UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction

Size: px
Start display at page:

Download "UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction"

Transcription

1 Prerequisite Skills This lesson requires the use of the following skills: understanding and using formulas for the volume of prisms, cylinders, pyramids, and cones understanding and applying the formula for circumference Introduction Think about the dissection arguments used to develop the area of a circle formula. These same arguments can be used to develop the volume formulas for cylinders, pyramids, and cones. You have already used volume formulas for prisms, cylinders, pyramids, and cones, but how are the formulas derived? In this lesson, you will learn how to find the volumes of cylinders, pyramids, and cones. As part of learning the formulas, you will see proofs of why the formulas work for those objects. The real world is filled with these objects. Using the formulas of volume for these objects expands your problem-solving skills. Key Concepts The formula for finding the volume of a prism is V = length width height. This can also be shown as V = area of base height. Remember to use cubic units or volume measures when calculating volume. Some examples are cubic feet (ft 3 ), cubic meters (m 3 ), liters (L), and gallons (gal). Cylinders A cylinder has two bases that are parallel. This is also true of a prism. Bonaventura Cavalieri, an Italian mathematician, formulated Cavalieri s Principle. This principle states that the volumes of two objects are equal if the areas of their corresponding cross sections are in all cases equal. This principle is illustrated by the diagram below. A rectangular prism has been sliced into six pieces and is shown in three different ways. The six pieces maintain their same volume regardless of how they are moved. U3-225

2 Cavalieri s Principle describes how each piece is a thin slice in the plane of the prism. If each thin slice in each object has the same area, then the volumes of the objects are the same. The following diagram shows a prism, a prism at an oblique angle, and a cylinder. B B B h The three objects meet the two criteria of Cavalieri s Principle. First, the objects have the same height. Secondly, the areas of the objects are the same when a plane slices them at corresponding heights. Therefore, the three objects have the same volume. 2 A square prism that has side lengths of r π will have a base area of r π r π = π r on every plane that cuts through it. The same is true of a cylinder, which has a radius, r. The base area of the cylinder will be π r 2. This shows how a square prism and a cylinder can have the same areas at each plane. Another way of thinking about the relationship of a polygonal prism and the cylinder is to remember the earlier proof about the area of a circle. A cylinder can be thought of as a prism with an infinite number of sides. The diagram below shows a polygonal prism with 200 sides. U3-226

3 The area of its base can be calculated by dividing it into quadrilaterals and triangles, but its base is approaching the limit of being a circle. If the base area and the height of a prism and a cylinder are the same, the prism and cylinder will have the same volume. The formula for finding the volume of a cylinder is V = π r 2 h. Pyramids A pyramid is a solid or hollow polyhedron object that has three or more triangular faces that converge at a single vertex at the top; the base may be any polygon. A polyhedron is a three-dimensional object that has faces made of polygons. A triangular prism can be cut into three equal triangular pyramids. Triangular prisms Corresponding triangular pyramids U3-227

4 A cube can be cut into three equal square pyramids. This dissection proves that the volume of a pyramid is one-third the volume of a prism: Vpyramid = 1 B h 3. Cones A cone is a solid or hollow object that tapers from a circular base to a point. A cone and a pyramid use the same formula for finding volume. This can be seen by increasing the number of sides of a pyramid. The limit approaches that of being a cone. A pyramid with 100 sides follows. With such a large number of sides, it looks like a cone. The formula for the volume of a cone is V = 1 2 cone π r h. 3 Cavalieri s Principle shows how pyramids and cones have the same volume. The diagram that follows shows cross sections of areas with the same planes. Each object has the same area at each cross section. U3-228

5 Therefore, the volumes of both objects are the same. Common Errors/Misconceptions using the prism volume formula for a pyramid or a cone calculating the wrong base area for a pyramid due to not noticing the shape of the pyramid s base (e.g., triangle, square) forgetting to express a calculation in the correct units for volume (e.g., m 3, liters) U3-229

6 Guided Practice Example 1 Find the dimensions for a cylinder that has the same volume as a square prism with a base area of 9 square meters. The cylinder and the square prism should both have heights of 5 meters. 5 m 5 m 1. Determine the relationship between two objects with the same volume. Cavalieri s Principle states that if two objects have the same area in every plane, or cross section, then their volumes are the same. The cylinder and prism have uniform width and length throughout their heights. Both need to have the same height. Therefore, in order for the cylinder and prism to have the same volume, they need to have the same areas for their bases. 2. Set up the formulas for the area of the base of the cylinder and the area of the base of the prism so that they are equal. The formula for the area of the circular base of the cylinder is A = π r 2, where r is the radius of the base of the cylinder. The area of the base of the prism is 9 square meters. A base of square prism = A base of cylinder Set the areas of the bases equal. 9 = π r 2 Substitute the known information to form an equation. U3-230

7 3. Solve the equation for r. 9 = π r = r Divide both sides by π. π r 2 ± r Take the square root of both sides. The length of the radius must be a positive r number. For the cylinder to have the same volume as the prism, the cylinder s base must have a radius of Substitute the value of the radius into the equation to check your work. 9 = π r 2 9 = π ( ) The difference is infinitesimal. The two objects essentially have bases that have the same area, 9 m Calculate the volume for each object. The volume for a prism or a cylinder can be seen as many thin slices or cross sections stacked on top of one another. Thus, their volume formulas are the same: V = B h, where B is the area of the base of the object. V = B h Prism V = B h Cylinder V = 9 5 V V = 45 m 3 V 45 m 3 U3-231

8 5. Verify that the two objects will have the same area at a height of 1 meter or any other height. Yes, this is true. At every height, both objects have uniform dimensions that are equal to the dimensions of their bases. Therefore, using Cavalieri s Principle, both objects, the prism and the cylinder, have the same volume. Example 2 Dissect a cube to prove that it has three times the volume of a square pyramid that has a base of the same area as the cube. 1. A cube has 6 equal sides. Divide the cube into 6 equal pyramids. Fix a point in the exact center of the cube. Place 6 square pyramids in the cube, one on each side of the cube facing inward toward the center of the cube so that the vertex of each pyramid touches the exact center of the cube. Each pyramid will have a height equal to one half the height of the cube. The sides of the pyramids will rest against one another with no gaps or spaces between them. The volume of the cube is completely filled with the 6 pyramids. U3-232

9 2. Derive the formula for the volume of a pyramid by using the formula for the volume of the cube. A cube has equal sides, so the height of the cube equals the side length. V cube = B s, where s equals the length of a side of the cube. Substitute the pyramid height, h, for the height of the cube, s. The height of one of the pyramids is equal to half the height of the cube. Therefore, the height of the cube equals two of the pyramids, or 2h. V cube = B 2h There are 6 pyramids contained in the cube. Therefore, to find the volume of one pyramid, divide the volume of the cube by 6. V pyramid B = 2h 6 Vpyramid = 1 B h 3 Simplify 2 6 to equal Multiply the formula for the volume of the pyramid times 3 and compare it with the formula for the volume of the cube B h = B h The volume of the cube, a prism, is equal to B h. This shows that a cube has three times the volume of a square pyramid (or that a square pyramid has one-third the volume of a cube). U3-233

10 Example 3 Find the dimensions for a cone that has the same volume as a pyramid of the same height as the cone. Both the cone and the pyramid have a height of 2 meters. The volume of the pyramid is 3 cubic meters. A cone and a pyramid both taper to a point or vertex at the top. The slant of the taper is linear, meaning it is a straight line. The dimensions of both the cone and the pyramid change at a constant rate from base to tip. 2 m 2 m 1. Cavalieri s Principle states that the pyramid and cone will have the same volume if the area of each cross section of a plane is the same at every height of the two objects. This means that if the cone and pyramid have bases of equal area, then their volumes will also be equal. U3-234

11 2. Set up an equation to find the radius of the cone. The volume of the pyramid is 3 m 3. Both objects must have bases of equal area to have the same volume. The area of the base of the pyramid can be found by solving for B in the formula for the volume of a pyramid. V pyramid = 1 3 B h 3 = 1 3 B 2 Substitute the volume and the height of the pyramid. 3 = 2 3 B Simplify = B Multiply both sides by = B Simplify. 2 B = 4.5 The area of the base of the pyramid is 4.5 square meters. A pyramid base = A cone base = A circle = π r 2 Set up the equation. Substitute the value found for the area 4.5 = π r 2 of the base of the pyramid. 4.5 π = r 2 Divide both sides by π. 4.5 ± = r Take the square root of both sides. π r The radius of the cone is approximately meters. U3-235

12 Example 4 A jet fuel storage tank near a large airport is a cylinder that has a radius of 12.5 meters and a height of meters. How many gallons of jet fuel will the tank hold? There are gallons in 1 cubic meter. 1. Find the volume of the cylinder. V = B h V = π r 2 h V = π( ) Substitute the expression for the area of a circle. Substitute the known dimensions of the tank. V m 3 The volume of the jet fuel tank is approximately 7, cubic meters. 2. Find the number of gallons in 7, cubic meters gallons m = 2, 055, gallons 3 1m The storage tank will hold about 2,055,869 gallons of jet fuel. U3-236

13 Example 5 A new art museum is being built in the shape of a square pyramid. The height will be 50 meters. The art museum needs 86,400 cubic meters of space inside. What should be the side lengths of the base of the pyramid? 1. Use the formula for the volume of a pyramid to find the unknown side lengths of the base. V = 1 B h 3 86, 400 = 1 B 50 Substitute the known values , 400 = B Multiply both sides by 50 B = 5184 The base is 5,184 square meters Find the side length of the base. The base is a square. It has an area of side side. Find the length of one side by taking the square root of the area of the base. ± 5184 = 72 Take the positive square root since length is a positive number. The length of each side of the art museum s pyramid base should be 72 meters. U3-237

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Volume and Surface Area Unit 28 Remember Volume of a solid figure is calculated in cubic units and measures three dimensions.

Volume and Surface Area Unit 28 Remember Volume of a solid figure is calculated in cubic units and measures three dimensions. Volume and Surface Area Unit 28 Remember Volume of a solid figure is calculated in cubic units and measures three dimensions. Surface Area is calculated in square units and measures two dimensions. Prisms

More information

Lesson 9. Three-Dimensional Geometry

Lesson 9. Three-Dimensional Geometry Lesson 9 Three-Dimensional Geometry 1 Planes A plane is a flat surface (think tabletop) that extends forever in all directions. It is a two-dimensional figure. Three non-collinear points determine a plane.

More information

C in. 2. D in Find the volume of a 7-inch tall drinking glass with a 4-inch diameter. C lateral faces. A in. 3 B in.

C in. 2. D in Find the volume of a 7-inch tall drinking glass with a 4-inch diameter. C lateral faces. A in. 3 B in. Standardized Test A For use after Chapter Multiple Choice. Which figure is a polyhedron? A B 7. Find the surface area of the regular pyramid. A 300 ft 2 B 340 ft 2 C 400 ft 2 C D D 700 ft 2 2. A polyhedron

More information

Geometry 10 and 11 Notes

Geometry 10 and 11 Notes Geometry 10 and 11 Notes Area and Volume Name Per Date 10.1 Area is the amount of space inside of a two dimensional object. When working with irregular shapes, we can find its area by breaking it up into

More information

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid

Vocabulary. Triangular pyramid Square pyramid Oblique square pyramid Pentagonal pyramid Hexagonal Pyramid CP1 Math 2 Unit 8: S.A., Volume, Trigonometry: Day 7 Name Surface Area Objectives: Define important vocabulary for 3-dimensional figures Find the surface area for various prisms Generalize a formula for

More information

The Geometry of Solids

The Geometry of Solids CONDENSED LESSON 10.1 The Geometry of Solids In this lesson you will Learn about polyhedrons, including prisms and pyramids Learn about solids with curved surfaces, including cylinders, cones, and spheres

More information

Surface Area and Volume

Surface Area and Volume Surface Area and Volume Day 1 - Surface Area of Prisms Surface Area = The total area of the surface of a three-dimensional object (Or think of it as the amount of paper you ll need to wrap the shape.)

More information

A plane that is to the base of the figure will create a cross section that is the same shape as the base.

A plane that is to the base of the figure will create a cross section that is the same shape as the base. Objective: 9.1 3 Notes: Surface Area of Solids Name Cross Sections: A cuts through a solid figure to create a cross section. Depending on the way in which the plane cuts through the figure will determine

More information

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth.

Volume of Cylinders. Volume of Cones. Example Find the volume of the cylinder. Round to the nearest tenth. Volume of Cylinders As with prisms, the area of the base of a cylinder tells the number of cubic units in one layer. The height tells how many layers there are in the cylinder. The volume V of a cylinder

More information

Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon

Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon Unit 7: 3D Figures 10.1 & 10.2 2D formulas & Area of Regular Polygon NAME Name the polygon with the given number of sides: 3-sided: 4-sided: 5-sided: 6-sided: 7-sided: 8-sided: 9-sided: 10-sided: Find

More information

Practice A Introduction to Three-Dimensional Figures

Practice A Introduction to Three-Dimensional Figures Name Date Class Identify the base of each prism or pyramid. Then choose the name of the prism or pyramid from the box. rectangular prism square pyramid triangular prism pentagonal prism square prism triangular

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Lesson 10T ~ Three-Dimensional Figures

Lesson 10T ~ Three-Dimensional Figures Lesson 10T ~ Three-Dimensional Figures Name Period Date Use the table of names at the right to name each solid. 1. 2. Names of Solids 3. 4. 4 cm 4 cm Cone Cylinder Hexagonal prism Pentagonal pyramid Rectangular

More information

Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes

Pre-Algebra, Unit 10: Measurement, Area, and Volume Notes Pre-Algebra, Unit 0: Measurement, Area, and Volume Notes Triangles, Quadrilaterals, and Polygons Objective: (4.6) The student will classify polygons. Take this opportunity to review vocabulary and previous

More information

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction UNIT CIRCLES AND VOLUME Prerequisite Skills This lesson requires the use of the following skills: calculating with fractions and decimals understanding operations with exponents knowing area, surface area,

More information

Name: Target 12.2: Find and apply surface of Spheres and Composites 12.2a: Surface Area of Spheres 12.2b: Surface Area of Composites Solids

Name: Target 12.2: Find and apply surface of Spheres and Composites 12.2a: Surface Area of Spheres 12.2b: Surface Area of Composites Solids Unit 12: Surface Area and Volume of Solids Target 12.0: Euler s Formula and Introduction to Solids Target 12.1: Find and apply surface area of solids 12.1a: Surface Area of Prisms and Cylinders 12.1b:

More information

Test Chapter 11. Matching

Test Chapter 11. Matching Test Chapter 11 Matching Match each vocabulary term with its definition. a. cube b. cylinder c. cone d. sphere e. prism f. pyramid g. hemisphere 1. a polyhedron formed by a polygonal base and triangular

More information

Skills Practice Skills Practice for Lesson 2.1

Skills Practice Skills Practice for Lesson 2.1 Skills Practice Skills Practice for Lesson.1 Name Date Backyard Barbecue Introduction to Volume and Surface Area Vocabulary Write the term from the box that best completes each statement. surface area

More information

11.4 Volume of Prisms and Cylinders

11.4 Volume of Prisms and Cylinders 11.4 Volume of Prisms and Cylinders Learning Objectives Find the volume of a prism. Find the volume of a cylinder. Review Queue 1. Define volume in your own words. 2. What is the surface area of a cube

More information

422 UNIT 12 SOLID FIGURES. The volume of an engine s cylinders affects its power.

422 UNIT 12 SOLID FIGURES. The volume of an engine s cylinders affects its power. UNIT 12 Solid Figures The volume of an engine s cylinders affects its power. 422 UNIT 12 SOLID FIGURES Gas-powered engines are driven by little explosions that move pistons up and down in cylinders. When

More information

Lesson Polygons

Lesson Polygons Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

More information

Further Volume and Surface Area

Further Volume and Surface Area 1 Further Volume and Surface Area Objectives * To find the volume and surface area of spheres, cones, pyramids and cylinders. * To solve problems involving volume and surface area of spheres, cones, pyramids

More information

Measurement 1 PYTHAGOREAN THEOREM. The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of

Measurement 1 PYTHAGOREAN THEOREM. The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of Measurement 1 PYTHAGOREAN THEOREM Remember the Pythagorean Theorem: The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of the squares on the other two sides.

More information

Attendance Questions: Find the area of each shape. Round your answer to the nearest tenth. 1. An equilateral triangle with edge length 20 cm.

Attendance Questions: Find the area of each shape. Round your answer to the nearest tenth. 1. An equilateral triangle with edge length 20 cm. Page 1 of 17 Attendance Questions: Find the area of each shape. Round your answer to the nearest tenth. 1. An equilateral triangle with edge length 20 cm. Page 1 of 17 Page 2 of 17 2. A regular hexagon

More information

Geometry Surface Area and Volume of Pyramids and Cones.

Geometry Surface Area and Volume of Pyramids and Cones. Geometry 11.6 Surface Area and Volume of Pyramids and Cones mbhaub@mpsaz.org 11.6 Essential Question How do you find the surface area and volume of a pyramid or a cone? Geometry 1.3 Surface Area of Pyramids

More information

3 Dimensional Solids. Table of Contents. 3 Dimensional Solids Nets Volume Prisms and Cylinders Pyramids, Cones & Spheres

3 Dimensional Solids. Table of Contents. 3 Dimensional Solids Nets Volume Prisms and Cylinders Pyramids, Cones & Spheres Table of Contents 3 Dimensional Solids Nets Volume Prisms and Cylinders Pyramids, Cones & Spheres Surface Area Prisms Pyramids Cylinders Spheres More Practice/ Review 3 Dimensional Solids Polyhedron A

More information

CHAPTER 12. Extending Surface Area and Volume

CHAPTER 12. Extending Surface Area and Volume CHAPTER 12 Extending Surface Area and Volume 0 Learning Targets Students will be able to draw isometric views of three-dimensional figures. Students will be able to investigate cross-sections of three-dimensional

More information

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents Prisms and Cylinders Glossary & Standards Return to Table of Contents 1 Polyhedrons 3-Dimensional Solids A 3-D figure whose faces are all polygons Sort the figures into the appropriate side. 2. Sides are

More information

MATH-8 Review Volume of 3D shapes 2018 N Exam not valid for Paper Pencil Test Sessions

MATH-8 Review Volume of 3D shapes 2018 N Exam not valid for Paper Pencil Test Sessions MATH-8 Review Volume of 3D shapes 2018 N Exam not valid for Paper Pencil Test Sessions [Exam ID:2YBSPT 1 What is the volume of a cube with a length of 8 inches? A 96 in 3 B 256 in 3 C 512 in 3 D 384 in

More information

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction

UNIT 3 CIRCLES AND VOLUME Lesson 5: Explaining and Applying Area and Volume Formulas Instruction Prerequisite Skills This lesson requires the use of the following skills: using formulas for the surface areas of polygons and circles performing calculations with the angles in circles using the Pythagorean

More information

Student Outcomes. Classwork. Opening Exercises 1 2 (5 minutes)

Student Outcomes. Classwork. Opening Exercises 1 2 (5 minutes) Student Outcomes Students use the Pythagorean Theorem to determine an unknown dimension of a cone or a sphere. Students know that a pyramid is a special type of cone with triangular faces and a rectangular

More information

PYRAMIDS AND CONES WHAT YOU LL LEARN. Ø Finding the surface areas and volume of pyramids Ø Finding the surface areas and volume of cones

PYRAMIDS AND CONES WHAT YOU LL LEARN. Ø Finding the surface areas and volume of pyramids Ø Finding the surface areas and volume of cones PYRAMIDS AND CONES A pyramid is a solid with a polygonal base and triangular lateral faces that meet at a vertex. In this lesson, you will work with regular pyramids. The base of a regular pyramid is a

More information

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6

acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 acute angle An angle with a measure less than that of a right angle. Houghton Mifflin Co. 2 Grade 5 Unit 6 angle An angle is formed by two rays with a common end point. Houghton Mifflin Co. 3 Grade 5 Unit

More information

Sect Volume. 3 ft. 2 ft. 5 ft

Sect Volume. 3 ft. 2 ft. 5 ft 199 Sect 8.5 - Volume Objective a & b: Understanding Volume of Various Solids The Volume is the amount of space a three dimensional object occupies. Volume is measured in cubic units such as in or cm.

More information

Mr. Whelan Name: Block:

Mr. Whelan Name: Block: Mr. Whelan Name: Block: Geometry/Trig Unit 10 Area and Volume of Solids Notes Packet Day 1 Notes - Prisms Rectangular Prism: How do we find Total Area? Example 1 6cm Find the area of each face: Front:

More information

Geometry Unit 10 Note Sheets Date Name of Lesson. 1.6 Two-Dimensional Figures Areas of Circles and Sectors

Geometry Unit 10 Note Sheets Date Name of Lesson. 1.6 Two-Dimensional Figures Areas of Circles and Sectors Date Name of Lesson 1.6 Two-Dimensional Figures 11.3 Areas of Circles and Sectors Quiz 11.1 Areas of Parallelograms and Triangles 11.2 Areas of Trapezoids, Rhombi and Kites 11.4 Areas of Regular Polygons

More information

Pre-Algebra Notes Unit 10: Geometric Figures & Their Properties; Volume

Pre-Algebra Notes Unit 10: Geometric Figures & Their Properties; Volume Pre-Algebra Notes Unit 0: Geometric Figures & Their Properties; Volume Triangles, Quadrilaterals, and Polygons Syllabus Objectives: (4.6) The student will validate conclusions about geometric figures and

More information

Write down a formula for the surface area of a Prism and a Cylinder

Write down a formula for the surface area of a Prism and a Cylinder Write down a formula for the surface area of a Prism and a Cylinder Quiz Thursday Naming Figures Cross Sections Nets Lateral Area, Surface Area Prisms and cylinders have 2 congruent parallel bases. A lateral

More information

3 Dimensional Geometry Chapter Questions. 1. What are the differences between prisms and pyramids? Cylinders and cones?

3 Dimensional Geometry Chapter Questions. 1. What are the differences between prisms and pyramids? Cylinders and cones? 3 Dimensional Geometry Chapter Questions 1. What are the differences between prisms and pyramids? Cylinders and cones? 2. What is volume and how is it found? 3. How are the volumes of cylinders, cones

More information

12.4 Volume of Prisms, Cylinders, Pyramids, and Cones. Geometry Mr. Peebles Spring 2013

12.4 Volume of Prisms, Cylinders, Pyramids, and Cones. Geometry Mr. Peebles Spring 2013 12.4 Volume of Prisms, Cylinders, Pyramids, and Cones Geometry Mr. Peebles Spring 2013 Geometry Bell Ringer Geometry Bell Ringer Answer: B Daily Learning Target (DLT) Wednesday January 30, 2013 I can understand,

More information

MODULE 18 VOLUME FORMULAS

MODULE 18 VOLUME FORMULAS MODULE 18 VOLUME FORMULAS Objectives Use formulas routinely for finding the perimeter and area of basic prisms, pyramids, cylinders, cones, and spheres. Vocabulary: Volume, right vs oblique Assignments:

More information

Chapter 12 Review Period:

Chapter 12 Review Period: Chapter 12 Review Name: Period: 1. Find the number of vertices, faces, and edges for the figure. 9. A polyhedron has 6 faces and 7 vertices. How many edges does it have? Explain your answer. 10. Find the

More information

2. a. approximately cm 3 or 9p cm b. 20 layers c. approximately cm 3 or 180p cm Answers will vary.

2. a. approximately cm 3 or 9p cm b. 20 layers c. approximately cm 3 or 180p cm Answers will vary. Answers Investigation ACE Assignment Choices Problem. Core Other Connections Problem. Core,, Other Applications 7, ; Connections 7 0; unassigned choices from previous problems Problem. Core 7 Other Connections,

More information

HS Pre-Algebra Notes Unit 10: Measurement, Area, and Volume

HS Pre-Algebra Notes Unit 10: Measurement, Area, and Volume HS Pre-Algebra Notes Unit 0: Measurement, Area, and Volume Triangles, Quadrilaterals, and Polygons Syllabus Objectives: (5.6) The student will classify polygons. (5.5) The student will validate conclusions

More information

Write Euler s Theorem. Solving Problems Using Surface Area and Volume. Figure Surface Area Volume. Cl V 5 1 } 3

Write Euler s Theorem. Solving Problems Using Surface Area and Volume. Figure Surface Area Volume. Cl V 5 1 } 3 CHAPTER SUMMARY Big Idea 1 BIG IDEAS Exploring Solids and Their Properties For Your Notebook Euler s Theorem is useful when finding the number of faces, edges, or vertices on a polyhedron, especially when

More information

(1) Page #2 26 Even. (2) Page 596 #1 14. (3) Page #15 25 ; FF #26 and 28. (4) Page 603 #1 18. (5) Page #19 26

(1) Page #2 26 Even. (2) Page 596 #1 14. (3) Page #15 25 ; FF #26 and 28. (4) Page 603 #1 18. (5) Page #19 26 Geometry/Trigonometry Unit 10: Surface Area and Volume of Solids Notes Name: Date: Period: # (1) Page 590 591 #2 26 Even (2) Page 596 #1 14 (3) Page 596 597 #15 25 ; FF #26 and 28 (4) Page 603 #1 18 (5)

More information

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.4 Volume and Surface Area What You Will Learn Volume Surface Area 9.4-2 Volume Volume is the measure of the capacity of a three-dimensional figure. It is the amount of material you can put inside

More information

Lesson 6 Reteach. Perimeter of the base = 14. S. A. = area of the 2 bases + lateral area = = 52 m^.

Lesson 6 Reteach. Perimeter of the base = 14. S. A. = area of the 2 bases + lateral area = = 52 m^. Lesson 6 Reteach Surface Area of Prisms The sum of the areas of all the surfaces, or faces, of a three-dimensional shape is the surface area. Find the surface area of the rectangular prism. The area of

More information

= 25)(10) 10. =

= 25)(10) 10. = 8.5 Volume of Rounded Objects A basic definition of volume is how much space an object takes up. Since this is a three-dimensional measurement, the unit is usually cubed. For example, we might talk about

More information

Lesson 14.1 Skills Practice

Lesson 14.1 Skills Practice Lesson 14.1 Skills Practice Name Date Cut, Fold, and Voila! Nets Vocabulary Define each term in your own words. 1. geometric solids 2. net 3. prototype 4. edge 5. face 6. vertex Problem Set Sketch and

More information

Vocabulary. Term Page Definition Clarifying Example. cone. cube. cylinder. edge of a threedimensional. figure. face of a polyhedron.

Vocabulary. Term Page Definition Clarifying Example. cone. cube. cylinder. edge of a threedimensional. figure. face of a polyhedron. CHAPTER 10 Vocabulary The table contains important vocabulary terms from Chapter 10. As you work through the chapter, fill in the page number, definition, and a clarifying example. cone Term Page Definition

More information

青藜苑教育 Volume of cylinder = r h 965 = r = 6 r 965 = r 9.98 = r = r So the radius of the cylinde

青藜苑教育 Volume of cylinder = r h 965 = r = 6 r 965 = r 9.98 = r = r So the radius of the cylinde 青藜苑教育 www.thetopedu.com 00-6895997 095457 Further Volume and Surface Area Objectives * To find the volume and surface area of spheres, cones, pyramids and cylinders. * To solve problems involving volume

More information

Polygons. 5 sides 5 angles. pentagon. no no R89. Name

Polygons. 5 sides 5 angles. pentagon. no no R89. Name Lesson 11.1 Polygons A polygon is a closed plane figure formed by three or more line segments that meet at points called vertices. You can classify a polygon by the number of sides and the number of angles

More information

11.6 Start Thinking Warm Up Cumulative Review Warm Up

11.6 Start Thinking Warm Up Cumulative Review Warm Up 11.6 Start Thinking The diagrams show a cube and a pyramid. Each has a square base with an area of 25 square inches and a height of 5 inches. How do the volumes of the two figures compare? Eplain your

More information

Geometry Solids Identify Three-Dimensional Figures Notes

Geometry Solids Identify Three-Dimensional Figures Notes 26 Geometry Solids Identify Three-Dimensional Figures Notes A three dimensional figure has THREE dimensions length, width, and height (or depth). Intersecting planes can form three dimensional figures

More information

Areas of Rectangles and Parallelograms

Areas of Rectangles and Parallelograms CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson, you Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover

More information

L22 Measurement in Three Dimensions. 22b Pyramid, Cone, & Sphere

L22 Measurement in Three Dimensions. 22b Pyramid, Cone, & Sphere A pyramid (#VOC) is a polyhedron with a polygon base and triangle faces (other than perhaps the base) that meet at the top (apex). There are triangular pyramids, square pyramids, pentagonal pyramids, and

More information

Geometry Workbook WALCH PUBLISHING

Geometry Workbook WALCH PUBLISHING Geometry Workbook WALCH PUBLISHING Table of Contents To the Student..............................vii Unit 1: Lines and Triangles Activity 1 Dimensions............................. 1 Activity 2 Parallel

More information

12.4 Volume of Prisms, Cylinders, Pyramids, and Cones. Geometry Mr. Peebles Spring 2013

12.4 Volume of Prisms, Cylinders, Pyramids, and Cones. Geometry Mr. Peebles Spring 2013 12.4 Volume of Prisms, Cylinders, Pyramids, and Cones Geometry Mr. Peebles Spring 2013 Geometry Bell Ringer Find the volume of the cylinder with a radius of 7 in. and a height of 10 in. Please leave your

More information

Someone else might choose to describe the closet by determining how many square tiles it would take to cover the floor. 6 ft.

Someone else might choose to describe the closet by determining how many square tiles it would take to cover the floor. 6 ft. Areas Rectangles One way to describe the size of a room is by naming its dimensions. So a room that measures 12 ft. by 10 ft. could be described by saying its a 12 by 10 foot room. In fact, that is how

More information

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below:

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below: Things to Learn (Key words, Notation & Formulae) Complete from your notes Radius- Diameter- Surface Area- Volume- Capacity- Prism- Cross-section- Surface area of a prism- Surface area of a cylinder- Volume

More information

Polygons. 5 sides 5 angles. pentagon. Name

Polygons. 5 sides 5 angles. pentagon. Name Lesson 11.1 Reteach Polygons A polygon is a closed plane figure formed by three or more line segments that meet at points called vertices. You can classify a polygon by the number of sides and the number

More information

Lesson 3: Definition and Properties of Volume for Prisms and Cylinders

Lesson 3: Definition and Properties of Volume for Prisms and Cylinders : Definition and Properties of Volume for Prisms and Cylinders Learning Targets I can describe the properties of volume. I can find the volume of any prism and cylinder using the formula Area of Base Height.

More information

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces.

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces. Lesson 3 Lesson 3, page 1 of 10 Glencoe Geometry Chapter 11. Nets & Surface Area When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all

More information

USING THE DEFINITE INTEGRAL

USING THE DEFINITE INTEGRAL Print this page Chapter Eight USING THE DEFINITE INTEGRAL 8.1 AREAS AND VOLUMES In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral by slicing up the region,

More information

Geometry: Notes

Geometry: Notes Geometry: 11.5-11.8 Notes NAME 11.5 Volumes of Prisms and Cylinders Date: Define Vocabulary: volume Cavalieri s Principle density similar solids Examples: Finding Volumes of Prisms 1 Examples: Finding

More information

3.1 Deepening Understandings of Volume Parts 1_2.notebook. September 05, 2018 M Jun 27 10:28 AM

3.1 Deepening Understandings of Volume Parts 1_2.notebook. September 05, 2018 M Jun 27 10:28 AM M1 115 Jun 27 10:28 AM 1 Learning Targets Jun 20 10:53 AM 2 9/4 /18 # Glue pages 1 & 2 into notebook M1: 3.1 Deepening Understanding of Volume Essential Question: How can you use what you know to calculate

More information

Notes: Geometry (6.G.1 4)

Notes: Geometry (6.G.1 4) Perimeter Add up all the sides (P =s + s + s...) Square A = side 2 A = S 2 Perimeter The distance around a polygon. Rectangle w s L A = Length x Width A = lw Parallelogram A = Base x Height A = h h Triangle

More information

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 14 Number/Computation addend Any number being added algorithm A step-by-step method for computing array A picture that shows a number of items arranged in rows and columns to form a rectangle associative

More information

Three-Dimensional Figures

Three-Dimensional Figures Three-Dimensional Figures The number of coins created by the U.S. Mint changes each year. In the year 2000, there were about 28 billion coins created and about half of them were pennies!.1 Whirlygigs for

More information

L22 Measurement in Three Dimensions. 22a Three Dimensions Warmup

L22 Measurement in Three Dimensions. 22a Three Dimensions Warmup 22a Three Dimensions Warmup Let s take a look at two-dimensional and three-dimensional objects below. A vertex (plural: vertices) (#VOC) in a 2 or 3-dimensional object is a point where two or more straight

More information

Unit 4 End-of-Unit Assessment Study Guide

Unit 4 End-of-Unit Assessment Study Guide Circles Unit 4 End-of-Unit Assessment Study Guide Definitions Radius (r) = distance from the center of a circle to the circle s edge Diameter (d) = distance across a circle, from edge to edge, through

More information

Rectangular prism. The two bases of a prism. bases

Rectangular prism. The two bases of a prism. bases Page 1 of 8 9.1 Solid Figures Goal Identify and name solid figures. Key Words solid polyhedron base face edge The three-dimensional shapes on this page are examples of solid figures, or solids. When a

More information

Lesson 6 Reteach. Surface Area of Prisms. Example. Exercises. 232 in^ tt^^ Find the surface area of the rectangular prism.

Lesson 6 Reteach. Surface Area of Prisms. Example. Exercises. 232 in^ tt^^ Find the surface area of the rectangular prism. Lesson 6 Reteach Surface Area of Prisms T h e s u m of the areas of all the surfaces, or faces, of a three-dimensional shape is the surface area. T h e surface area of a rectangular prism with length f,

More information

Reteaching. Solids. These three-dimensional figures are space figures, or solids. A cylinder has two congruent circular bases.

Reteaching. Solids. These three-dimensional figures are space figures, or solids. A cylinder has two congruent circular bases. 9- Solids These three-dimensional figures are space figures, or solids A B C D cylinder cone prism pyramid A cylinder has two congruent circular bases AB is a radius A cone has one circular base CD is

More information

Understand the concept of volume M.TE Build solids with unit cubes and state their volumes.

Understand the concept of volume M.TE Build solids with unit cubes and state their volumes. Strand II: Geometry and Measurement Standard 1: Shape and Shape Relationships - Students develop spatial sense, use shape as an analytic and descriptive tool, identify characteristics and define shapes,

More information

seen something like it many times when playing video games.

seen something like it many times when playing video games. Cakes and Pancakes Translating and Stacking Two-Dimensional Figures.2 Learning Goals In this lesson, you will: Apply translations to two-dimensional plane figures to create three-dimensional solids. Describe

More information

17.2 Surface Area of Prisms

17.2 Surface Area of Prisms h a b c h a b c Locker LESSON 17. Surface Area of Prisms and Cylinders Texas Math Standards The student is expected to: G.11.C Apply the formulas for the total and lateral surface area of three-dimensional

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

16.3 Volume of Cones

16.3 Volume of Cones Name Class Date 16. Volume of Cones Essential Question: How do you calculate the volumes of composite figures that include cones? Explore G.11.D Apply the formulas for the volume of three-dimensional figures,

More information

Fair Game Review. Chapter 15. Name Date. Find the area of the figure ft

Fair Game Review. Chapter 15. Name Date. Find the area of the figure ft Name Date Chapter 15 Fair Game Review Find the area of the figure. 1. 3 m 3 m 2. 5 m 7 m 14 m 9 m 3 m 3. 4 in. 1 in. 4. 12 in. 5 in. 9 in. 12 in. 7 in. 12 in. 5. 6. 5 ft 3 ft 15 ft 1 ft 4 in. 10 in. 8

More information

G-GMD.1- I can explain the formulas for volume of a cylinder, pyramid, and cone by using dissection, Cavalieri s, informal limit argument.

G-GMD.1- I can explain the formulas for volume of a cylinder, pyramid, and cone by using dissection, Cavalieri s, informal limit argument. G.MG.2 I can use the concept of density in the process of modeling a situation. 1. Each side of a cube measures 3.9 centimeters. Its mass is 95.8 grams. Find the density of the cube. Round to the nearest

More information

Chapter 1: Symmetry and Surface Area

Chapter 1: Symmetry and Surface Area Chapter 1: Symmetry and Surface Area Name: Section 1.1: Line Symmetry Line of symmetry(or reflection): divides a shape or design into two parts. Can be found using: A mirra Folding Counting on a grid Section

More information

Essential Understandings

Essential Understandings Understandings Questions Basic properties about lines, angles, two- and three-dimensional figures can be used to solve a variety of theoretical and practical problems. What are the various relationships

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 What is the surface area of a sphere with radius 7 cm? A. 7 cm 2 B. 14 cm 2 C.

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

11.4. Imagine that you are, right now, facing a clock and reading the time on that. Spin to Win. Volume of Cones and Pyramids

11.4. Imagine that you are, right now, facing a clock and reading the time on that. Spin to Win. Volume of Cones and Pyramids Spin to Win Volume of Cones and Pyramids.4 Learning Goals In this lesson, you will: Rotate two-dimensional plane figures to generate three-dimensional figures. Give an informal argument for the volume

More information

Determine whether the solid is a polyhedron. If it is, name the polyhedron. Explain your reasoning

Determine whether the solid is a polyhedron. If it is, name the polyhedron. Explain your reasoning Chapter 12 Review Packet Name Determine whether the solid is a polyhedron. If it is, name the polyhedron. Explain your reasoning. 1. 2. 3. Use Euler's Theorem to find the value of n. Faces: 10 Vertices:

More information

11.4 Three-Dimensional Figures

11.4 Three-Dimensional Figures 11. Three-Dimensional Figures Essential Question What is the relationship between the numbers of vertices V, edges E, and faces F of a polyhedron? A polyhedron is a solid that is bounded by polygons, called

More information

8.5 Volume of Rounded Objects

8.5 Volume of Rounded Objects 8.5 Volume of Rounded Objects A basic definition of volume is how much space an object takes up. Since this is a three-dimensional measurement, the unit is usually cubed. For example, we might talk about

More information

Determine the surface area of the following square-based pyramid. Determine the volume of the following triangular prism. ) + 9.

Determine the surface area of the following square-based pyramid. Determine the volume of the following triangular prism. ) + 9. MPM 1D Name: Unit: Measurement Date: Calculating and of Three Dimensional Figures Use the Formula Sheet attached to help you to answer each of the following questions. Three problems are worked out for

More information

Geometry 2: 2D and 3D shapes Review

Geometry 2: 2D and 3D shapes Review Geometry 2: 2D and 3D shapes Review G-GPE.7 I can use the distance formula to compute perimeter and area of triangles and rectangles. Name Period Date 3. Find the area and perimeter of the triangle with

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

Polyhedron 10.1 POLYHEDRONS, PRISMS, AND PYRAMIDS. A solid made up of Polygons. face. edge. vertex

Polyhedron 10.1 POLYHEDRONS, PRISMS, AND PYRAMIDS. A solid made up of Polygons. face. edge. vertex 10.1 POLYHEDRONS, PRISMS, AND PYRAMIDS Polyhedron Definition A solid made up of Polygons Picture/Example face edge vertex prefix for a polyhedron Gives you the number of faces on the polyhedron. Tetrahedron,

More information

Geometry Review Chapter 10: Volume PA Anchors: A3; B2; C1. 1. Name the geometric solid suggested by a frozen juice can.

Geometry Review Chapter 10: Volume PA Anchors: A3; B2; C1. 1. Name the geometric solid suggested by a frozen juice can. Geometry Review Chapter 10: Volume PA Anchors: A; B2; C1 1. Name the geometric solid suggested by a frozen juice can. 2. Name the geometric solid suggested by a beach ball.. Name the geometric solid suggested

More information

#1 A: Surface Area of Triangular Prisms Calculate the surface area of the following triangular prisms. You must show ALL of your work.

#1 A: Surface Area of Triangular Prisms Calculate the surface area of the following triangular prisms. You must show ALL of your work. #1 A: Surface Area of Triangular Prisms Calculate the surface area of the following triangular prisms. You must show ALL of your work. (a) (b) (c) (d) (e) #1 B: VOLUME of Triangular Prisms Calculate the

More information

10-1. Enrichment. You Can Count On It!

10-1. Enrichment. You Can Count On It! 10-1 You Can Count On It! How many triangles are there in the figure at the right? How many parallelograms? When counting shapes in a figure like this, you usually have to think of different sizes. There

More information

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.4 Volume and Surface Area INB Table of Contents Date Topic Page # February 6, 2013 Area and Perimeter Table 36 February 6, 2013 Section 9.3 Notes 37 February 11, 2013 Volume and Surface Area

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information