WebGL and GLSL Basics. CS559 Fall 2016 Lecture 14 October

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "WebGL and GLSL Basics. CS559 Fall 2016 Lecture 14 October"

Transcription

1 WebGL and GLSL Basics CS559 Fall 2016 Lecture 14 October

2 Review

3 Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, , 0, -.1.9,.05,.05.33,.33,.33

4 1988: The Personal Iris

5 A Pipeline 1 transf light project raster shade write

6 Applica>on Program The pipeline (1988) Graphics Driver Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

7 Applica>on Program The pipeline (2006-current) Graphics Driver Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

8 Applica>on Program Graphics Driver The parts you have to program Now (in addition to above) Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

9 A Triangle s Journey

10 A Program to Draw a Triangle The complete WebGL thing we need Doing each necessary steps Just one triangle

11 Just a Triangle

12 HTML like you are used to

13 A Lot of Code

14 Look at the process inside-out We ll start with the end of the pipeline And work backwards

15 Applica>on Program Graphics Driver The parts you have to program Now (in addition to above) Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

16 I warned you: Applica>on Program This step will get to be prexy exci>ng Graphics Driver Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

17 We have to program this step! Applica>on Program Graphics Driver The program is called the: Fragment Shader Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

18 Pixel in à Pixel out, each independent Applica>on Program All we do is change its values Graphics Driver Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

19 Coming axrac>ons Applica>on Program This step will get to be prexy exci>ng Graphics Driver Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

20 The Pixel Shader Given information about the pixel Compute color Optionally, compute other things

21 How to program it Use a Shading Language We ll use a language called GLSL Compiler built into WebGL Language specifics as we go

22 A (boring) Fragment Shader void main(void) { gl_fragcolor = vec4(0.0, 1.0, 1.0, 1.0); }

23 A (boring) Fragment Shader void main(void) { Shaders define a main func>on that take no arguments return no values gl_fragcolor = vec4(0.0, 1.0, 1.0, 1.0); }

24 A (boring) Fragment Shader void main(void) { GLSL Shaders operate by side effects on special variables (they look like globals) gl_fragcolor = vec4(0.0, 1.0, 1.0, 1.0); }

25 A (boring) Fragment Shader void main(void) GLSL has types useful in graphics Like 4 vectors { gl_fragcolor = vec4(0.0, 1.0, 1.0, 1.0); } This is opaque yellow (even colors are 4- vectors)

26 Processing Applica>on Program Graphics Driver We have to program this part too Also in GLSL Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

27 Process each vertex independently Applica>on Program Graphics Driver Transform compute x and n Clip Light compute c Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

28 What data about vertices? Inputs: Position Other Stuff A/ributes from applica>on Outputs: Position Other Stuff varying proper>es to framgment Shaders (remember interpola>on)

29 The simplest vertex shader attribute vec3 pos; void main(void) { } gl_position = vec4(pos, 1.0); }

30 The simplest vertex shader attribute vec3 pos; void main(void) { Shaders define a main func>on that take no arguments return no values gl_position = vec4(pos, 1.0); } }

31 The simplest vertex shader attribute vec3 pos; Shaders output by side effects: seang special variables void main(void) { } gl_position = vec4(pos, 1.0); }

32 The simplest vertex shader attribute vec3 pos; Shaders get input by reading special variables void main(void) { } gl_position = vec4(pos, 1.0); }

33 Special Variables Built in (magic) gl_position output of vertex shader gl_fragcolor output of frag shader User Defined attributes inputs to vertex shader varying output from vertex to fragment uniform constant over triangle group

34 The simplest vertex shader attribute vec3 pos; We are defining our own special variable void main(void) { } gl_position = vec4(pos, 1.0); }

35 The simplest vertex shader attribute vec3 pos; void main(void) { Cool GLSL feature: type conversions gl_position = vec4(pos, 1.0); } }

36 No Transformation? I will assume the position is already in the right coordinate system. The rasterizer (and everything else) works in Normalized Device Coordinates (NDC) -1 to 1 in each dimension

37 Applica>on Program Graphics Driver Start here Setup modes (window, ) Setup transform, lights Draw a triangle Posi>on, color, normal Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

38 In JavaScript using WebGL

39 The beginning

40 The beginning This should look like HTML5 Canvas You can have multiple contexts (draw canvas over WebGL)

41 Now about those shaders Get them into strings Use a library to read them from resources

42 Run the compiler!

43 Error Checking Here I checked for errors (since I often have syntax errors) You should check for errors everywhere

44 Run the compiler again! Need to compile both shaders

45 Link the shaders together Shaders always work in pairs Need to connect them

46 Setup the special variables Important to communicate with shaders

47 The simplest vertex shader attribute vec3 pos; Javascript needs to connect to the pos variable void main(void) { } gl_position = vec4(pos, 1.0); }

48 Communicating an attribute We give it an array of attributes Assign it to a position We have to ask which position

49 OK, Now for our triangle How do we get this data to the hardware? Need to do a block transfer

50 Applica>on Program Graphics Driver Need to get the ver>ces to the hardware fast! (normally more than 3) Command Buffer (Triangle Queue) Queue Processing (TCL) Cache Assembly Triangle Processing Rasterize Pixel Queue Pixel Processing Pixel Tests shading Geometry Shading Pixel Shading Texture Memory Render to texture Frame Buffer

51 Key Idea: Buffer Create a buffer buffer = a block of memory on the GPU Copy the data into the buffer Must be a special JavaScript object: Float32Array (array of fixed types)

52 Now to draw First we have to clear the screen Notice that color is a 4-vector I don t really need the z-buffer

53 Now we actually draw the triangle Notice that we use the shaders and the buffer

54 All that for a triangle!

55 Is it really 100 lines of code? Not really lots of comments Build wrappers to be more concise you do the same thing over and over But there are lots of steps and you should understand them

56 Two triangles Can you see where these triangles will go? (remember they are in NDC)

57 Change the array sizes

58 Two triangles

59 How do we color them differently?

60 Color per vertex Add an attribute for each vertex so we can pass a color for each Have the vertex shader output the color varying variable for fragment shader Have the fragment shader input the color

61 A (boring) Fragment Shader void main(void) { gl_fragcolor = vec4(0.0, 1.0, 1.0, 1.0); }

62 A (less boring) Fragment Shader precision highp float; varying vec3 outcolor; Our own magic variable! void main(void) { gl_fragcolor = vec4(outcolor, 1.0); }

63 A (less boring) Fragment Shader precision highp float; varying vec3 outcolor; Required so the shaders can talk void main(void) { gl_fragcolor = vec4(outcolor, 1.0); }

64 Connecting Shaders varying variables connect shaders the output of a vertex shader becomes the input to a fragment shader The 3 vertices of a triangle are interpolated

65 The simplest vertex shader attribute vec3 pos; void main(void) { } gl_position = vec4(pos, 1.0); }

66 The (almost) simplest vertex shader attribute vec3 pos; varying vec3 outcolor; void main(void) { gl_position = vec4(pos, 1.0); } outcolor = vec3(1.0,0.0,1.0); }

67 Two purple triangles hxp://jsbin.com/wecaci/edit?js,output

68 Make color an input as well attribute vec3 pos; attribute vec3 incolor; varying vec3 outcolor; void main(void) { gl_position = vec4(pos, 1.0); } outcolor = incolor; }

69 Remember We can t pass values directly to a fragment we don t even know what they will be! We pass attributes of vertices which can then pass them to fragments

70 Now to connect to JavaScript

71 Colors per vertex

72 Put them in a buffer

73 When we draw, use 2 buffers

74 Two triangles hxp://jsbin.com/digupi/edit?js,output

75 Apply a transformation One transformation for the triangle group It is constant over the drawarrays call This is a uniform variable hxp://jsbin.com/>rapu/19/edit?js,output

76 Simplifying the Code There is stuff you do over and over and Write it once and use it often Or let someone else write it once This is where twgl comes in

77 Compile two vertex programs For each run the compiler check for errors Link them together Attach to the attributes Set up to specify the uniforms

78 Do it by hand Do it with twgl var shaders = twgl.createprograminfo(gl, ["vs", "fs"]); Yes, one line And it grabs the string from script tags so they are separate from your JS program. But the documentation is terrible.

79 How about those shaders They do very specific things you need to understand the pipeline They have 3 kinds of weird variables you need to understand the model They are written in a cool language you ll pick it up quickly The language has a bunch of useful stuff look at the quick reference card

80 Learning Shader Programming Connecting your program to shaders is hard So, don t bother (yet) Use a Shader IDE that lets you focus on shaders Gives you an object, a program,

81 Some things about GLSL Very strongly typed float x = 1; // error! integer and float Cool sub-vector access: vec3 v; v.xy (a 2-vector) vec4(v,1) (a 4-vector) vec4(v.xy, v.zx)

82 More cool stuff about GLSL Lots of handy math functions They know it s for graphics! Limited control structures parallel execution means all the same Conditional functions step, softstep,

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015

WebGL and GLSL Basics. CS559 Fall 2015 Lecture 10 October 6, 2015 WebGL and GLSL Basics CS559 Fall 2015 Lecture 10 October 6, 2015 Last time Hardware Rasterization For each point: Compute barycentric coords Decide if in or out.7,.7, -.4 1.1, 0, -.1.9,.05,.05.33,.33,.33

More information

OPENGL RENDERING PIPELINE

OPENGL RENDERING PIPELINE CPSC 314 03 SHADERS, OPENGL, & JS UGRAD.CS.UBC.CA/~CS314 Textbook: Appendix A* (helpful, but different version of OpenGL) Alla Sheffer Sep 2016 OPENGL RENDERING PIPELINE 1 OPENGL RENDERING PIPELINE Javascript

More information

Lecture 11 Shaders and WebGL. October 8, 2015

Lecture 11 Shaders and WebGL. October 8, 2015 Lecture 11 Shaders and WebGL October 8, 2015 Review Graphics Pipeline (all the machinery) Program Vertex and Fragment Shaders WebGL to set things up Key Shader Concepts Fragment Processing and Vertex

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

WebGL A quick introduction. J. Madeira V. 0.2 September 2017

WebGL A quick introduction. J. Madeira V. 0.2 September 2017 WebGL A quick introduction J. Madeira V. 0.2 September 2017 1 Interactive Computer Graphics Graphics library / package is intermediary between application and display hardware Application program maps

More information

The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)!

The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)! ! The Graphics Pipeline and OpenGL III: OpenGL Shading Language (GLSL 1.10)! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 4! stanford.edu/class/ee267/! Updates! for 24h lab access:

More information

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012

Copyright Khronos Group 2012 Page 1. Teaching GL. Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 1 Teaching GL Dave Shreiner Director, Graphics and GPU Computing, ARM 1 December 2012 Copyright Khronos Group 2012 Page 2 Agenda Overview of OpenGL family of APIs Comparison

More information

Introduction to Shaders.

Introduction to Shaders. Introduction to Shaders Marco Benvegnù hiforce@gmx.it www.benve.org Summer 2005 Overview Rendering pipeline Shaders concepts Shading Languages Shading Tools Effects showcase Setup of a Shader in OpenGL

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

3D Drawing Visibility & Rasterization. CS559 Spring 2016 Lecture 9 February 23, 2016

3D Drawing Visibility & Rasterization. CS559 Spring 2016 Lecture 9 February 23, 2016 3D Drawing Visibility & Rasterization CS559 Spring 2016 Lecture 9 February 23, 2016 1. Put a 3D primitive in the World Modeling 2. Figure out what color it should be Shading 3. Position relative to the

More information

Converts geometric primitives into images Is split into several independent stages Those are usually executed concurrently

Converts geometric primitives into images Is split into several independent stages Those are usually executed concurrently Rendering Pipeline Rendering Pipeline Converts geometric primitives into images Is split into several independent stages Those are usually executed concurrently Pipeline 18.10.2013 Steiner- Wallner- Podaras

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Lecture 2 Robb T. Koether Hampden-Sydney College Fri, Aug 28, 2015 Robb T. Koether (Hampden-Sydney College) The Graphics Pipeline Fri, Aug 28, 2015 1 / 19 Outline 1 Vertices 2 The

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

Mobile Application Programing: Android. OpenGL Operation

Mobile Application Programing: Android. OpenGL Operation Mobile Application Programing: Android OpenGL Operation Activities Apps are composed of activities Activities are self-contained tasks made up of one screen-full of information Activities start one another

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

OpenGL shaders and programming models that provide object persistence

OpenGL shaders and programming models that provide object persistence OpenGL shaders and programming models that provide object persistence COSC342 Lecture 22 19 May 2016 OpenGL shaders We discussed forms of local illumination in the ray tracing lectures. We also saw that

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico 0 Objectives Shader Basics Simple Shaders Vertex shader Fragment shaders 1 Vertex

More information

WebGL: Hands On. DevCon5 NYC Kenneth Russell Software Engineer, Google, Inc. Chair, WebGL Working Group

WebGL: Hands On. DevCon5 NYC Kenneth Russell Software Engineer, Google, Inc. Chair, WebGL Working Group WebGL: Hands On DevCon5 NYC 2011 Kenneth Russell Software Engineer, Google, Inc. Chair, WebGL Working Group Today's Agenda Introduce WebGL and its programming model. Show code for a complete example. Demonstrate

More information

Mining the Rendering Power in Web Browsers. Jianxia Xue Jan. 28, 2014

Mining the Rendering Power in Web Browsers. Jianxia Xue Jan. 28, 2014 Mining the Rendering Power in Web Browsers Jianxia Xue Jan. 28, 2014 Outline Web application as software deployment platform WebGL: Graphics API inside browsers Explore browser rendering capability through

More information

CS452/552; EE465/505. Image Formation

CS452/552; EE465/505. Image Formation CS452/552; EE465/505 Image Formation 1-15-15 Outline! Image Formation! Introduction to WebGL, continued Draw a colored triangle using WebGL Read: Angel, Chapters 2 & 3 Homework #1 will be available on

More information

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Shaders I. Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Shaders I Adapted From: Ed Angel Professor of Emeritus of Computer Science University of New Mexico Objectives Shader Programming Basics Simple Shaders Vertex shader Fragment shaders

More information

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL

Today. Rendering - III. Outline. Texturing: The 10,000m View. Texture Coordinates. Specifying Texture Coordinates in GL Today Rendering - III CS148, Summer 2010 Graphics Pipeline and Programmable Shaders Artist Workflow Siddhartha Chaudhuri 1 2 Outline Texturing: The 10,000m View Intro to textures The fixed-function graphics

More information

Rasterization-based pipeline

Rasterization-based pipeline Rasterization-based pipeline Interactive Graphics: Color and Images 10/2/2014 Pagina 1 Rasterization-based rendering Input: set of vertices and its associated attributes Algorithm goes through several

More information

2D graphics with WebGL

2D graphics with WebGL 2D graphics with WebGL Some material contained here is adapted from the book s slides. September 7, 2015 (Dr. Mihail) 2D graphics September 7, 2015 1 / 22 Graphics Pipeline (Dr. Mihail) 2D graphics September

More information

GLSL 1: Basics. J.Tumblin-Modified SLIDES from:

GLSL 1: Basics. J.Tumblin-Modified SLIDES from: GLSL 1: Basics J.Tumblin-Modified SLIDES from: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New Mexico and

More information

Water Simulation on WebGL and Three.js

Water Simulation on WebGL and Three.js The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College 5-2013 Water Simulation on WebGL and Three.js Kerim J. Pereira Follow this and additional works at: http://aquila.usm.edu/honors_theses

More information

Introduction to OpenGL/GLSL and WebGL GLSL

Introduction to OpenGL/GLSL and WebGL GLSL Introduction to OpenGL/GLSL and WebGL GLSL Objectives! Give you an overview of the software that you will be using this semester! OpenGL, WebGL, and GLSL! What are they?! How do you use them?! What does

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

MXwendler Fragment Shader Development Reference Version 1.0

MXwendler Fragment Shader Development Reference Version 1.0 MXwendler Fragment Shader Development Reference Version 1.0 This document describes the MXwendler fragmentshader interface. You will learn how to write shaders using the GLSL language standards and the

More information

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1 Markus Hadwiger, KAUST Reading Assignment #4 (until Feb. 23) Read (required): Programming Massively Parallel Processors book, Chapter

More information

CS452/552; EE465/505. Image Processing Frame Buffer Objects

CS452/552; EE465/505. Image Processing Frame Buffer Objects CS452/552; EE465/505 Image Processing Frame Buffer Objects 3-12 15 Outline! Image Processing: Examples! Render to Texture Read: Angel, Chapter 7, 7.10-7.13 Lab3 new due date: Friday, Mar. 13 th Project#1

More information

Understanding Shaders and WebGL. Chris Dalton & Olli Etuaho

Understanding Shaders and WebGL. Chris Dalton & Olli Etuaho Understanding Shaders and WebGL Chris Dalton & Olli Etuaho Agenda Introduction: Accessible shader development with WebGL Understanding WebGL shader execution: from JS to GPU Common shader bugs Accessible

More information

Mobile Application Programming: Android. OpenGL Operation

Mobile Application Programming: Android. OpenGL Operation Mobile Application Programming: Android OpenGL Operation OpenGL ES C-Based Performance-Oriented Graphics Library Wrapper libraries provided for Java, C#, etc. Produces 2D images from 2D or 3D geometric

More information

Supplement to Lecture 22

Supplement to Lecture 22 Supplement to Lecture 22 Programmable GPUs Programmable Pipelines Introduce programmable pipelines - Vertex shaders - Fragment shaders Introduce shading languages - Needed to describe shaders - RenderMan

More information

Levy: Constraint Texture Mapping, SIGGRAPH, CS 148, Summer 2012 Introduction to Computer Graphics and Imaging Justin Solomon

Levy: Constraint Texture Mapping, SIGGRAPH, CS 148, Summer 2012 Introduction to Computer Graphics and Imaging Justin Solomon Levy: Constraint Texture Mapping, SIGGRAPH, 2001 CS 148, Summer 2012 Introduction to Computer Graphics and Imaging Justin Solomon Instructor: Justin Solomon Email: justin.solomon@stanford.edu Office: Clark

More information

Rasterization. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 16

Rasterization. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 16 Rasterization CS 4620 Lecture 16 1 Announcements A3 due on Thu Will send mail about grading once finalized 2 Pipeline overview you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

The Transition from RenderMan to the OpenGL Shading Language (GLSL)

The Transition from RenderMan to the OpenGL Shading Language (GLSL) 1 The Transition from RenderMan to the OpenGL Shading Language (GLSL) Mike Bailey mjb@cs.oregonstate.edu This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International

More information

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading

Objectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading Objectives Shading in OpenGL Introduce the OpenGL shading methods - per vertex shading vs per fragment shading - Where to carry out Discuss polygonal shading - Flat - Smooth - Gouraud CITS3003 Graphics

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

Intro to OpenGL III. Don Fussell Computer Science Department The University of Texas at Austin

Intro to OpenGL III. Don Fussell Computer Science Department The University of Texas at Austin Intro to OpenGL III Don Fussell Computer Science Department The University of Texas at Austin University of Texas at Austin CS354 - Computer Graphics Don Fussell Where are we? Continuing the OpenGL basic

More information

CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:

More information

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics

CS4621/5621 Fall Basics of OpenGL/GLSL Textures Basics CS4621/5621 Fall 2015 Basics of OpenGL/GLSL Textures Basics Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang and Pramook

More information

CS452/552; EE465/505. Overview of Computer Graphics

CS452/552; EE465/505. Overview of Computer Graphics CS452/552; EE465/505 Overview of Computer Graphics 1-13-15 Outline! What is Computer Graphics? a historical perspective! Draw a triangle using WebGL Computer Graphics! Computer graphics deals with all

More information

Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Level: Intermediate Area: Graphics Programming Summary This document is an introduction to the series of samples,

More information

GpuPy: Accelerating NumPy With a GPU

GpuPy: Accelerating NumPy With a GPU GpuPy: Accelerating NumPy With a GPU Washington State University School of Electrical Engineering and Computer Science Benjamin Eitzen - eitzenb@eecs.wsu.edu Robert R. Lewis - bobl@tricity.wsu.edu Presentation

More information

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014

Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 Shaders CSCI 4239/5239 Advanced Computer Graphics Spring 2014 What is a Shader? Wikipedia: A shader is a computer program used in 3D computer graphics to determine the final surface properties of an object

More information

Metal. GPU-accelerated advanced 3D graphics rendering and data-parallel computation. source rebelsmarket.com

Metal. GPU-accelerated advanced 3D graphics rendering and data-parallel computation. source rebelsmarket.com Metal GPU-accelerated advanced 3D graphics rendering and data-parallel computation source rebelsmarket.com Maths The heart and foundation of computer graphics source wallpoper.com Metalmatics There are

More information

CSE 167: Introduction to Computer Graphics Lecture #7: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #7: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #7: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 2 due Friday 4/22 at 2pm Midterm #1 on

More information

An Overview GLUT GLSL GLEW

An Overview GLUT GLSL GLEW OpenGL, GLUT, GLEW, GLSL An Overview GLUT GLEW GLSL Objectives Give you an overview of the software that you will be using this semester OpenGL, GLUT, GLEW, GLSL What are they? How do you use them? What

More information

GLSL v1.20. Scott MacHaffie Schrödinger, Inc.

GLSL v1.20. Scott MacHaffie Schrödinger, Inc. 1 GLSL v1.20 Scott MacHaffie Schrödinger, Inc. http://www.schrodinger.com Table of Contents Introduction...2 Example 01: Trivial shader...2 Syntax...3 Types of variables...3 Example 02: Materials vertex

More information

Technical Game Development II. Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS 4731 Computer Graphics

Technical Game Development II. Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS 4731 Computer Graphics Shader Programming Technical Game Development II Professor Charles Rich Computer Science Department rich@wpi.edu Reference: Rost, OpenGL Shading Language, 2nd Ed., AW, 2006 The Orange Book Also take CS

More information

Teaching a Modern Graphics Pipeline Using a Shader-based Software Renderer

Teaching a Modern Graphics Pipeline Using a Shader-based Software Renderer Teaching a Modern Graphics Pipeline Using a Shader-based Software Renderer Heinrich Fink 1 Thomas Weber 1 Michael Wimmer 1 1 Institute of Computer Graphics and Algorithms, Vienna University of Technology

More information

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

More information

CSE 167: Introduction to Computer Graphics Lecture #13: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #13: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #13: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 6 due Friday Next Thursday: Midterm #2

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 290-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 2009 Performance: Bottlenecks Sources of bottlenecks CPU Transfer Processing Rasterizer

More information

Methodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010)

Methodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010) Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 11: OpenGL 3 http://inst.eecs.berkeley.edu/~cs184 Methodology for Lecture Lecture deals with lighting (teapot shaded as in HW1) Some Nate

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

CMSC427 Fall 2017 OpenGL Notes A: Starting with JOGL and OpenGL Objectives of notes Readings Computer Graphics Programming in OpenGL with Java

CMSC427 Fall 2017 OpenGL Notes A: Starting with JOGL and OpenGL Objectives of notes Readings Computer Graphics Programming in OpenGL with Java CMSC427 Fall 2017 OpenGL Notes A: Starting with JOGL and OpenGL Objectives of notes Show how to program full OpenGL in JOGL Start on shader programing Readings Computer Graphics Programming in OpenGL with

More information

Introduction to OpenGL ES 3.0

Introduction to OpenGL ES 3.0 Introduction to OpenGL ES 3.0 Eisaku Ohbuchi Digital Media Professionals Inc. 2012 Digital Media Professionals Inc. All rights reserved. 12/Sep/2012 Page 1 Agenda DMP overview (quick!) OpenGL ES 3.0 update

More information

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games

Bringing AAA graphics to mobile platforms. Niklas Smedberg Senior Engine Programmer, Epic Games Bringing AAA graphics to mobile platforms Niklas Smedberg Senior Engine Programmer, Epic Games Who Am I A.k.a. Smedis Platform team at Epic Games Unreal Engine 15 years in the industry 30 years of programming

More information

Jitter Shaders. Fig 1. The opengl pipeline (simplified).

Jitter Shaders. Fig 1. The opengl pipeline (simplified). Shaders in Jitter Powerful as Jitter is, simple appearing patches often run up against the performance limitations of the computer, especially if we are trying for high resolution. You can't do very many

More information

CMPS160 Shader-based OpenGL Programming. All slides originally from Prabath Gunawardane, et al. unless noted otherwise

CMPS160 Shader-based OpenGL Programming. All slides originally from Prabath Gunawardane, et al. unless noted otherwise CMPS160 Shader-based OpenGL Programming All slides originally from Prabath Gunawardane, et al. unless noted otherwise Shader gallery I Above: Demo of Microsoft s XNA game platform Right: Product demos

More information

Mali & OpenGL ES 3.0. Dave Shreiner Jon Kirkham ARM. Game Developers Conference 27 March 2013

Mali & OpenGL ES 3.0. Dave Shreiner Jon Kirkham ARM. Game Developers Conference 27 March 2013 Mali & OpenGL ES 3.0 Dave Shreiner Jon Kirkham ARM Game Developers Conference 27 March 2013 1 Agenda Some foundational work Instanced geometry rendering Transform feedback Occlusion Queries 2 What s New

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Best practices for effective OpenGL programming. Dan Omachi OpenGL Development Engineer

Best practices for effective OpenGL programming. Dan Omachi OpenGL Development Engineer Best practices for effective OpenGL programming Dan Omachi OpenGL Development Engineer 2 What Is OpenGL? 3 OpenGL is a software interface to graphics hardware - OpenGL Specification 4 GPU accelerates rendering

More information

Achieving High-performance Graphics on Mobile With the Vulkan API

Achieving High-performance Graphics on Mobile With the Vulkan API Achieving High-performance Graphics on Mobile With the Vulkan API Marius Bjørge Graphics Research Engineer GDC 2016 Agenda Overview Command Buffers Synchronization Memory Shaders and Pipelines Descriptor

More information

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes Last Time? Programmable GPUS Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes frame buffer depth buffer stencil buffer Stencil Buffer Homework 4 Reading for Create some geometry "Rendering

More information

Computergraphics Exercise 15/ Shading & Texturing

Computergraphics Exercise 15/ Shading & Texturing Computergraphics Exercise 15/16 3. Shading & Texturing Jakob Wagner for internal use only Shaders Vertex Specification define vertex format & data in model space Vertex Processing transform to clip space

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Logistics Update! all homework submissions:

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

CS452/552; EE465/505. Models & Viewing

CS452/552; EE465/505. Models & Viewing CS452/552; EE465/505 Models & Viewing 2-03 15 Outline! Building Polygonal Models Vertex lists; gl.drawarrays( ) Edge lists: gl.drawelements( )! Viewing Classical Viewing Read: Viewing in Web3D Angel, Section

More information

Shaders. Introduction. OpenGL Grows via Extensions. OpenGL Extensions. OpenGL 2.0 Added Shaders. Shaders Enable Many New Effects

Shaders. Introduction. OpenGL Grows via Extensions. OpenGL Extensions. OpenGL 2.0 Added Shaders. Shaders Enable Many New Effects CSCI 420 Computer Graphics Lecture 4 Shaders Jernej Barbic University of Southern California Shading Languages GLSL Vertex Array Objects Vertex Shader Fragment Shader [Angel Ch. 1, 2, A] Introduction The

More information

Lecture 25: Board Notes: Threads and GPUs

Lecture 25: Board Notes: Threads and GPUs Lecture 25: Board Notes: Threads and GPUs Announcements: - Reminder: HW 7 due today - Reminder: Submit project idea via (plain text) email by 11/24 Recap: - Slide 4: Lecture 23: Introduction to Parallel

More information

- Rasterization. Geometry. Scan Conversion. Rasterization

- Rasterization. Geometry. Scan Conversion. Rasterization Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

More information

CS452/552; EE465/505. Lighting & Shading

CS452/552; EE465/505. Lighting & Shading CS452/552; EE465/505 Lighting & Shading 2-17 15 Outline! More on Lighting and Shading Read: Angel Chapter 6 Lab2: due tonight use ASDW to move a 2D shape around; 1 to center Local Illumination! Approximate

More information

Advanced Graphics. OpenGL and Shaders I. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. OpenGL and Shaders I. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics OpenGL and Shaders I 1 Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd 3D technologies today Java OpenGL Common, re-usable language;

More information

GPU Programming EE Final Examination

GPU Programming EE Final Examination Name Solution GPU Programming EE 4702-1 Final Examination Friday, 11 December 2015 15:00 17:00 CST Alias Methane? Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Exam Total (20 pts) (15 pts)

More information

CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines. Emmanuel Agu

CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines. Emmanuel Agu CS 4731: Computer Graphics Lecture 21: Raster Graphics: Drawing Lines Emmanuel Agu 2D Graphics Pipeline Clipping Object World Coordinates Applying world window Object subset window to viewport mapping

More information

DX10, Batching, and Performance Considerations. Bryan Dudash NVIDIA Developer Technology

DX10, Batching, and Performance Considerations. Bryan Dudash NVIDIA Developer Technology DX10, Batching, and Performance Considerations Bryan Dudash NVIDIA Developer Technology The Point of this talk The attempt to combine wisdom and power has only rarely been successful and then only for

More information

Advanced Graphics. The Shader knows. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. The Shader knows. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics The Shader knows Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd What is the shader? Local space World space Viewing space Local space

More information

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 3: Shaders

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 3: Shaders Comp 410/510 Computer Graphics Spring 2018 Programming with OpenGL Part 3: Shaders Objectives Basic shaders - Vertex shader - Fragment shader Programming shaders with GLSL Finish first program void init(void)

More information

Broken Age's Approach to Scalability. Oliver Franzke Lead Programmer, Double Fine Productions

Broken Age's Approach to Scalability. Oliver Franzke Lead Programmer, Double Fine Productions Broken Age's Approach to Scalability Oliver Franzke Lead Programmer, Double Fine Productions Content Introduction Platform diversity Game assets Characters Environments Shaders Who am I? Lead Programmer

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

Lecture 09: Shaders (Part 1)

Lecture 09: Shaders (Part 1) Lecture 09: Shaders (Part 1) CSE 40166 Computer Graphics Peter Bui University of Notre Dame, IN, USA November 9, 2010 OpenGL Rendering Pipeline OpenGL Rendering Pipeline (Pseudo-Code) 1 f o r gl_vertex

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

printf Debugging Examples

printf Debugging Examples Programming Soap Box Developer Tools Tim Purcell NVIDIA Successful programming systems require at least three tools High level language compiler Cg, HLSL, GLSL, RTSL, Brook Debugger Profiler Debugging

More information

Computer Graphics (CS 4731) OpenGL/GLUT (Part 2)

Computer Graphics (CS 4731) OpenGL/GLUT (Part 2) Computer Graphics (CS 4731) Lecture 3: Introduction to OpenGL/GLUT (Part 2) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Triangulation Generally OpenGL breaks polygonsdownintotriangles

More information

CS195V Week 9. GPU Architecture and Other Shading Languages

CS195V Week 9. GPU Architecture and Other Shading Languages CS195V Week 9 GPU Architecture and Other Shading Languages GPU Architecture We will do a short overview of GPU hardware and architecture Relatively short journey into hardware, for more in depth information,

More information

Introduction to the OpenGL Shading Language

Introduction to the OpenGL Shading Language Introduction to the OpenGL Shading Language Randi Rost Director of Developer Relations, 3Dlabs 08-Dec-2005 1 Why use graphics programmability? Graphics hardware has changed radically Fixed functionality

More information

GLSL Programming. Nicolas Holzschuch

GLSL Programming. Nicolas Holzschuch GLSL Programming Nicolas Holzschuch GLSL programming C-like language structure: int i, j; i = 2; j = 0; j += i; Functions, loops, branches... Reading your first GSL shader is easy Differences with C New

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

DirectX Programming #4. Kang, Seongtae Computer Graphics, 2009 Spring

DirectX Programming #4. Kang, Seongtae Computer Graphics, 2009 Spring DirectX Programming #4 Kang, Seongtae Computer Graphics, 2009 Spring Programmable Shader For recent hardwares, vertex and pixel processing stage of the graphics pipeline is programmable Programmable Vertex

More information

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 2: First Program

Comp 410/510 Computer Graphics Spring Programming with OpenGL Part 2: First Program Comp 410/510 Computer Graphics Spring 2017 Programming with OpenGL Part 2: First Program Objectives Refine the first program Introduce a standard program structure - Initialization Program Structure Most

More information

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload)

Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Lecture 2: Parallelizing Graphics Pipeline Execution (+ Basics of Characterizing a Rendering Workload) Visual Computing Systems Today Finishing up from last time Brief discussion of graphics workload metrics

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

A SIMD-efficient 14 Instruction Shader Program for High-Throughput Microtriangle Rasterization

A SIMD-efficient 14 Instruction Shader Program for High-Throughput Microtriangle Rasterization A SIMD-efficient 14 Instruction Shader Program for High-Throughput Microtriangle Rasterization Jordi Roca Victor Moya Carlos Gonzalez Vicente Escandell Albert Murciego Agustin Fernandez, Computer Architecture

More information

Real-Time Graphics Architecture

Real-Time Graphics Architecture Real-Time Graphics Architecture Kurt Akeley Pat Hanrahan http://www.graphics.stanford.edu/courses/cs448a-01-fall Geometry Outline Vertex and primitive operations System examples emphasis on clipping Primitive

More information

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models 3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

More information