be answered in words of the problem.

STAT 2607 REVIEW PROBLEMS Word problems must be answered in words of the problem. STAT 2607 REVIEW PROBLEMS 1 REMINDER: On the final exam 1. Word problems must be answered in words of the problem. 2. "Test" means that you must carry out a formal hypothesis testing procedure with H0,

More information

14.2 The Regression Equation

14.2 The Regression Equation 14.2 The Regression Equation Tom Lewis Fall Term 2009 Tom Lewis () 14.2 The Regression Equation Fall Term 2009 1 / 12 Outline 1 Exact and inexact linear relationships 2 Fitting lines to data 3 Formulas

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Learning Log Title: CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS. Date: Lesson: Chapter 8: Statistics and Multiplication Equations

Learning Log Title: CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS. Date: Lesson: Chapter 8: Statistics and Multiplication Equations Chapter 8: Statistics and Multiplication Equations CHAPTER 8: STATISTICS AND MULTIPLICATION EQUATIONS Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 8: Statistics and Multiplication

More information

STA Module 2B Organizing Data and Comparing Distributions (Part II)

STA Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II)

STA Learning Objectives. Learning Objectives (cont.) Module 2B Organizing Data and Comparing Distributions (Part II) STA 2023 Module 2B Organizing Data and Comparing Distributions (Part II) Learning Objectives Upon completing this module, you should be able to 1 Explain the purpose of a measure of center 2 Obtain and

More information

SUMMER PACKET Answer Key

SUMMER PACKET Answer Key BELLEVUE SCHOOL DISTRICT SUMMER PACKET Answer Key FOR STUDENTS GOlNG lnto: GEOMETRY Section A1.1.A 1. s = 27 s = 2r + 7 2. a) A. f(n) = b) The number of dollars Julie will get on day 12 is $2048. If you

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 6.2-1

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 6.2-1 Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Section 6.2-1 Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard

More information

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016)

CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1. Daphne Skipper, Augusta University (2016) CHAPTER 2: DESCRIPTIVE STATISTICS Lecture Notes for Introductory Statistics 1 Daphne Skipper, Augusta University (2016) 1. Stem-and-Leaf Graphs, Line Graphs, and Bar Graphs The distribution of data is

More information

Introductory Applied Statistics: A Variable Approach TI Manual

Introductory Applied Statistics: A Variable Approach TI Manual Introductory Applied Statistics: A Variable Approach TI Manual John Gabrosek and Paul Stephenson Department of Statistics Grand Valley State University Allendale, MI USA Version 1.1 August 2014 2 Copyright

More information

Basic Statistical Terms and Definitions

Basic Statistical Terms and Definitions I. Basics Basic Statistical Terms and Definitions Statistics is a collection of methods for planning experiments, and obtaining data. The data is then organized and summarized so that professionals can

More information

8: Statistics. Populations and Samples. Histograms and Frequency Polygons. Page 1 of 10

8: Statistics. Populations and Samples. Histograms and Frequency Polygons. Page 1 of 10 8: Statistics Statistics: Method of collecting, organizing, analyzing, and interpreting data, as well as drawing conclusions based on the data. Methodology is divided into two main areas. Descriptive Statistics:

More information

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys

Unit 7 Statistics. AFM Mrs. Valentine. 7.1 Samples and Surveys Unit 7 Statistics AFM Mrs. Valentine 7.1 Samples and Surveys v Obj.: I will understand the different methods of sampling and studying data. I will be able to determine the type used in an example, and

More information

Chapter 1. Looking at Data-Distribution

Chapter 1. Looking at Data-Distribution Chapter 1. Looking at Data-Distribution Statistics is the scientific discipline that provides methods to draw right conclusions: 1)Collecting the data 2)Describing the data 3)Drawing the conclusions Raw

More information

Lecture Notes 3: Data summarization

Lecture Notes 3: Data summarization Lecture Notes 3: Data summarization Highlights: Average Median Quartiles 5-number summary (and relation to boxplots) Outliers Range & IQR Variance and standard deviation Determining shape using mean &

More information

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures Part I, Chapters 4 & 5 Data Tables and Data Analysis Statistics and Figures Descriptive Statistics 1 Are data points clumped? (order variable / exp. variable) Concentrated around one value? Concentrated

More information

Written by Donna Hiestand-Tupper CCBC - Essex TI 83 TUTORIAL. Version 3.0 to accompany Elementary Statistics by Mario Triola, 9 th edition

Written by Donna Hiestand-Tupper CCBC - Essex TI 83 TUTORIAL. Version 3.0 to accompany Elementary Statistics by Mario Triola, 9 th edition TI 83 TUTORIAL Version 3.0 to accompany Elementary Statistics by Mario Triola, 9 th edition Written by Donna Hiestand-Tupper CCBC - Essex 1 2 Math 153 - Introduction to Statistical Methods TI 83 (PLUS)

More information

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR EXERCISE SET 10. STUDENT MATD 090 DUE DATE: INSTRUCTOR You have studied the method known as "completing the square" to solve quadratic equations. Another use for this method is in transforming the equation

More information

BIOL Gradation of a histogram (a) into the normal curve (b)

BIOL Gradation of a histogram (a) into the normal curve (b) (التوزيع الطبيعي ( Distribution Normal (Gaussian) One of the most important distributions in statistics is a continuous distribution called the normal distribution or Gaussian distribution. Consider the

More information

Chapter 3 Analyzing Normal Quantitative Data

Chapter 3 Analyzing Normal Quantitative Data Chapter 3 Analyzing Normal Quantitative Data Introduction: In chapters 1 and 2, we focused on analyzing categorical data and exploring relationships between categorical data sets. We will now be doing

More information

AP Statistics Summer Assignment:

AP Statistics Summer Assignment: AP Statistics Summer Assignment: Read the following and use the information to help answer your summer assignment questions. You will be responsible for knowing all of the information contained in this

More information

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 Objectives 2.1 What Are the Types of Data? www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

List of Topics for Analytic Geometry Unit Test

List of Topics for Analytic Geometry Unit Test List of Topics for Analytic Geometry Unit Test 1. Finding Slope 2. Rule of 4 (4 forms of a line) Graph, Table of Values, Description, Equation 3. Find the Equations- Vertical and Horizontal Lines 4. Standard

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

Table of Contents (As covered from textbook)

Table of Contents (As covered from textbook) Table of Contents (As covered from textbook) Ch 1 Data and Decisions Ch 2 Displaying and Describing Categorical Data Ch 3 Displaying and Describing Quantitative Data Ch 4 Correlation and Linear Regression

More information

Chapter 3 - Displaying and Summarizing Quantitative Data

Chapter 3 - Displaying and Summarizing Quantitative Data Chapter 3 - Displaying and Summarizing Quantitative Data 3.1 Graphs for Quantitative Data (LABEL GRAPHS) August 25, 2014 Histogram (p. 44) - Graph that uses bars to represent different frequencies or relative

More information

Chapter 6. THE NORMAL DISTRIBUTION

Chapter 6. THE NORMAL DISTRIBUTION Chapter 6. THE NORMAL DISTRIBUTION Introducing Normally Distributed Variables The distributions of some variables like thickness of the eggshell, serum cholesterol concentration in blood, white blood cells

More information

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics

Section 1.2. Displaying Quantitative Data with Graphs. Mrs. Daniel AP Stats 8/22/2013. Dotplots. How to Make a Dotplot. Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs Mrs. Daniel AP Statistics Section. Displaying Quantitative Data with Graphs After this section, you should be able to CONSTRUCT and INTERPRET dotplots,

More information

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis.

Density Curve (p52) Density curve is a curve that - is always on or above the horizontal axis. 1.3 Density curves p50 Some times the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve. It is easier to work with a smooth curve, because the histogram

More information

Dealing with Data in Excel 2013/2016

Dealing with Data in Excel 2013/2016 Dealing with Data in Excel 2013/2016 Excel provides the ability to do computations and graphing of data. Here we provide the basics and some advanced capabilities available in Excel that are useful for

More information

Math 101 Final Exam Study Notes:

Math 101 Final Exam Study Notes: Math 101 Final Exam Study Notes: *Please remember there is a large set of final exam review problems in Doc Sharing (under Course Tools in MLP). Highlighted are what might be considered formulas* I. Graph

More information