CS 157: Assignment 6

Size: px
Start display at page:

Download "CS 157: Assignment 6"

Transcription

1 CS 7: Assignment Douglas R. Lanman 8 Ma Problem : Evaluating Conve Polgons This write-up presents several simple algorithms for determining whether a given set of twodimensional points defines a conve polgon (i.e., a conve hull). In Section., we introduce the notion of regular polgons and provide eamples of both conve and non-conve point sets. Section. presents an algorithm for ordering a set of points such that a counterclockwise traversal defines the interior of the conve hull. In Section., we appl this method to determine whether a given set of points are the vertices of a conve hull. Finall, in Section., we derive a lower bound for the worst-case running time of all such vete-ordering algorithms..: Eamples of Conve and Non-conve Polgons Give an eample of a conve polgon and a non-conve polgon with,, and vertices. A general n-sided polgon can be described b an ordered sequence of vertices P = {p, p,..., p n }. We define the interior of the polgon to be to the left of the line from p i mod n to p i+ mod n for i n. As a result, the order of vertices within P matters. For this problem, however, we will concentrate on a simple case for P consisting of the set of regular polgons. A regular n-sided polgon has vertices evenl-distributed around a circle of radius r as follows. p i = ( i, i ) = ( r cos ( πi n ), r sin ( πi n )), for i n, r > () Ever regular polgon is also a conve polgon. In general, a conve polgon is one whose verte list P satisfies the following condition: the angle inside P formed b (p i mod n, p i, p i+ mod n ) is strictl less than 8 degrees, i [, n ]. In other words, when traveling along the sequence (p i mod n, p i, p i+ mod n ) one alwas takes a left turn at p i. Eamples of regular, conve polgons for n = {,, } are shown in Figure. A non-conve polgon can be defined as one which contains right turns or internal angles greater than or equal to 8 degrees. In general, if we append the verte (, ) to an regular polgon P (a) square (b) pentagon (c) heagon Figure : Eamples of conve polgons

2 Assignment CS 7 Douglas R. Lanman (a) n = (b) n = (c) n = Figure : Eamples of non-conve polgons defined b Equation, then we will create a non-conve polgon P. Eamples of the resulting non-conve polgons are shown in Figure..: Finding a Counterclockwise Ordering Given a set of points {p, p,..., p n } which are the vertices of a conve polgon in arbitrar order, find an ordering σ of the points such that P = {p σ(), p σ(),..., p σ(n ) } is a counterclockwise traversal. Your algorithm should have a running time of O(n log n). High-level Description: While the problem statement originall called for a divide-and-conquer solution, such an approach is needlessl complicated as we can assume for this problem that the input consists of a set of conve points in a randoml-shuffled order. As a result (and with permission from the TA), I propose the following simple solution derived from Graham s Scan [, ]. The inputs to Order-Vertices are the verte coordinates (, ) and the output is the counterclockwise ordering σ. The pseudocode description is provided below. Order-Vertices(, ) Find bottom-left verte. n length[] i for j to n do if [j] < [i] then i j 7 if [j] = [i] and [j] < [i] 8 then i j 9 Determine polar angles. for j to n do if [j] = [i] then if [j] > [i] then θ[j] = π/ else θ[j] = π/ else θ[j] = arctan ( [j] [i] [j] [i] sort θ into monotonicall-increasing order to find σ 7 return σ )

3 Assignment CS 7 Douglas R. Lanman (a) input point set (b) ordered point set Figure : Eample of output produced b Order-Vertices for n = Proof of Correctness: Before we prove the overall correctness of Order-Vertices, let s verif the outcome of each section independentl. In the first section (on lines -8), we determine the left-most verte (breaking ties in favor of lower points). The correctness of this section is immediate a linear search through the coordinates returns the desired point. In the second section (on lines 9-), we determine the polar angles each verte makes with respect the the reference verte in the lower-left corner. In general, we can use the following simple trigonometric relationship to determine the angle θ (from the -ais) between points p i and p j. ( ) [j] [i] θ[j] = arctan () [j] [i] The correctness of this solution is also immediate. Similarl, we assume that the sorting routine (on line ) correctl arranges the polar angles into monotonicall-ascending order. Note that we handle the special case of the coordinates of the vertices being equal (e.g., Figure (b)) eplicitl on lines -. In conclusion, the individual sections of Order-Vertices are correct. To prove the overall correctness, consider the eample in Figure (a). If we draw a line from verte (the left-most verte) along the -ais, and if we rotate this line to the right, then it will touch each point in counterclockwise order. This is due to the fact that the input set is conve. As a result, the polar angles of each point uniquel determine their correct order in the output σ. Analsis of Running Time: The asmptotic worst-case running time of Order-Vertices is O(n log n). We can prove this directl b analzing the pseudocode. On lines -8 we search for the left-most verte (breaking ties in favor of lower points). Since this section onl involves constant time comparisons and assignments, then the running time is O(n) corresponding to the order of iterations of the for loop on line. Similarl, the section of code on lines 9- is used to determine the set of polar angles (with respect to the lower-left verte). Once again, this section involves constant time operations and has a running time of O(n) due to the for loop on line. In order to produce the desired counterclockwise traversal σ, we must sort the points b their polar angles. This can be accomplished using a variet of sorting algorithms presented in [] with a running time of O(n log n). As a result, the asmptotic worst-case running time of Order- Vertices is O(n log n). (QED)

4 Assignment CS 7 Douglas R. Lanman.: Determining if a Point Set is Conve Etend our algorithm to solve the decision problem: given a set of points {p, p,..., p n }, decide whether the are the vertices of a conve polgon. High-level Description: Initiall, one might tr solving this problem using the approach outlined in Problem.- in []. That is, after ordering the points using Order-Vertices, check that each consecutive pair of edges has an internal angle less than 8 degrees (i.e., that we alwas make a left turn when traversing the ordered verte list). While this would work for simple polgons with no self-intersections, one could imagine a comple polgon which intersects itself resulting in a non-conve polgon with all left turns. As a result, we must improve upon this naive approach. Recall the following classic result from planar geometr: the sum of the internal angles of a simple n-sided polgon is equal to (n )π radians for n []. Given this constraint, we can easil verif that a polgon is simple (i.e., is not self-intersecting) and, as a result, we can check that the internal angles are all less than 8 degrees (and that this constraint is satisfied). As a result, we propose Test-Conve below to determine if a set of points represents a conve polgon. The inputs to Test-Conve are the verte coordinates (, ) and the output is a boolean indicating whether or not the points define a conve polgon. (Note that subscript addition is performed modulo n in this pseudocode description.) Test-Conve(, ) σ Order-Vertices(, ) reorder (, ) using σ n length[] A for i to n ( ) ([i + ] [i]) ([i + ] [i]) do C det ([i + ] [i]) ([i + ] [i]) 7 if C 8 then return false 9 a ([i + ] [i]) + ([i + ] [i]) b ([i ] [i]) + ([i ] [i]) c ([i + ] ( [i ]) ) + ([i + ] [i ]) A A + arccos a +b c if A = (n )π then return true else return false ab Proof of Correctness: The correctness of Test-Conve follows from the definition of a conve polgon. That is, a conve polgon must have internal angles strictl less than 8 degrees and the sum of its internal angles must equal (n )π radians. As a result, we must prove that our method for determining the internal angles and their sum is correct. Recall that the cross product can be used to determine how consecutive line segments turn at a point p i, as shown in [] on pages 9 and 9. In general, the sign of the cross product C, where ( ) ([i + ] [i]) ([i + ] [i]) C = det () ([i + ] [i]) ([i + ] [i]) is positive if and onl if the edge turns to the left at p i []. As a result, we check this condition for each verte on lines -8 (returning false if this test fails).

5 Assignment CS 7 Douglas R. Lanman.. p i+ a c θ b p i.. (a) Law of Cosines illustration p i (b) Eample used to prove Ω(n log n) Figure : Law of Cosines used in Test-Conve and the eample from Section.. Assuming that ever pair of consecutive edges makes a left turn, we still must verif that the polgon is simple. We can do this b storing the running sum of the internal angles. In order to compute the internal angles, we simpl appl the Law of Cosines. For the eample shown in Figure (a), the Law of Cosines requires c = a + b ab cos θ () As a result, the internal angle θ is given b ( a + b c ) θ = arccos ab () This operation is performed on lines 9- and the constraint that the sum of internal angles equals (n )π is verified on line. As a result, Test-Conve correctl determines if the input point set represents a conve polgon. Analsis of Running Time: The running time of Test-Conve is clearl O(n log n). We can prove this b direct inspection. Lines,, - all involve constant time operations. Similarl, lines - also involve constant time operations (assuming arccos is implemented b a constant-time lookup table). As a result, the asmptotic worst-case running time for lines - is determined b the for loop on line and is O(n). Since the reordering on line can be accomplished in O(n) given σ, the overall asmptotic worst case running time is due to the call to Order-Vertices on line and is O(n log n). (QED).: A Lower Bound on all Verte-Ordering Algorithms Prove that ever verte-ordering algorithm whose comparison operations are binar (i.e., an test performed has onl two outcomes) must have compleit Ω(n log n) in the worst case. A simple eample illustrates that an algorithm which determines the order of vertices in a conve polgon (e.g., the approach presented in Section.) must have compleit Ω(n log n) in the worst case. Consider the point set shown in Figure (b). In this eample, we have ten points on the parabola given b =. The desired counterclockwise ordering is given b sorting the vertices b their coordinate. Recall Theorem 8. from []: an comparison sort requires Ω(n log n) in

6 Assignment CS 7 Douglas R. Lanman the worst case. As a result, the verte-ordering task must also have a worst-case compleit of Ω(n log n). As presented in Chaper 8 of [], this lower bound can be understood b considering the decision tree for the verte-ordering task. Unlike one-dimensional (i.e., arra) sorting algorithms, the solution of the verte-ordering task is not unique; that is, the sorted vertices can appear in an cclic permutation. Regardless, we can alwas select a verte to be first in the list. Afterwards, there remaining n vertices which must be ordered. As with arra sorting, the decision tree must contain all (n )! permutations as a leaf. Following the derivation of [], the height h of the decision tree must satisf the following relationship. h (n )! h log ((n )!) = Ω(n log n) () In conclusion, we have demonstrated that all verte-ordering algorithms must have worst-case compleit Ω(n log n) b the eample in Figure (b). It is important to note that this eample was first proposed b Shamos and Preparata []. (QED) Conclusion This write-up reviewed the notion of conve polgons and presented several algorithms for determining whether a given point set represents one. The algorithm presented in Section. (and its analsis in Section.) is of general utilit, however this document has not eplored the larger issue of determining a conve hull for an arbitrar point set. This more general problem is of central importance to the field of computation geometr. Interested readers are referred to Shamos and Preparata [] for a detailed presentation of conve hull algorithms. In addition, see [] for a divide-and-conquer solution to Problem.. References [] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill,. [] Jeff Erickson. Conve hulls. jeffe/teaching/7/notes/ -convehull.pdf,. [] Michael I. Shamos and Franco P. Preparata. Computational Geometr: An Introduction. Springer-Verlag, 98. [] Wikipedia. Polgon.

CS 157: Assignment 5

CS 157: Assignment 5 Problem : Printing Neatly CS 157: Assignment 5 Douglas R. Lanman 4 April 006 In a word processor or in L A TEX, one routinely encounters the pretty printing problem. That is, how does one transform text

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

EXPANDING THE CALCULUS HORIZON. Robotics

EXPANDING THE CALCULUS HORIZON. Robotics EXPANDING THE CALCULUS HORIZON Robotics Robin designs and sells room dividers to defra college epenses. She is soon overwhelmed with orders and decides to build a robot to spra paint her dividers. As in

More information

Reteaching Golden Ratio

Reteaching Golden Ratio Name Date Class Golden Ratio INV 11 You have investigated fractals. Now ou will investigate the golden ratio. The Golden Ratio in Line Segments The golden ratio is the irrational number 1 5. c On the line

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

Graphics Output Primitives

Graphics Output Primitives Important Graphics Output Primitives Graphics Output Primitives in 2D polgons, circles, ellipses & other curves piel arra operations in 3D triangles & other polgons Werner Purgathofer / Computergraphik

More information

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example Glossar A absolute value function An absolute value function is a function that can be written in the form, where is an number or epression. alternate eterior angles alternate interior angles Alternate

More information

Minimum-Area Rectangle Containing a Set of Points

Minimum-Area Rectangle Containing a Set of Points Minimum-Area Rectangle Containing a Set of Points David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

4.1 Angles and Angle Measure. 1, multiply by

4.1 Angles and Angle Measure. 1, multiply by 4.1 Angles and Angle Measure Angles can be measured in degrees or radians. Angle measures without units are considered to be in radians. Radian: One radian is the measure of the central angle subtended

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

The Graph Scale-Change Theorem

The Graph Scale-Change Theorem Lesson 3-5 Lesson 3-5 The Graph Scale-Change Theorem Vocabular horizontal and vertical scale change, scale factor size change BIG IDEA The graph of a function can be scaled horizontall, verticall, or in

More information

Lecture 1. Introduction

Lecture 1. Introduction Lecture 1 Introduction 1 Lecture Contents 1. What is an algorithm? 2. Fundamentals of Algorithmic Problem Solving 3. Important Problem Types 4. Fundamental Data Structures 2 1. What is an Algorithm? Algorithm

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

NONCONGRUENT EQUIDISSECTIONS OF THE PLANE

NONCONGRUENT EQUIDISSECTIONS OF THE PLANE NONCONGRUENT EQUIDISSECTIONS OF THE PLANE D. FRETTLÖH Abstract. Nandakumar asked whether there is a tiling of the plane b pairwise non-congruent triangles of equal area and equal perimeter. Here a weaker

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions

SECTION 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 6-8 Graphing More General Tangent, Cotangent, Secant, and Cosecant Functions 9 duce a scatter plot in the viewing window. Choose 8 for the viewing window. (B) It appears that a sine curve of the form k

More information

Computational Geometry

Computational Geometry Computational Geometry Range queries Convex hulls Lower bounds Planar subdivision search Line segment intersection Convex polygons Voronoi diagrams Minimum spanning trees Nearest neighbors Triangulations

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

5 and Parallel and Perpendicular Lines

5 and Parallel and Perpendicular Lines Ch 3: Parallel and Perpendicular Lines 3 1 Properties of Parallel Lines 3 Proving Lines Parallel 3 3 Parallel and Perpendicular Lines 3 Parallel Lines and the Triangle Angles Sum Theorem 3 5 The Polgon

More information

Polynomials. Math 4800/6080 Project Course

Polynomials. Math 4800/6080 Project Course Polnomials. Math 4800/6080 Project Course 2. The Plane. Boss, boss, ze plane, ze plane! Tattoo, Fantas Island The points of the plane R 2 are ordered pairs (x, ) of real numbers. We ll also use vector

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

AVL Trees. Reading: 9.2

AVL Trees. Reading: 9.2 AVL Trees Reading: 9.2 Balance Factor of a Node The difference in height of its two subtrees (h R -h L ) Balanced Node if -1 BF 1 Unbalanced Node if BF 1 h L h R Balance Factor of a Binar Tree Corresponds

More information

4.7 INVERSE TRIGONOMETRIC FUNCTIONS

4.7 INVERSE TRIGONOMETRIC FUNCTIONS Section 4.7 Inverse Trigonometric Functions 4 4.7 INVERSE TRIGONOMETRIC FUNCTIONS NASA What ou should learn Evaluate and graph the inverse sine function. Evaluate and graph the other inverse trigonometric

More information

Translations, Reflections, and Rotations

Translations, Reflections, and Rotations Translations, Reflections, and Rotations The Marching Cougars Lesson 9-1 Transformations Learning Targets: Perform transformations on and off the coordinate plane. Identif characteristics of transformations

More information

Sum and Difference Identities. Cosine Sum and Difference Identities: cos A B. does NOT equal cos A. Cosine of a Sum or Difference. cos B.

Sum and Difference Identities. Cosine Sum and Difference Identities: cos A B. does NOT equal cos A. Cosine of a Sum or Difference. cos B. 7.3 Sum and Difference Identities 7-1 Cosine Sum and Difference Identities: cos A B Cosine of a Sum or Difference cos cos does NOT equal cos A cos B. AB AB EXAMPLE 1 Finding Eact Cosine Function Values

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics : Lecture Basics of Skeletal Animation and Kinematics Reading: Chapt of Gregor, Game Engine Architecture. The material on kinematics is a simplification of similar concepts developed in the field of robotics,

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018

High-Dimensional Computational Geometry. Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 High-Dimensional Computational Geometry Jingbo Shang University of Illinois at Urbana-Champaign Mar 5, 2018 Outline 3-D vector geometry High-D hyperplane intersections Convex hull & its extension to 3

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Inclination of a Line

Inclination of a Line 0_00.qd 78 /8/05 Chapter 0 8:5 AM Page 78 Topics in Analtic Geometr 0. Lines What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) Chapter Outline. Eponential Functions. Logarithmic Properties. Graphs of Eponential

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Spring, 2010

Advanced Algorithms Computational Geometry Prof. Karen Daniels. Spring, 2010 UMass Lowell Computer Science 91.504 Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2010 Lecture 3 O Rourke Chapter 3: 2D Convex Hulls Thursday, 2/18/10 Chapter 3 2D Convex Hulls

More information

Geometric Algorithms. 1. Objects

Geometric Algorithms. 1. Objects Geometric Algorithms 1. Definitions 2. Line-Segment properties 3. Inner Points of polygons 4. Simple polygons 5. Convex hulls 6. Closest pair of points 7. Diameter of a point set 1. Objects 2-dimensional

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios and Pythagorean Theorem 4. Multiplying and Dividing Rational Expressions

More information

A Quick Review of Trigonometry

A Quick Review of Trigonometry A Quick Review of Trigonometry As a starting point, we consider a ray with vertex located at the origin whose head is pointing in the direction of the positive real numbers. By rotating the given ray (initial

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

Contents. How You May Use This Resource Guide

Contents. How You May Use This Resource Guide Contents How You Ma Use This Resource Guide ii 0 Trigonometric Formulas, Identities, and Equations Worksheet 0.: Graphical Analsis of Trig Identities.............. Worksheet 0.: Verifing Trigonometric

More information

Common Core Standards Addressed in this Resource

Common Core Standards Addressed in this Resource Common Core Standards Addressed in this Resource N-CN.4 - Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular

More information

Unit Circle. Project Response Sheet

Unit Circle. Project Response Sheet NAME: PROJECT ACTIVITY: Trigonometry TOPIC Unit Circle GOALS MATERIALS Explore Degree and Radian Measure Explore x- and y- coordinates on the Unit Circle Investigate Odd and Even functions Investigate

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

12.1. Angle Relationships. Identifying Complementary, Supplementary Angles. Goal: Classify special pairs of angles. Vocabulary. Complementary. angles.

12.1. Angle Relationships. Identifying Complementary, Supplementary Angles. Goal: Classify special pairs of angles. Vocabulary. Complementary. angles. . Angle Relationships Goal: Classif special pairs of angles. Vocabular Complementar angles: Supplementar angles: Vertical angles: Eample Identifing Complementar, Supplementar Angles In quadrilateral PQRS,

More information

Multiple-choice (35 pt.)

Multiple-choice (35 pt.) CS 161 Practice Midterm I Summer 2018 Released: 7/21/18 Multiple-choice (35 pt.) 1. (2 pt.) Which of the following asymptotic bounds describe the function f(n) = n 3? The bounds do not necessarily need

More information

Measurement and Geometry MEASUREMENT AND GEOMETRY

Measurement and Geometry MEASUREMENT AND GEOMETRY MEASUREMENT AND GEOMETRY The following ten California mathematics academic content standards from the strand are assessed on the CAHSEE b 17 test questions and are represented in this booklet b 5 released

More information

CS 335 Graphics and Multimedia. Geometric Warping

CS 335 Graphics and Multimedia. Geometric Warping CS 335 Graphics and Multimedia Geometric Warping Geometric Image Operations Eample transformations Straightforward methods and their problems The affine transformation Transformation algorithms: Forward

More information

How fast can we sort? Sorting. Decision-tree example. Decision-tree example. CS 3343 Fall by Charles E. Leiserson; small changes by Carola

How fast can we sort? Sorting. Decision-tree example. Decision-tree example. CS 3343 Fall by Charles E. Leiserson; small changes by Carola CS 3343 Fall 2007 Sorting Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 3343 Analysis of Algorithms 1 How fast can we sort? All the sorting algorithms we have seen

More information

OUTPUT PRIMITIVES. CEng 477 Introduction to Computer Graphics METU, 2007

OUTPUT PRIMITIVES. CEng 477 Introduction to Computer Graphics METU, 2007 OUTPUT PRIMITIVES CEng 477 Introduction to Computer Graphics METU, 007 Recap: The basic forward projection pipeline: MCS Model Model Modeling Transformations M M 3D World Scene Viewing Transformations

More information

Proposal: k-d Tree Algorithm for k-point Matching

Proposal: k-d Tree Algorithm for k-point Matching Proposal: k-d Tree Algorithm for k-point Matching John R Hott University of Virginia 1 Motivation Every drug seeking FDA approval must go through Phase II and III clinical trial periods (trials on human

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

Syllabus Objective: 3.1 The student will solve problems using the unit circle.

Syllabus Objective: 3.1 The student will solve problems using the unit circle. Precalculus Notes: Unit 4 Trigonometr Sllabus Objective:. The student will solve problems using the unit circle. Review: a) Convert. hours into hours and minutes. Solution: hour + (0.)(60) = hour and minutes

More information

Computer Graphics. Modelling in 2D. 2D primitives. Lines and Polylines. OpenGL polygon primitives. Special polygons

Computer Graphics. Modelling in 2D. 2D primitives. Lines and Polylines. OpenGL polygon primitives. Special polygons Computer Graphics Modelling in D Lecture School of EECS Queen Mar, Universit of London D primitives Digital line algorithms Digital circle algorithms Polgon filling CG - p.hao@qmul.ac.uk D primitives Line

More information

Point Enclosure and the Interval Tree

Point Enclosure and the Interval Tree C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 8 Date: March 3, 1993 Scribe: Dzung T. Hoang Point Enclosure and the Interval Tree Point Enclosure We consider the 1-D

More information

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course.

Summer Review for Students Entering Pre-Calculus with Trigonometry. TI-84 Plus Graphing Calculator is required for this course. Summer Review for Students Entering Pre-Calculus with Trigonometry 1. Using Function Notation and Identifying Domain and Range 2. Multiplying Polynomials and Solving Quadratics 3. Solving with Trig Ratios

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Computer Graphics. Lecture 3 Graphics Output Primitives. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Lecture 3 Graphics Output Primitives. Somsak Walairacht, Computer Engineering, KMITL Computer Graphics Lecture 3 Graphics Output Primitives Somsa Walairacht, Computer Engineering, KMITL Outline Line Drawing Algorithms Circle-, Ellipse-Generating Algorithms Fill-Area Primitives Polgon Fill

More information

triangles leaves a smaller spiral polgon. Repeating this process covers S with at most dt=e lights. Generaliing the polgon shown in Fig. 1 establishes

triangles leaves a smaller spiral polgon. Repeating this process covers S with at most dt=e lights. Generaliing the polgon shown in Fig. 1 establishes Verte -Lights for Monotone Mountains Joseph O'Rourke Abstract It is established that dt=e = dn=e?1 verte -lights suce to cover a monotone mountain polgon of t = n? triangles. A monotone mountain is a monotone

More information

Computational Geometry

Computational Geometry CS 5633 -- Spring 2004 Computational Geometry Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Computational geometry Algorithms for solving

More information

CS2 Algorithms and Data Structures Note 1

CS2 Algorithms and Data Structures Note 1 CS2 Algorithms and Data Structures Note 1 Analysing Algorithms This thread of the course is concerned with the design and analysis of good algorithms and data structures. Intuitively speaking, an algorithm

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

C URVES AND V ECTORS

C URVES AND V ECTORS 96-ch- SB5-Ostebee June 6, 9:57 C H A P T E R O U T L I N E. Three-Dimensional Space. Curves and Parametric Equations. Polar Coordinates and Polar Curves.4 Vectors.5 Vector-Valued Functions, Derivatives,

More information

Introduction to Algorithms Massachusetts Institute of Technology Professors Erik D. Demaine and Charles E. Leiserson.

Introduction to Algorithms Massachusetts Institute of Technology Professors Erik D. Demaine and Charles E. Leiserson. Introduction to Algorithms Massachusetts Institute of Technolog Professors Erik D. Demaine and Charles E. Leiserson October 24, 2005 6.046J/18.410J Handout 16 Problem Set 5 MIT students: This problem set

More information

Name Honors Geometry Final Exam Review. 1. The following figure is a parallelogram. Find the values of x and y.

Name Honors Geometry Final Exam Review. 1. The following figure is a parallelogram. Find the values of x and y. 2013-2014 Name Honors Geometr Final Eam Review Chapter 5 Questions 1. The following figure is a parallelogram. Find the values of and. (+)⁰ 130⁰ (-)⁰ 85⁰ 2. Find the value of in the figure below. D is

More information

Splay Trees. Splay Trees 1

Splay Trees. Splay Trees 1 Spla Trees v 6 3 8 4 Spla Trees 1 Spla Trees are Binar Search Trees BST Rules: items stored onl at internal nodes kes stored at nodes in the left subtree of v are less than or equal to the ke stored at

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

Inverse Trigonometric Functions:

Inverse Trigonometric Functions: Inverse Trigonometric Functions: Trigonometric functions can be useful models for many real life phenomena. Average monthly temperatures are periodic in nature and can be modeled by sine and/or cosine

More information

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ).

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ). Geometry Kindergarten Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1 Describe objects in the environment using names of shapes,

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON

THE INVERSE GRAPH. Finding the equation of the inverse. What is a function? LESSON LESSON THE INVERSE GRAPH The reflection of a graph in the line = will be the graph of its inverse. f() f () The line = is drawn as the dotted line. Imagine folding the page along the dotted line, the two

More information

Sieving Interior Collinear Points for Convex Hull Algorithms

Sieving Interior Collinear Points for Convex Hull Algorithms 90 Int'l Conf. Foundations of Computer Science FCS'15 Sieving Interior Collinear Points for Convex Hull Algorithms Dr. Michael Scherger Department of Computer Science Texas Christian University Fort Worth,

More information

CS 314H Algorithms and Data Structures Fall 2012 Programming Assignment #6 Treaps Due November 11/14/16, 2012

CS 314H Algorithms and Data Structures Fall 2012 Programming Assignment #6 Treaps Due November 11/14/16, 2012 CS H Algorithms and Data Structures Fall 202 Programming Assignment # Treaps Due November //, 202 In this assignment ou will work in pairs to implement a map (associative lookup) using a data structure

More information

Outline. Definition. 2 Height-Balance. 3 Searches. 4 Rotations. 5 Insertion. 6 Deletions. 7 Reference. 1 Every node is either red or black.

Outline. Definition. 2 Height-Balance. 3 Searches. 4 Rotations. 5 Insertion. 6 Deletions. 7 Reference. 1 Every node is either red or black. Outline 1 Definition Computer Science 331 Red-Black rees Mike Jacobson Department of Computer Science University of Calgary Lectures #20-22 2 Height-Balance 3 Searches 4 Rotations 5 s: Main Case 6 Partial

More information

2.8 Distance and Midpoint Formulas; Circles

2.8 Distance and Midpoint Formulas; Circles Section.8 Distance and Midpoint Formulas; Circles 9 Eercises 89 90 are based on the following cartoon. B.C. b permission of Johnn Hart and Creators Sndicate, Inc. 89. Assuming that there is no such thing

More information

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane.

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane. Conic sections are plane figures formed b the intersection of a double-napped cone and a plane. Chapter 10: Conic Sections Ellipse Hperbola The conic sections ma be defined as the sets of points in the

More information

Introduction to Algorithms Third Edition

Introduction to Algorithms Third Edition Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England Preface xiü I Foundations Introduction

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Chapter 8 Sorting in Linear Time

Chapter 8 Sorting in Linear Time Chapter 8 Sorting in Linear Time The slides for this course are based on the course textbook: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 3rd edition, The MIT Press, McGraw-Hill,

More information

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2

turn counterclockwise from the positive x-axis. However, we could equally well get to this point by a 3 4 turn clockwise, giving (r, θ) = (1, 3π 2 Math 133 Polar Coordinates Stewart 10.3/I,II Points in polar coordinates. The first and greatest achievement of modern mathematics was Descartes description of geometric objects b numbers, using a sstem

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

M O T I O N A N D D R A W I N G

M O T I O N A N D D R A W I N G 2 M O T I O N A N D D R A W I N G Now that ou know our wa around the interface, ou re read to use more of Scratch s programming tools. In this chapter, ou ll do the following: Eplore Scratch s motion and

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

B + -trees. Kerttu Pollari-Malmi

B + -trees. Kerttu Pollari-Malmi B + -trees Kerttu Pollari-Malmi This tet is based partl on the course tet book b Cormen and partl on the old lecture slides written b Matti Luukkainen and Matti Nkänen. 1 Introduction At first, read the

More information

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity)

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity) Math : Fall 0 0. (part ) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pthagorean Identit) Cosine and Sine Angle θ standard position, P denotes point where the terminal side of

More information

: Find the values of the six trigonometric functions for θ. Special Right Triangles:

: Find the values of the six trigonometric functions for θ. Special Right Triangles: ALGEBRA 2 CHAPTER 13 NOTES Section 13-1 Right Triangle Trig Understand and use trigonometric relationships of acute angles in triangles. 12.F.TF.3 CC.9- Determine side lengths of right triangles by using

More information

4.6 Graphs of Other Trigonometric Functions

4.6 Graphs of Other Trigonometric Functions .6 Graphs of Other Trigonometric Functions Section.6 Graphs of Other Trigonometric Functions 09 Graph of the Tangent Function Recall that the tangent function is odd. That is, tan tan. Consequentl, the

More information

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once.

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once. Chapter 8. Sorting in Linear Time Types of Sort Algorithms The only operation that may be used to gain order information about a sequence is comparison of pairs of elements. Quick Sort -- comparison-based

More information

CSC Computer Graphics

CSC Computer Graphics 7//7 CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.l Department of Computer Science Universit of Sri Jaewardanepura Line drawing algorithms DDA Midpoint (Bresenham s) Algorithm Circle drawing algorithms

More information

1. The Pythagorean Theorem

1. The Pythagorean Theorem . The Pythagorean Theorem The Pythagorean theorem states that in any right triangle, the sum of the squares of the side lengths is the square of the hypotenuse length. c 2 = a 2 b 2 This theorem can be

More information