INTRODUCTION. Slides modified from Angel book 6e

Size: px
Start display at page:

Download "INTRODUCTION. Slides modified from Angel book 6e"

Transcription

1 INTRODUCTION Slides modified from Angel book 6e

2 Fall 2012 COSC4328/5327 Computer Graphics 2 Objectives Historical introduction to computer graphics Fundamental imaging notions Physical basis for image formation Light, Color, Perception Synthetic camera model Other models Basic design of a graphics system Introduce a graphics pipeline architecture Examine software components for interactive graphics

3 Fall 2012 COSC4328/5327 Computer Graphics 3 Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware Software Applications

4 Fall 2012 COSC4328/5327 Computer Graphics 4 Example Where did this image come from? What hardware/software did we need to produce it?

5 Fall 2012 COSC4328/5327 Computer Graphics 5 Preliminary Answer Application: The object is an artist s rendition of the sun for an animation to be shown in a domed environment (planetarium) Software: Maya for modeling and rendering but Maya is built on top of OpenGL Hardware: PC with graphics card for modeling and rendering

6 Fall 2012 COSC4328/5327 Computer Graphics 6 Basic Graphics System Input devices Output device Image formed in frame buffer

7 Fall 2012 COSC4328/5327 Computer Graphics 7 CRT Can be used either as a line-drawing device (calligraphic) or to display contents of frame buffer (raster mode)

8 Fall 2012 COSC4328/5327 Computer Graphics 8 Computer Graphics: Computer graphics goes back to the earliest days of computing Strip charts Pen plotters Simple displays using A/D converters to go from computer to calligraphic CRT Cost of refresh for CRT too high Computers slow, expensive, unreliable

9 Fall 2012 COSC4328/5327 Computer Graphics 9 Computer Graphics: Wireframe graphics Draw only lines Sketchpad Display Processors Storage tube wireframe representation of sun object

10 Fall 2012 COSC4328/5327 Computer Graphics 10 Sketchpad Ivan Sutherland s PhD thesis at MIT Recognized the potential of man-machine interaction Loop Display something User moves light pen Computer generates new display Sutherland also created many of the now common algorithms for computer graphics

11 Fall 2012 COSC4328/5327 Computer Graphics 11 Display Processor Rather than have the host computer try to refresh display use a special purpose computer called a display processor (DPU) Graphics stored in display list (display file) on display processor Host compiles display list and sends to DPU

12 Fall 2012 COSC4328/5327 Computer Graphics 12 Direct View Storage Tube Created by Tektronix Did not require constant refresh Standard interface to computers Allowed for standard software Plot3D in Fortran Relatively inexpensive Opened door to use of computer graphics for CAD community

13 Fall 2012 COSC4328/5327 Computer Graphics 13 Computer Graphics: Raster Graphics Beginning of graphics standards IFIPS GKS: European effort Becomes ISO 2D standard Core: North American effort 3D but fails to become ISO standard Workstations and PCs

14 Fall 2012 COSC4328/5327 Computer Graphics 14 Raster Graphics Image produced as an array (the raster) of picture elements (pixels) in the frame buffer

15 Fall 2012 COSC4328/5327 Computer Graphics 15 Raster Graphics Allows us to go from lines and wire frame images to filled polygons

16 Fall 2012 COSC4328/5327 Computer Graphics 16 Vector vs. Raster Which draws better pictures? Which draws better shaded pictures? Which draws better color pictures? Which draws better lines? Which requires more memory? Which has a constant display time?

17 Fall 2012 COSC4328/5327 Computer Graphics 17 PCs and Workstations Although we no longer make the distinction between workstations and PCs, historically they evolved from different roots Early workstations characterized by Networked connection: client-server model High-level of interactivity Early PCs included frame buffer as part of user memory Easy to change contents and create images

18 Fall 2012 COSC4328/5327 Computer Graphics 18 Computer Graphics Pong 1972 The Black Hole 1979

19 Fall 2012 COSC4328/5327 Computer Graphics 19 Computer Graphics: Tron 1982 Wrath of Kahn 1982 Last Starfighter 1984

20 Fall 2012 COSC4328/5327 Computer Graphics 20 Computer Graphics: Realism comes to computer graphics smooth shading environment mapping bump mapping

21 Fall 2012 COSC4328/5327 Computer Graphics 21 Computer Graphics: Special purpose hardware Silicon Graphics geometry engine VLSI implementation of graphics pipeline Industry-based standards PHIGS RenderMan Networked graphics: X Window System Human-Computer Interface (HCI)

22 Fall 2012 COSC4328/5327 Computer Graphics 22 Computer Graphics: Babylon TV Jurrasic Park 1993 Titanic 1997 (linux rendering) The Matrix 1999

23 Fall 2012 COSC4328/5327 Computer Graphics 23 Computer Graphics: OpenGL API Completely computer-generated feature-length movies (Toy Story) are successful New hardware capabilities Texture mapping Blending Accumulation, stencil buffers

24 Fall 2012 COSC4328/5327 Computer Graphics 24 Computer Graphics: Photorealism Graphics cards for PCs dominate market Nvidia, ATI Game boxes and game players determine direction of market Computer graphics routine in movie industry: Maya, Lightwave Programmable pipelines

25 Fall 2012 COSC4328/5327 Computer Graphics 25 Image Formation In computer graphics, we form images which are generally two dimensional using a process analogous to how images are formed by physical imaging systems Cameras Microscopes Telescopes Human visual system

26 Fall 2012 COSC4328/5327 Computer Graphics 26 Elements of Image Formation Objects Viewer Light source(s) Attributes that govern how light interacts with the materials in the scene Note the independence of the objects, the viewer, and the light source(s)

27 Fall 2012 COSC4328/5327 Computer Graphics 27 Light Light is the part of the electromagnetic spectrum that causes a reaction in our visual systems Generally these are wavelengths in the range of about nm (nanometers) Long wavelengths appear as reds and short wavelengths as blues

28 Fall 2012 COSC4328/5327 Computer Graphics 28 Ray Tracing and Geometric Optics One way to form an image is to follow rays of light from a point source finding which rays enter the lens of the camera. However, each ray of light may have multiple interactions with objects before being absorbed or going to infinity.

29 Fall 2012 COSC4328/5327 Computer Graphics 29 Luminance and Color Images Luminance Image Monochromatic Values are gray levels Analogous to working with black and white film or television Color Image Has perceptional attributes of hue, saturation, and lightness Do we have to match every frequency in visible spectrum? No!

30 Fall 2012 COSC4328/5327 Computer Graphics 30 Three-Color Theory Human visual system has two types of sensors Rods: monochromatic, night vision Cones Color sensitive Three types of cones: S, M, L Name after wavelength they respond to Only three values (the tristimulus values) are sent to the brain Need only match these three values Can get by with three primary colors

31 Fall 2012 COSC4328/5327 Computer Graphics 31 What is This?

32 Fall 2012 COSC4328/5327 Computer Graphics 32 Color Perception

33 Fall 2012 COSC4328/5327 Computer Graphics 33 Light Source What does the power spectrum from varying sources look like? Fluorescent solid Tungsten - dash

34 Fall 2012 COSC4328/5327 Computer Graphics 34 Color Perception How is a red Cortland apple perceived under fluorescent lighting? This is called the dominant wavelength It is the perceived hue

35 Fall 2012 COSC4328/5327 Computer Graphics 35 Color Terms Hue Dominant wavelength (spectral color) Brightness/Luminance Brightness increases until colors wash out Luminance is total power of the light. Purity/Saturation How close to a spectral pure color How many wavelengths make up a color Percent of luminance in dominant wavelength Chromaticity Combination of hue and purity Metamer Two colors (objects) that appear the same under one set of conditions and different under another.

36 Fall 2012 COSC4328/5327 Computer Graphics 36 Optical Illusions unding.htm olourperception/colourperception.html

37 Fall 2012 COSC4328/5327 Computer Graphics 37 Additive and Subtractive Color Additive color Form a color by adding amounts of three primaries CRTs, projection systems, positive film Primaries are Red (R), Green (G), Blue (B) Subtractive color Form a color by filtering white light with cyan (C), Magenta (M), and Yellow (Y) filters Light-material interactions Printing Negative film

38 Fall 2012 COSC4328/5327 Computer Graphics 38 CIE In 1931, Commission Internationale de Eclariage created three primaries They are imaginary primaries Adding different amounts of them will produce all visible colors These three colors form a 3- space All perceived hues in diagram Plus others

39 Fall 2012 COSC4328/5327 Computer Graphics 39 CIE Colors on a line emanating from the origin have the same hue and saturation, but different luminance Boundary colors correspond to maximum saturation of a spectral color Except on purple line Triangle is a gamut for RGB All colors that can be matched by RGB

40 Fall 2012 COSC4328/5327 Computer Graphics 40 CIE Color Regions

41 Fall 2012 COSC4328/5327 Computer Graphics 41 Other Gamuts matched to CIE

42 Color Terms Spectral Color Color of the rainbow Non-spectral color A perceivable color that doesn t have a wavelength (not part of rainbow) Colors on the Purple line. What about white? Dominant wavelength Line from W through the color C will intersect the dominant wavelength White Spot (W) Equal parts of all primaries Complimentary color Line from color through W will intersect this Gamut Colors that can be represented by a group of primaries

43 Fall 2012 COSC4328/5327 Computer Graphics 43 CIE Some Relationships W White spot Achromatic point B Complimentary to A Equal quantities of A & B give white Non-spectral No dominant wavelength C Dominant wavelength for A Mix with White to get A Complimentary wavelength for B D Complimentary color to A Non-spectral (on purple line) D C A W B

44 Fall 2012 COSC4328/5327 Computer Graphics 44 CIE 3D not 2D Sometimes a color appears in the gamut but is not

45 Fall 2012 COSC4328/5327 Computer Graphics 45 Shadow Mask CRT

46 Fall 2012 COSC4328/5327 Computer Graphics 46 Liquid Crystal Display Liquid Crystal Not solid, not liquid Can transmit and change polarized light Change alignment with a current Place liquid crystals between two polarized panels Applying charge to crystals will untwist them allowing light to pass through (or stop) Can be backlit or reflective

47 Fall 2012 COSC4328/5327 Computer Graphics 47 LCD Arrange pixels in a grid with row and column oriented conductive substrates A charge on the correct row and column will light up pixel Amount of charge controls how much light passes through Generally 256 levels Alternating Red, Green, and Blue columns allows for color

48 Fall 2012 COSC4328/5327 Computer Graphics 48 Pinhole Camera Use trigonometry to find projection of point at (x,y,z) x p = -x/z/d y p = -y/z/d z p = d These are equations of simple perspective

49 Fall 2012 COSC4328/5327 Computer Graphics 49 Synthetic Camera Model projector p image plane projection of p center of projection

50 Fall 2012 COSC4328/5327 Computer Graphics 50 Advantages Separation of objects, viewer, light sources Two-dimensional graphics is a special case of threedimensional graphics Leads to simple software API Specify objects, lights, camera, attributes Let implementation determine image Leads to fast hardware implementation

51 Fall 2012 COSC4328/5327 Computer Graphics 51 Global vs Local Lighting Cannot compute color or shade of each object independently Some objects are blocked from light Light can reflect from object to object Some objects might be translucent

52 Fall 2012 COSC4328/5327 Computer Graphics 52 Why not ray tracing? Ray tracing seems more physically based so why don t we use it to design a graphics system? Possible and is actually simple for simple objects such as polygons and quadrics with simple point sources In principle, can produce global lighting effects such as shadows and multiple reflections but ray tracing is slow and not well-suited for interactive applications Ray tracing with GPUs is close to real time

53 Fall 2012 COSC4328/5327 Computer Graphics 53 Image Formation Revisited Can we mimic the synthetic camera model to design graphics hardware software? Application Programmer Interface (API) Need only specify Objects Materials Viewer Lights But how is the API implemented?

54 Fall 2012 COSC4328/5327 Computer Graphics 54 Physical Approaches Ray tracing: follow rays of light from center of projection until they either are absorbed by objects or go off to infinity Can handle global effects Multiple reflections Translucent objects Slow Must have whole data base available at all times Radiosity: Energy based approach Very slow

55 Fall 2012 COSC4328/5327 Computer Graphics 55 Practical Approach Process objects one at a time in the order they are generated by the application Can consider only local lighting Pipeline architecture application program display All steps can be implemented in hardware on the graphics card

56 Fall 2012 COSC4328/5327 Computer Graphics 56 Vertex Processing Much of the work in the pipeline is in converting object representations from one coordinate system to another Object coordinates Camera (eye) coordinates Screen coordinates Every change of coordinates is equivalent to a matrix transformation Vertex processor also computes vertex colors

57 Fall 2012 COSC4328/5327 Computer Graphics 57 Projection Projection is the process that combines the 3D viewer with the 3D objects to produce the 2D image Perspective projections: all projectors meet at the center of projection Parallel projection: projectors are parallel, center of projection is replaced by a direction of projection

58 Fall 2012 COSC4328/5327 Computer Graphics 58 Primitive Assembly Vertices must be collected into geometric objects before clipping and rasterization can take place Line segments Polygons Curves and surfaces

59 Fall 2012 COSC4328/5327 Computer Graphics 59 Clipping Just as a real camera cannot see the whole world, the virtual camera can only see part of the world or object space Objects that are not within this volume are said to be clipped out of the scene

60 Fall 2012 COSC4328/5327 Computer Graphics 60 Rasterization If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors Rasterizer produces a set of fragments for each object Fragments are potential pixels Have a location in frame bufffer Color and depth attributes Vertex attributes are interpolated over objects by the rasterizer

61 Fall 2012 COSC4328/5327 Computer Graphics 61 Fragment Processing Fragments are processed to determine the color of the corresponding pixel in the frame buffer Colors can be determined by texture mapping or interpolation of vertex colors Fragments may be blocked by other fragments closer to the camera Hidden-surface removal

62 Fall 2012 COSC4328/5327 Computer Graphics 62 The Programmer s Interface Programmer sees the graphics system through a software interface: the Application Programmer Interface (API)

63 Fall 2012 COSC4328/5327 Computer Graphics 63 API Contents Functions that specify what we need to form an image Objects Viewer Light Source(s) Materials Other information Input from devices such as mouse and keyboard Capabilities of system

64 Fall 2012 COSC4328/5327 Computer Graphics 64 Object Specification Most APIs support a limited set of primitives including Points (0D object) Line segments (1D objects) Polygons (2D objects) Some curves and surfaces Quadrics Parametric polynomials All are defined through locations in space or vertices

65 Fall 2012 COSC4328/5327 Computer Graphics 65 Example (GL 2.X) type of object glbegin(gl_polygon) glvertex3f(0.0, 0.0, 0.0); glvertex3f(0.0, 1.0, 0.0); glvertex3f(0.0, 0.0, 1.0); glend( ); location of vertex end of object definition

66 Fall 2012 COSC4328/5327 Computer Graphics 66 Example (GL > 3.X - GPU based) Put geometric data in an array vec3 points[3]; points[0] = vec3(0.0, 0.0, 0.0); points[1] = vec3(0.0, 1.0, 0.0); points[2] = vec3(0.0, 0.0, 1.0); Send array to GPU Tell GPU to render as triangle

67 Fall 2012 COSC4328/5327 Computer Graphics 67 Camera Specification Six degrees of freedom Position of center of lens Orientation Lens Film size Orientation of film plane

68 Fall 2012 COSC4328/5327 Computer Graphics 68 Lights and Materials Types of lights Point sources vs distributed sources Spot lights Near and far sources Color properties Material properties Absorption: color properties Scattering Diffuse Specular

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Introduction The Graphics Process Color Models Triangle Meshes The Rendering Pipeline 1 INPUT What is Computer Graphics? Definition the pictorial

More information

Introduction to Computer Graphics. Overview. What is Computer Graphics?

Introduction to Computer Graphics. Overview. What is Computer Graphics? INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Introduction to Computer Graphics David Carr Fundamentals of Computer Graphics Spring 2004 Based on Slides by E. Angel Graphics 1 L Overview What

More information

National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor

National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Computer Graphics 1. Graphics Systems National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall Ref: E.Angel, Interactive

More information

MMGD0206 Computer Graphics. Chapter 1 Development of Computer Graphics : History

MMGD0206 Computer Graphics. Chapter 1 Development of Computer Graphics : History MMGD0206 Computer Graphics Chapter 1 Development of Computer Graphics : History What is Computer Graphics? Computer graphics generally means creation, storage and manipulation of models and images Such

More information

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Image Formation Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Fundamental imaging notions Physical basis for image formation

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Image Formation

More information

Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13

Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13 Lecture 1 Computer Graphics and Systems What is Computer Graphics? Image Formation Sun Object Figure from Ed Angel,D.Shreiner: Interactive Computer Graphics, 6 th Ed., 2012 Addison Wesley Computer Graphics

More information

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Models and Architectures

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

Survey in Computer Graphics Computer Graphics and Visualization

Survey in Computer Graphics Computer Graphics and Visualization Example of a Marble Ball Where did this image come from? Fall 2010 What hardware/software/algorithms did we need to produce it? 2 A Basic Graphics System History of Computer Graphics 1200-2008 Input devices

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information

Image Formation. Introduction to Computer Graphics. Machiraju/Zhang/Möller/Klaffenböck

Image Formation. Introduction to Computer Graphics. Machiraju/Zhang/Möller/Klaffenböck Image Formation Introduction to Computer Graphics Machiraju/Zhang/Möller/Klaffenböck Today Input and displays of a graphics system Raster display basics: pixels, the frame buffer, raster scan, LCD displays

More information

Image Formation. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Image Formation. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Image Formation Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Today Input and displays of a graphics system Raster display basics: pixels, the frame buffer, raster scan, LCD displays

More information

Overview CS Plans for this semester. References. CS 4600 Fall Prerequisites

Overview CS Plans for this semester. References. CS 4600 Fall Prerequisites Overview CS 4600 What is CS 4600? What should know (pre reqs)? What will you get out of this course? Chuck Hansen Website: www.eng.utah.edu/~cs4600 Thanks to Ed Angel and Jeff Parker for slides and materials

More information

CSE4030 Introduction to Computer Graphics

CSE4030 Introduction to Computer Graphics CSE4030 Introduction to Computer Graphics Dongguk University Jeong-Mo Hong Timetable 00:00~00:10 Introduction (English) 00:10~00:50 Topic 1 (English) 00:50~00:60 Q&A (English, Korean) 01:00~01:40 Topic

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University What is Computer Graphics? Definition the pictorial synthesis of real or imaginary objects from their computer-based models descriptions OUTPUT

More information

Graphics Systems and Models

Graphics Systems and Models Graphics Systems and Models 2 nd Week, 2007 Sun-Jeong Kim Five major elements Input device Processor Memory Frame buffer Output device Graphics System A Graphics System 2 Input Devices Most graphics systems

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Introduction The Graphics Process Color Models Triangle Meshes The Rendering Pipeline 1 What is Computer Graphics? modeling

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Rongkai Guo Assistant Professor at Computer Game Design program Kennesaw State University 1 Overview These lectures are for a senior/graduate elective for computer

More information

Computer Graphics and Visualization. Graphics Systems and Models

Computer Graphics and Visualization. Graphics Systems and Models UNIT -1 Graphics Systems and Models 1.1 Applications of computer graphics: Display Of Information Design Simulation & Animation User Interfaces 1.2 Graphics systems A Graphics system has 5 main elements:

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico 1 Overview These

More information

Lecturer Athanasios Nikolaidis

Lecturer Athanasios Nikolaidis Lecturer Athanasios Nikolaidis Computer Graphics: Graphics primitives 2D viewing and clipping 2D and 3D transformations Curves and surfaces Rendering and ray tracing Illumination models Shading models

More information

CS452/552; EE465/505. Overview of Computer Graphics

CS452/552; EE465/505. Overview of Computer Graphics CS452/552; EE465/505 Overview of Computer Graphics 1-13-15 Outline! What is Computer Graphics? a historical perspective! Draw a triangle using WebGL Computer Graphics! Computer graphics deals with all

More information

Computer Graphics - Chapter 1 Graphics Systems and Models

Computer Graphics - Chapter 1 Graphics Systems and Models Computer Graphics - Chapter 1 Graphics Systems and Models Objectives are to learn about: Applications of Computer Graphics Graphics Systems Images: Physical and Synthetic The Human Visual System The Pinhole

More information

OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system

OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system GRAPHICS PIPELINE 1 OUTLINE Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system 2 IMAGE FORMATION REVISITED Can we mimic the synthetic

More information

CS452/552; EE465/505. Image Formation

CS452/552; EE465/505. Image Formation CS452/552; EE465/505 Image Formation 1-15-15 Outline! Image Formation! Introduction to WebGL, continued Draw a colored triangle using WebGL Read: Angel, Chapters 2 & 3 Homework #1 will be available on

More information

VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION

VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION 1. Briefly explain any two applications of computer graphics. (June 2012) 4M Ans: Applications of computer graphics are: Display Of Information Design Simulation

More information

Computer Graphics Lecture 2

Computer Graphics Lecture 2 1 / 16 Computer Graphics Lecture 2 Dr. Marc Eduard Frîncu West University of Timisoara Feb 28th 2012 2 / 16 Outline 1 Graphics System Graphics Devices Frame Buffer 2 Rendering pipeline 3 Logical Devices

More information

CS452/552; EE465/505. Color Display Issues

CS452/552; EE465/505. Color Display Issues CS452/552; EE465/505 Color Display Issues 4-16 15 2 Outline! Color Display Issues Color Systems Dithering and Halftoning! Splines Hermite Splines Bezier Splines Catmull-Rom Splines Read: Angel, Chapter

More information

The Display pipeline. The fast forward version. The Display Pipeline The order may vary somewhat. The Graphics Pipeline. To draw images.

The Display pipeline. The fast forward version. The Display Pipeline The order may vary somewhat. The Graphics Pipeline. To draw images. View volume The fast forward version The Display pipeline Computer Graphics 1, Fall 2004 Lecture 3 Chapter 1.4, 1.8, 2.5, 8.2, 8.13 Lightsource Hidden surface 3D Projection View plane 2D Rasterization

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15.

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15. Reading Watt, Chapter 15. Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, pp. 69-97, 1995. 2. Color 1 2 The radiant energy spectrum We can think of light as waves,

More information

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 19 Mar 26 th, 2019 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

CIS 441/541: Introduction to Computer Graphics Lecture 14: OpenGL Basics

CIS 441/541: Introduction to Computer Graphics Lecture 14: OpenGL Basics CIS 441/541: Introduction to Computer Graphics Lecture 14: OpenGL Basics Oct. 26th, 2016 Hank Childs, University of Oregon Announcements OH Hank: Weds 1-2, Thursday 11-12 Dan: Weds 4-530, Thursday 930-11

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

More information

Overview. Computer Graphics CS324. OpenGL. Books. Learning Resources. CS131 Notes. 30 Lectures 3hr Exam

Overview. Computer Graphics CS324. OpenGL. Books. Learning Resources. CS131 Notes. 30 Lectures 3hr Exam Computer Graphics CS324 Dr Abhir Bhalerao Department of Computer Science University of Warwick Coventry CV4 7AL TJA 1999-2003, AHB 2004+ 30 Lectures 3hr Exam Overview Recommended books: Hearn and Baker,

More information

Models and Architectures. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Models and Architectures. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Models and Architectures 1 Objectives Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for an interactive graphics system 2 Image Formation Revisited

More information

CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Lecture 2: Graphics Pipeline Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices - raster displays show images as a rectangular array

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Introduction to OpenGL Week 1

Introduction to OpenGL Week 1 CS 432/680 INTERACTIVE COMPUTER GRAPHICS Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Based on material from Ed Angel, University of New Mexico Objectives

More information

Objectives. Image Formation Revisited. Physical Approaches. The Programmer s Interface. Practical Approach. Introduction to OpenGL Week 1

Objectives. Image Formation Revisited. Physical Approaches. The Programmer s Interface. Practical Approach. Introduction to OpenGL Week 1 CS 432/680 INTERACTIVE COMPUTER GRAPHICS Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Objectives Learn the basic design of a graphics system Introduce graphics

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday, October 14

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Lecture 12 Color model and color image processing

Lecture 12 Color model and color image processing Lecture 12 Color model and color image processing Color fundamentals Color models Pseudo color image Full color image processing Color fundamental The color that humans perceived in an object are determined

More information

Overview: Ray Tracing & The Perspective Projection Pipeline

Overview: Ray Tracing & The Perspective Projection Pipeline Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A. Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CG-IDC slides for this course were created by Toky & Hagit Hel-Or 1 CG-IDC 2 Exercise and Homework The exercise

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 49 CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 3.1 PREAMBLE Software has been developed following the CIE 1931 standard of Chromaticity Coordinates to convert the RGB data into its

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

Computer Graphics. Chapter 1 (Related to Introduction to Computer Graphics Using Java 2D and 3D)

Computer Graphics. Chapter 1 (Related to Introduction to Computer Graphics Using Java 2D and 3D) Computer Graphics Chapter 1 (Related to Introduction to Computer Graphics Using Java 2D and 3D) Introduction Applications of Computer Graphics: 1) Display of Information 2) Design 3) Simulation 4) User

More information

Lecture 1 Image Formation.

Lecture 1 Image Formation. Lecture 1 Image Formation peimt@bit.edu.cn 1 Part 3 Color 2 Color v The light coming out of sources or reflected from surfaces has more or less energy at different wavelengths v The visual system responds

More information

CS 464 Review. Review of Computer Graphics for Final Exam

CS 464 Review. Review of Computer Graphics for Final Exam CS 464 Review Review of Computer Graphics for Final Exam Goal: Draw 3D Scenes on Display Device 3D Scene Abstract Model Framebuffer Matrix of Screen Pixels In Computer Graphics: If it looks right then

More information

Graphics for VEs. Ruth Aylett

Graphics for VEs. Ruth Aylett Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading VR software Two main types of software used: off-line authoring or modelling packages

More information

Computer Graphics and Visualization. What is computer graphics?

Computer Graphics and Visualization. What is computer graphics? CSCI 120 Computer Graphics and Visualization Shiaofen Fang Department of Computer and Information Science Indiana University Purdue University Indianapolis What is computer graphics? Computer graphics

More information

The Viewing Pipeline Coordinate Systems

The Viewing Pipeline Coordinate Systems Overview Interactive Graphics System Model Graphics Pipeline Coordinate Systems Modeling Transforms Cameras and Viewing Transform Lighting and Shading Color Rendering Visible Surface Algorithms Rasterization

More information

CS635 Spring Department of Computer Science Purdue University

CS635 Spring Department of Computer Science Purdue University Color and Perception CS635 Spring 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic

More information

Visualisatie BMT. Rendering. Arjan Kok

Visualisatie BMT. Rendering. Arjan Kok Visualisatie BMT Rendering Arjan Kok a.j.f.kok@tue.nl 1 Lecture overview Color Rendering Illumination 2 Visualization pipeline Raw Data Data Enrichment/Enhancement Derived Data Visualization Mapping Abstract

More information

Principles of Computer Graphics. Lecture 3 1

Principles of Computer Graphics. Lecture 3 1 Lecture 3 Principles of Computer Graphics Lecture 3 1 Why we learn computer graphics? Appreciate what we see The knowledge can applied when we want to develop specific engineering program that requires

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #6: Colors Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework project #3 due this Friday, October 18

More information

Digital Image Processing. Introduction

Digital Image Processing. Introduction Digital Image Processing Introduction Digital Image Definition An image can be defined as a twodimensional function f(x,y) x,y: Spatial coordinate F: the amplitude of any pair of coordinate x,y, which

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda. Basic design of a graphics system. Introduction to OpenGL Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

More information

CIS 581 Interactive Computer Graphics

CIS 581 Interactive Computer Graphics CIS 581 Interactive Computer Graphics Instructor: Han-Wei Shen (hwshen@cse.ohio-state.edu) Credit: 4 Class: MWF 2:30 pm 3:18 pm DL 264 Office hours: TuTr 11 am - 12pm DL 789 Web: http://www.cse.ohio-state.edu/~hwshen/581

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to 1.1 What is computer graphics? it would be difficult to overstate the importance of computer and communication technologies in our lives. Activities as wide-ranging as film making, publishing,

More information

CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Ulf Assarsson Department of Computer Engineering Chalmers University of Technology 1. I am located in room 4115 in EDIT-huset 2. Email: 3. Phone: 031-772 1775 (office) 4. Course assistant: Tomas Akenine-Mőller

More information

Development of Computer Graphics

Development of Computer Graphics 1951 Whirlwind, Jay Forrester (MIT) CRT displays mid 1950s SAGE air defense system command & control CRT, light pens late 1950s Computer Art, James Whitney Sr. Visual Feedback loops 1962 Sketchpad, Ivan

More information

Computer Graphics CS 543 Lecture 1 (Part I) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics CS 543 Lecture 1 (Part I) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics CS 543 Lecture 1 (Part I) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) About This Course Computer graphics: algorithms, mathematics, data structures..

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SUB.NAME: COMPUTER GRAPHICS SUB.CODE: IT307 CLASS : III/IT UNIT-1 2-marks 1. What is the various applications

More information

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2 Color Theory Physical Color Visible energy - small portion of the electro-magnetic spectrum Pure monochromatic colors are found at wavelengths between 380nm (violet) and 780nm (red) 380 780 Color Theory

More information

CS770/870 Spring 2017 Color and Shading

CS770/870 Spring 2017 Color and Shading Preview CS770/870 Spring 2017 Color and Shading Related material Cunningham: Ch 5 Hill and Kelley: Ch. 8 Angel 5e: 6.1-6.8 Angel 6e: 5.1-5.5 Making the scene more realistic Color models representing the

More information

Computer Graphics: Programming, Problem Solving, and Visual Communication

Computer Graphics: Programming, Problem Solving, and Visual Communication Computer Graphics: Programming, Problem Solving, and Visual Communication Dr. Steve Cunningham Computer Science Department California State University Stanislaus Turlock, CA 95382 copyright 2002, Steve

More information

Virtual Reality for Human Computer Interaction

Virtual Reality for Human Computer Interaction Virtual Reality for Human Computer Interaction Appearance: Lighting Representation of Light and Color Do we need to represent all I! to represent a color C(I)? No we can approximate using a three-color

More information

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Tracing Photons One way to form an image is to follow rays of light from a point source finding which rays enter the lens

More information

Scalar Field Visualization I

Scalar Field Visualization I Scalar Field Visualization I What is a Scalar Field? The approximation of certain scalar function in space f(x,y,z). Image source: blimpyb.com f What is a Scalar Field? The approximation of certain scalar

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionally left blank. Interactive Computer Graphics with WebGL, Global

More information

Graphics Programming

Graphics Programming Graphics Programming 3 rd Week, 2011 OpenGL API (1) API (application programming interface) Interface between an application program and a graphics system Application Program OpenGL API Graphics Library

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

History of computer graphics

History of computer graphics Ivan Sutherland (1963) - SKETCHPAD History of computer graphics CS 248 - Introduction to Computer Graphics Autumn quarter, 2006 Slides for September 26 lecture pop-up menus constraint-based drawing hierarchical

More information

The Elements of Colour

The Elements of Colour Color science 1 The Elements of Colour Perceived light of different wavelengths is in approximately equal weights achromatic.

More information

An Introduction to Computer Graphics

An Introduction to Computer Graphics An Introduction to Computer Graphics Joaquim Madeira Beatriz Sousa Santos Universidade de Aveiro 1 Topics What is CG Brief history Main applications CG Main Tasks Simple Graphics system CG APIs 2D and

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

Introduction to color science

Introduction to color science Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms Digital Image Processing: Bernd

More information

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today!

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today! Last Time? Real-Time Shadows Perspective-Correct Interpolation Texture Coordinates Procedural Solid Textures Other Mapping Bump Displacement Environment Lighting Textures can Alias Aliasing is the under-sampling

More information

Visible Color. 700 (red) 580 (yellow) 520 (green)

Visible Color. 700 (red) 580 (yellow) 520 (green) Color Theory Physical Color Visible energy - small portion of the electro-magnetic spectrum Pure monochromatic colors are found at wavelengths between 380nm (violet) and 780nm (red) 380 780 Color Theory

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Some Resources. What won t I learn? What will I learn? Topics

Some Resources. What won t I learn? What will I learn? Topics CSC 706 Computer Graphics Course basics: Instructor Dr. Natacha Gueorguieva MW, 8:20 pm-10:00 pm Materials will be available at www.cs.csi.cuny.edu/~natacha 1 midterm, 2 projects, 1 presentation, homeworks,

More information

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

More information