COM Optimization for Communications Summary: Convex Sets and Convex Functions

Size: px
Start display at page:

Download "COM Optimization for Communications Summary: Convex Sets and Convex Functions"

Transcription

1 1 Convex Sets Affine Sets COM Optimization for Communications Summary: Convex Sets and Convex Functions A set C R n is said to be affine if A point x 1, x 2 C = θx 1 + (1 θ)x 2 C, θ R (1) y = k θ i x i, (2) where θ 1 + θ θ k = 1, is an affine combination of the points x 1,..., x k. An affine set can always be expressed as where x o C, and V is a subspace. C = V + x o (3) The affine hull of a set C (not necessarily affine) is affc = {θ 1 x θ k x k x 1,..., x k C, θ i R, i = 1,..., k, θ θ k = 1} (4) The affine hull is the smallest affine set that contains C. Convex Sets A set C R n is said to be convex if x 1, x 2 C = θx 1 + (1 θ)x 2 C, θ [0, 1] (5) A point k y = θ i x i, (6) where θ 1,..., θ k 0, θ 1 + θ θ k = 1, is a convex combination of the points x 1,..., x k. The convex hull of a set C (not necessarily convex) is convc = {θ 1 x θ k x k x 1,..., x k C, θ i 0, i = 1,..., k, θ θ k = 1} (7) The convex hull is the smallest convex set that contains C. Convex Cones A set C R n is said to be a convex cone if x 1, x 2 C = θ 1 x 1 + θ 2 x 2 C, θ 1, θ 2 0 (8) 1

2 A point k y = θ i x i, (9) where θ 1,..., θ k 0, is a conic combination of the points x 1,..., x k. The conic hull of a set C (not necessarily convex) is conicc = {θ 1 x θ k x k x 1,..., x k C, θ i 0, i = 1,..., k} (10) Some Examples of Convex Sets Hyperplane: {x a T x = b}. Halfspace: {x a T x b}. Norm ball associated with norm. : B(x c, r) = {x x x c r} (11) where x c is the center and r is the radius. When. is the 2-norm it is known as the Euclidean norm. Ellipsoid: where P 0. E = {x (x x c ) T P 1 (x x c ) 1} (12) Norm cone associated with. : K = {(x, t) x t} (13) When. is the 2-norm K is called the 2nd-order cone or the ice cream cone. A norm cone is not only convex but also a convex cone. Polyhedron: P = {x Ax b, Cx = d} A bounded polyhedron is called a polytope. = {x a T j x b j, j = 1,..., m, c T j x = d j, j = 1,..., p} (14) Simplex: Given a set of vectors v 0,... v k that are affine independent, a simplex is A simplex is a polyhedron. C = conv{v 0,..., v k } = {θ 0 v θ k v k θ 0, 1 T θ = 0} (15) PSD cone: S n + = {X S n X 0} is a convex cone. (recall that S n is the set of all real n n symmetric matrices.) The empty set is convex. A singleton {x o } is convex. 2

3 Convexity Preserving Operations Intersection: S 1, S 2 convex = S 1 S 2 convex (16) S α convex for every α A = S α convex (17) Affine mapping: If S R n is convex and f : R n R m is affine, then the image of S under f α A f(s) = {f(x) x S} (18) is convex. Similarly, if C R m is convex and f : R n R m is affine, then the inverse image of C under f f 1 (C) = {x f(x) C} (19) is convex. Image under perspective function: The perspective function P : R n+1 R n, with domain domp = R n R ++ is given by P (z, t) = z/t (20) If C domp, then P (C) is convex. Proper Cones and Generalized Inequalities A cone K R n is proper if K is convex K is closed K is solid; i.e., intk K is pointed; i.e., x K, x K = x = 0 Generalized inequality associated with a proper cone K: Properties of generalized inequalities x K y, u K v = x + u K y + v x K y, y K z = x K z x K y, α 0 = αx K αy x K y, y K x = y = x Some examples: K = R n +. Then, x K y x i y i for all i. K = S n +. Then, X K Y means that Y X is PSD. x K y y x K (21) x K y y x intk (22) Minimum and minimal elements: A point x S is the minimum element of S if y S = x K y (23) provided that such an x exists. The minimum element, if it exists, is unique. A point x S is a minimal element of S if y S, y K x = y = x (24) 3

4 Separating Hyperplane Theorem Suppose that C, D R n are convex and that C D =. Then there exist a 0 and b such that a T x b = x C (25) a T x b = x D (26) The hyperplane {x a T x = b} is called a separating hyperplane for C and D. Supporting Hyperplanes Suppose that x o bdc (a boundary point of C). If there exist a 0 such that a T x a T x o for all x C, then {x a T x = b} is called a supporting hyperplane to C at point x o. For any nonempty convex set C, and for any x o bdc, there exists a supporting hyperplane to C at x o. Dual Cones The dual cone of a cone K is A cone K is called self-dual if K = K. If K is proper then K is also proper. K = {y y T x 0 x K} (27) Some examples: R n + and S n + are self-dual. The dual cone of a norm cone K = {(x, t) x t} is where. is the dual norm of.. K = {(x, t) x t} (28) 4

5 2 Convex Functions Definition A function f : R n R is convex if domf is convex and for all x, y domf, 0 θ 1, f(θx + (1 θ)y) θf(x) + (1 θ)f(y) (29) A function f : R n R is strictly convex if domf is convex and for all x, y domf, x y, 0 < θ < 1, A function f : R n R is concave if f is convex. Fundamental Properties f(θx + (1 θ)y) < θf(x) + (1 θ)f(y) (30) f is convex if and only if it is convex when restricted to any line that intersects its domain; i.e., for all x domf and ν, g(t) = f(x + tν) (31) is convex over {t x + tν domf}. First order condition: Suppose that f is differentiable. A function f with a convex domain domf is convex if and only if f(y) f(x) + f(x) T (y x) (32) for all x, y domf. Second order condition: Suppose that f is twice differentiable. A function f with a convex domain domf is convex if and only if its Hessian 2 f(x) 0 (33) for all x domf. A function f with a convex domain domf is stricly convex if for all x domf (the converse is not true). Sublevel sets: The sublevel set of f is 2 f(x) 0 (34) C α = {x domf f(x) α} (35) If f is convex, then C α is convex for every α (the converse is not true). Epigraph: The epigraph of f is f is convex if and only if epif is convex. epif = {(x, t) x domf, f(x) t} (36) 5

6 Examples Examples on R: e ax is convex on R log x is concave on R ++ x log x is convex on R ++ log x e t2 /2 dt is concave on R Examples on R n : A linear function a T x + b is convex and concave. A quadratic function x T P x + 2q T x + r is convex if and only if P 0, and is strictly convex if P 0. Every norm x is convex. max{x 1,..., x n } is convex. The geometric mean ( n x i) 1 n is concave on R n ++. Examples on R n m tr(ax) is linear on R n m, and hence is convex and concave. The negative logarithmetic determinant function log det X is convex on S n ++. tr(x 1 ) is convex on S n ++. Jensen Inequality For a convex f, holds for any x, y domf and 0 θ 1. f(θx + (1 θ)y) θf(x) + (1 θ)f(y) (37) Extension: For a convex f, for any random variable z. f(ez) Ef(z) (38) Jensen inequality can be used to derive certain inequalities; e.g., the arithmetic-geometric mean inequality: a + b ab, a, b 0 (39) 2 and ( n x i ) 1 n 1 n n x i, x i 0, i = 1,..., n (40) 6

7 Convexity Preserving Operations Nonnegative weighted sums: f 1,..., f m convex, w 1,..., w m 0 = f(x, y) convex in x for each y A, w(y) 0 for each y A = Example: f(x) = x i log x i is convex on R n ++. Composition with an affine mapping: is convex if f is convex. Pointwise maximum and supremum: Examples: m w i f i convex (41) A w(y)f(x, y)dy convex (42) g(x) = f(ax + b) (43) f 1, f 2 convex = g(x) = max{f 1 (x), f 2 (x)} convex (44) f(x, y) convex in x for each y A = g(x) = sup f(x, y) convex (45) y A A piecewise linear function f(x) = max,...,l a T i x + b i is convex. f(x) = sup y C x y is convex for any set C. The largest eigenvalue of X is convex on S n. The 2-norm of X f(x) = λ max (X) = sup y T Xy = sup tr(xyy T ) (46) y 2 =1 y 2 =1 f(x) = X 2 = sup y 2=1 Xy 2 (47) is convex on R n m. Composition: Let f(x) = h(g(x)), where h : R R, and g : R n R. Let h(x) = { h(x), x domh, otherwise (48) Then, f is convex if h is convex and nondecreasing, and g is convex. f is convex if h is convex and nonincreasing, and g is concave. Minimization: f(x, y) convex in (x, y), C convex nonempty = g(x) = inf f(x, y) convex (49) y C provided that g(x) > for some x. Examples: 7

8 dist(x, S) = inf y S x y is convex for convex S. The Schur complement [ ] A B B T 0 C C 0, A BC B T 0 (50) may be proven by the convex minimization property. Perspective: The perspective of a function f is a function g : R n+1 R g(x, t) = tf(x/t), domg = {(x, t) x/t domf, t > 0} (51) If f is convex then g is convex. Conjugate Function f (y) = f is convex irrespective of the convexity of f. sup (y T x f(x)) (52) x domf domf consists of y for which the supremum is finite; i.e., domf = {y f (y) < }. Examples: The conjugate function of f(x) = 1 2 xt Qx, Q 0, is f (y) = 1 2 yt Q 1 y. The conjugate function of f(x) = log det X, domf = S n ++ is f (Y ) = log det( Y 1 ) n, domf = S n ++. Quasiconvex Functions Definition: A function f : R n R is quasiconvex (or unimodal) if domf is convex and the sublevel set is convex for every α. A function f is quasiconcave if f is quasiconvex. A function f is quasilinear if f is quasiconvex and quasiconcave. Examples: log x is quasilinear on R ++. A linear fractional function is quasilinear. S α = {x domf f(x) α} (53) f(x) = at x + b c T x + d, domf = {x ct x + d > 0} (54) rankx is quasiconcave on S n + (proven using the modified Jensen inequality). Modified Jensen inequality: f is quasiconvex if and only if for any x, y domf, and 0 θ 1, f(θx + (1 θ)y) max{f(x), f(y)} (55) 8

9 First-order condition: Suppose that f is differentiable. f is quasiconvex if and only if domf is convex and for all x, y domf f(y) f(x) = f(x) T (y x) 0 (56) Second-order condition: Suppose f is differentiable. If f is quasiconvex then for all x domf, y R n, Convexity with respect to Generalized Inequality y T f(x) = 0 = y T 2 f(x)y 0 (57) Let K be a proper cone. A function f : R n R m is K-convex if for all x, y domf and 0 θ 1, f(θx + (1 θ)y) K θf(x) + (1 θ)f(y) (58) For K = R n +, a K-convex function is a function for which each component function f i is convex. Consider K = S n +. f(x) = X T X is K-convex on R n m. f(x) = X 1 is K-convex on S n ++. 9

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Lecture 4: Convexity

Lecture 4: Convexity 10-725: Convex Optimization Fall 2013 Lecture 4: Convexity Lecturer: Barnabás Póczos Scribes: Jessica Chemali, David Fouhey, Yuxiong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions Instructor: Shaddin Dughmi Outline 1 Convex Functions 2 Examples of Convex and Concave Functions 3 Convexity-Preserving Operations

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex Affine function suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) ={f(x) x S} convex the inverse image f 1 (C) of a convex

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Adam Harley Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets Instructor: Shaddin Dughmi Announcements New room: KAP 158 Today: Convex Sets Mostly from Boyd and Vandenberghe. Read all of

More information

Convexity I: Sets and Functions

Convexity I: Sets and Functions Convexity I: Sets and Functions Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 See supplements for reviews of basic real analysis basic multivariate calculus basic

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

Lecture 2: August 31

Lecture 2: August 31 10-725/36-725: Convex Optimization Fall 2016 Lecture 2: August 31 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Lidan Mu, Simon Du, Binxuan Huang 2.1 Review A convex optimization problem is of

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Yingjing Lu, Adam Harley, Ruosong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Convex Sets (cont.) Convex Functions

Convex Sets (cont.) Convex Functions Convex Sets (cont.) Convex Functions Optimization - 10725 Carlos Guestrin Carnegie Mellon University February 27 th, 2008 1 Definitions of convex sets Convex v. Non-convex sets Line segment definition:

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Lecture 5: Properties of convex sets

Lecture 5: Properties of convex sets Lecture 5: Properties of convex sets Rajat Mittal IIT Kanpur This week we will see properties of convex sets. These properties make convex sets special and are the reason why convex optimization problems

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

Lecture: Convex Sets

Lecture: Convex Sets /24 Lecture: Convex Sets http://bicmr.pku.edu.cn/~wenzw/opt-27-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/24 affine and convex sets some

More information

Introduction to Convex Optimization. Prof. Daniel P. Palomar

Introduction to Convex Optimization. Prof. Daniel P. Palomar Introduction to Convex Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19,

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Chapter 4 Convex Optimization Problems

Chapter 4 Convex Optimization Problems Chapter 4 Convex Optimization Problems Shupeng Gui Computer Science, UR October 16, 2015 hupeng Gui (Computer Science, UR) Convex Optimization Problems October 16, 2015 1 / 58 Outline 1 Optimization problems

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Convex Sets. Pontus Giselsson

Convex Sets. Pontus Giselsson Convex Sets Pontus Giselsson 1 Today s lecture convex sets convex, affine, conical hulls closure, interior, relative interior, boundary, relative boundary separating and supporting hyperplane theorems

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 4: 5th February 2019 Outline 1 / 23 Which function is different from others? Figure: Functions 2 / 23 Definition of Convex Function Definition. A function f (x) : R n R is convex if (i) dom(f )

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Lieven Vandenberghe Electrical Engineering Department, UCLA IPAM Graduate Summer School: Computer Vision August 5, 2013 Convex optimization problem minimize f 0 (x)

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples

LECTURE 7 LECTURE OUTLINE. Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples LECTURE 7 LECTURE OUTLINE Review of hyperplane separation Nonvertical hyperplanes Convex conjugate functions Conjugacy theorem Examples Reading: Section 1.5, 1.6 All figures are courtesy of Athena Scientific,

More information

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course?

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Lec4 Page 1 Lec4p1, ORF363/COS323 This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Instructor: Amir Ali Ahmadi

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby DTU Management Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (3) 18/09/2017 Today s Material Extrema

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Convexity and Optimization

Convexity and Optimization Convexity and Optimization Richard Lusby Department of Management Engineering Technical University of Denmark Today s Material Extrema Convex Function Convex Sets Other Convexity Concepts Unconstrained

More information

Lecture 3: Convex sets

Lecture 3: Convex sets Lecture 3: Convex sets Rajat Mittal IIT Kanpur We denote the set of real numbers as R. Most of the time we will be working with space R n and its elements will be called vectors. Remember that a subspace

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

LECTURE 10 LECTURE OUTLINE

LECTURE 10 LECTURE OUTLINE We now introduce a new concept with important theoretical and algorithmic implications: polyhedral convexity, extreme points, and related issues. LECTURE 1 LECTURE OUTLINE Polar cones and polar cone theorem

More information

Locally convex topological vector spaces

Locally convex topological vector spaces Chapter 4 Locally convex topological vector spaces 4.1 Definition by neighbourhoods Let us start this section by briefly recalling some basic properties of convex subsets of a vector space over K (where

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

MTAEA Convexity and Quasiconvexity

MTAEA Convexity and Quasiconvexity School of Economics, Australian National University February 19, 2010 Convex Combinations and Convex Sets. Definition. Given any finite collection of points x 1,..., x m R n, a point z R n is said to be

More information

Lecture 1: Introduction

Lecture 1: Introduction CSE 599: Interplay between Convex Optimization and Geometry Winter 218 Lecturer: Yin Tat Lee Lecture 1: Introduction Disclaimer: Please tell me any mistake you noticed. 1.1 Course Information Objective:

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c)

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c) Convex Optimization (for CS229) Erick Delage, and Ashutosh Saxena October 20, 2006 1 Convex Sets Definition: A set G R n is convex if every pair of point (x, y) G, the segment beteen x and y is in A. More

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e.,

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e., Convexity We ll assume throughout, without always saying so, that we re in the finite-dimensional Euclidean vector space R n, although sometimes, for statements that hold in any vector space, we ll say

More information

13. Cones and semidefinite constraints

13. Cones and semidefinite constraints CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 13. Cones and semidefinite constraints ˆ Geometry of cones ˆ Second order cone programs ˆ Example: robust linear program ˆ Semidefinite constraints

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Generalized Nash Equilibrium Problem: existence, uniqueness and

Generalized Nash Equilibrium Problem: existence, uniqueness and Generalized Nash Equilibrium Problem: existence, uniqueness and reformulations Univ. de Perpignan, France CIMPA-UNESCO school, Delhi November 25 - December 6, 2013 Outline of the 7 lectures Generalized

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Convex Optimization Euclidean Distance Geometry 2ε

Convex Optimization Euclidean Distance Geometry 2ε Convex Optimization Euclidean Distance Geometry 2ε In my career, I found that the best people are the ones that really understand the content, and they re a pain in the butt to manage. But you put up with

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

Introduction to optimization

Introduction to optimization Introduction to optimization G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Industrial Automation Ferrari Trecate (DIS) Optimization Industrial

More information

Alternating Projections

Alternating Projections Alternating Projections Stephen Boyd and Jon Dattorro EE392o, Stanford University Autumn, 2003 1 Alternating projection algorithm Alternating projections is a very simple algorithm for computing a point

More information

Convex Optimization Euclidean Distance Geometry 2ε

Convex Optimization Euclidean Distance Geometry 2ε Convex Optimization Euclidean Distance Geometry 2ε 1 Overview 19 2 Convex geometry 31 2.1 Convex set.................................... 31 2.2 Vectorized-matrix inner product........................ 42

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Introduction to Matrix Completion and Robust PCA Gonzalo Garateguy Depart. of Electrical and Computer Engineering University of Delaware

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

maximize c, x subject to Ax b,

maximize c, x subject to Ax b, Lecture 8 Linear programming is about problems of the form maximize c, x subject to Ax b, where A R m n, x R n, c R n, and b R m, and the inequality sign means inequality in each row. The feasible set

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Convex Optimization. Chapter 1 - chapter 2.2

Convex Optimization. Chapter 1 - chapter 2.2 Convex Optimization Chapter 1 - chapter 2.2 Introduction In optimization literatures, one will frequently encounter terms like linear programming, convex set convex cone, convex hull, semidefinite cone

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

Minima, Maxima, Saddle points

Minima, Maxima, Saddle points Minima, Maxima, Saddle points Levent Kandiller Industrial Engineering Department Çankaya University, Turkey Minima, Maxima, Saddle points p./9 Scalar Functions Let us remember the properties for maxima,

More information