Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Size: px
Start display at page:

Download "Chapter 33 The Nature and Propagation of Light by C.-R. Hu"

Transcription

1 Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic waves in vacuum are the same, and is equal to: 8 8 c = m/s 3 10 m/s. Electromagnetic waves become visible to a human eye if its wavelength lies from about 400 nm (violet limit) to about 700 nm (red limit). The corresponding frequency range is from about 430 THz (red limit) to about 750 THz (violet limit). (THz stands for terahertz, or Hertz.) When the length scales of all objects, gaps, and holes involved are much larger than the light wavelength, one can treat light as made of light rays perpendicular to the wave fronts (where the crests and troughs of the wave are located). Light rays travel in straight lines in a uniform medium. They change direction only at the interface of two different optical media of different indices of refraction (n), giving rise to reflection and refraction. Light rays will be curved if n changes continuously. It can be viewed as many mini-refractions, with little reflection in each step. 1. The law of reflection incident beam surface normal reflected beam θ i θ r Plane of incidence reflecting surface a. The plane of incidence is a plane containing the incident beam and the surface normal. b. The reflected beam lies in the plane of incidence and is on the other side of the surface normal as the incident beam. c. θ i = θ r where θ i is the angle of incidence, or the incident angle; θ r is the angle of reflection. 2. Index of refraction - 1 -

2 The speed of light in an optical material, v = 1/ εµ, is slower than that in vacuum, c= 1/ ε 0µ 0, by the factor n= KKm,where K ε / ε 0 is called the dielectric constant, and K m µ / µ 0 is called the relative permeability. n is called the index of refraction of an optical material, so that v = c / n (speed of light in an optical material). Most materials are non-magnetic, with K m = 1. Also, most materials have K > 1. Thus most materials have n > 1, and v < c. 3. The law of refraction, or Snell s law incident beam surface normal reflected beam n a θ a flat interface n b refracted beam When a light beam, initially propagating in a medium with an index of refraction n 1, is incident on a flat interface with a different medium of an index of refraction n 2, then the light beam will be partially reflected in accordance with the law of reflection, and partially transmitted into the second medium with a change of direction. This is called refraction. The law of refraction, or Snell s law, is made of two statements: θ b Statement 1: The incident beam, the reflected beam, the refracted beam, and the surface normal, all lie in one plane, which is the plane of incidence. Statement 2: Let θ a be the angle of incidence (i.e., the angle between the incident beam and the surface normal), and let θ b be the angle of refraction (i.e., the angle between the refracted beam and the surface normal), then these two angles are related by the equation: n a sinθ a = n b sinθ b (the law of refraction, or Snell s law)

3 4. Consequences of the Snell s law (4a) When light crosses an interface between two different optical media, its frequency does not change, but its wavelength changes, since λ a = v a/f = c/na f, and λ b = v b /f = c/n b f. Clearly, λ a = λ / n a, and λ b = λ / n b, where λ = c / f is the wavelength of light in vacuum with the same frequency. (4b) If n a > n b, that is, if light is incident from a denser medium, then we can satisfy sin θ a = n b / n a, which implies sin θ b = 1, or θ b = 90. This particular θ a is called the critical angle for total reflection. That is: sin θ crit = n b / n a (the critical angle for total reflection). Clearly, this critical angle exists only on the side with the larger n, so that n a > n b, because sin θ crit is always less than unity. For θ a > θ crit, refraction is no longer possible, so the incident beam becomes 100% reflected. This is what is meant by total reflection. Diamond has the largest n (= 2.417). So it can be cut easily into a shape to give a great deal of total reflection on its back side. This explains diamond jewelry s brilliance. Other applications of total reflection include totally-reflecting prisms inside binoculars, and optic fibers. (4c) The index of refraction n varies with frequency of light slightly. This phenomenon is called dispersion. This fact can be used to separate different frequency components of light using a prism. It also explains the origin of rainbows (water droplets separating the different frequency components of sunlight). Mixture of frequencies n(f ) prism red violet sun light violet red water droplet - 3 -

4 Sun light and lamp light are examples of white light, which refers to light which has practically all visible and lower frequency components, and usually also a range of higher frequency components. Optical fiber uses total internal reflection to make light follow the path of a curved fiber. 5. Polarization Light is a transverse wave. That is, the electric and magnetic fields in a light wave are both perpendicular to the direction of the light wave. It can then have two mutually perpendicular choices: E E or These are the two possible linear (or planar) polarizations of an electromagnetic (or light) wave. (The first direction is arbitrarily chosen, as long as it is perpendicular to the propagation direction of the wave. The second direction must be perpendicular to the first and to the propagation direction of the wave.) A light wave linearly-polarized in any other direction can be decomposed into these two linear polarizations, in the same wave that a vector is decomposed into x- and y- components: This is because an electric field is a vector. A Polaroid sheet has an intrinsic direction, It allows only light polarized in this direction to get through. E Light from ordinary sources like a fluorescent or incandescent light bulb is unpolarized, meaning θ x that it is an incoherent mixture of both polarizations of equal intensities. A Polaroid sheet is a polarizer, in the sense that unpolarized light, after going through a Polaroid sheet, becomes polarized in the direction determined by the intrinsic direction of the Polaroid sheet, and its intensity is cut down by a factor of 2 (because the Polaroid sheet has blocked the other polarization). (The blocking is not perfect in most commercial Polaroid sheets.) They are called polarization filters. If the incoming light is already linearly polarized in the direction Ê 1 (a unit vector in the direction of E 1 ), and it is sent through a Polaroid sheet with an intrinsic direction (another unit vector), Then the electric field of the Ê 2 y - 4 -

5 incoming light in the direction must be projected into the direction Ê, Ê1 2 leading to a factor Ê1 Ê2 = cos θ, where θ is the angle between the two unit vectors. As light intensity is proportional to the square of the electric field, the light coming out of the Polaroid sheet will be cut down by a factor cos from the intensity of the incoming light. Hence the formula I = I cos 2 θ. 0 If the out-coming light is sent through another Polaroid sheet with an intrinsic direction Ê 3, Then the electric field will be cut down by another factor Ê 2 Ê 3 = cos θ ', because the electric field is projected again. The intensity is then cut down by another factor of cos 2 θ '. The direction of polarization of the out-coming light is always determined by the intrinsic direction of the last Polaroid sheet it has gone through. Light reflected from a surface will in general be partially polarized in the direction perpendicular to the incident plane. (For incident angle θ i = 0, the reflected light is unpolarized. For the special incident angle θ p obeying tan θ p = n 2 / n 1, (Malus s law) 2 θ (the Brewster s law) the reflected light is 100% polarized in the direction perpendicular to the incident plane. This special incident angle is called the Brewster angle, and has the notation θ p, since it is also called the polarization angle. It can be easily shown that, at this angle, the refracted light is perpendicular to the reflected light. (Simply use the above equation and the Snell's law.) Applications: 1. Polarized sun glasses to eliminate reflected glare (because reflected light is mostly polarized with electric field perpendicular to the incident plane); 2. liquid crystal display (LCD), which is used as, for example, computer screen. So far the electric field vector oscillates in a fixed direction perpendicular to the light direction. That is called linear or planar polarization. But two electromagnetic waves can occupy the same location without interferring each other. (This is called the principle of superposition.) So one can consider two mutually-perpendicular linearly polarized light waves occupying the same location. The electric fields of these two waves should then be added up vectorially (i.e., as vectors). Assuming that the wavelengths and - 5 -

6 directions of propagation of these two waves are the same, the result of the vector sum will depend on their amplitudes and the relative phase of the two waves. If the two waves have the same amplitude and are in phase, the result is a wave linearly polarized in the direction which is at 45 with the original two. E 1 E 2 But if the two waves are 90 out of phase, and still have the same amplitudes, then they add up to a circularly-polarized light wave: E 1 E 2 That is, it you look against the direction of the wave, the electric field vector either rotates clockwise, called right circularly polarized wave, or counterclockwise, called left circularly polarized wave. If the amplitudes of the two waves are not equal, or if the relative phase of the two waves is neither zero nor 90, then the tip of the electric field vector will draw an ellipse rather than a circle, and is called an elliptically polarized wave. Of course, the ellipse can also appear as: or, etc., - 6 -

7 and the electric field vector can again rotate in either directions (with its length changing at the same time). In all cases discussed above, only the electric field vector has been drawn. The magnetic field vector is always present, and is always related to the direction of propagation and the electric field vector by the right hand rule: E B the direction of propagation Unpolarized light, after scattering by an atom or a dust particle, also becomes at least partially polarized. If the scattering angle is 90, then the scattered light is purely linearly polarized, in the direction perpendicular to the scattering plane (the plane containing the directions of the incoming light and the scattered light): the scattering plane because the other direction of the electric field in the incoming wave is now along the direction of the scattered wave, and is unacceptable, because the light wave is a transverse wave. 6. Huygen s principle This principle is a general property of all waves, and can be easily demonstrated with water or sound wave. Imaging that a planar sound wave with straight wave fronts is generated on the left of a long straight corridor. The wave propagates to the right but is stopped by a wall with a small hole at its center. Then to the right of the wall you will have a spherical sound wave emanating from the hole in the wall. This is the essence of the Huygen s principle. wave front at a earlier time wave front at a later time - 7 -

8 Namely, any point of a wave front is the source of a spherical wave. If there is no wall present, then indeed every point of a wave front is the source of a spherical wave, and all these spherical waves emanated from all points of the same wave front define a new wave front by their envelop. If the radii of all of these spherical waves are equal to the speed of the wave at the respective locations times t, then the new wave front obtained from the envelop is the wave front at time t later. When a plane EM wave reaches an interface of two different optical media at an angle θ 1, one end of a wave front touches the interface first. Since the speed of light is different in the two media (c/n 1 vs. c/n 2 ), the radii of spherical waves drawn on the two ends of that wave front are therefore different. (In the figure shown, n 2 > n 1, so the spherical wave drawn on the left is smaller, since it is in the lower medium in which the speed of light c/n 2 is smaller.) As a result the direction of light becomes refracted when light crosses the interface between the two media. From the figure it can be seen that sin θ 1 = (c/n 1 ) t /d, n 1 θ 2 n 2 θ 1 θ 1 θ 2 (This figure assumes n > n.) where d is the distance between the two ends of the wave front, and sin θ 2 = (c/n 2 ) t /d. Thus one obtains the Snell s law: n 1 sin θ 1 = n 2 sin θ 2 for refraction. (Both are equal to c t/ d.) 2 1 If n varies in the direction perpendicular to the direction of propagation of the light wave, then the successive wave fronts are not parallel to each other, leading to curved light rays and path: because ( c/ n) t n decreases is longer for smaller n. This is how mirage is formed

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18 Physics 1161: Lecture 18 Internal Reflection Rainbows, Fiber Optics, Sun Dogs, Sun Glasses sections 26-8 & 25-5 Internal Reflection in Prisms Total Internal Reflection Recall Snell s Law: n 1 sin( 1 )=

More information

Dispersion Polarization

Dispersion Polarization Dispersion Polarization Phys Phys 2435: 22: Chap. 33, 31, Pg 1 Dispersion New Topic Phys 2435: Chap. 33, Pg 2 The Visible Spectrum Remember that white light contains all the colors of the s p e c t r u

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Chapter 33 cont The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Polarization of Light Waves The direction of polarization of each individual wave is defined to be the direction

More information

Phys 102 Lecture 17 Introduction to ray optics

Phys 102 Lecture 17 Introduction to ray optics Phys 102 Lecture 17 Introduction to ray optics 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference & diffraction Light as a ray Lecture

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets.

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets. POLARIZATION OF LIGHT REFERENCES Halliday, D. and Resnick, A., Physics, 4 th edition, New York: John Wiley & Sons, Inc, 1992, Volume II, Chapter 48-1, 48-2, 48-3. (2weights) (1weight-exercises 1 and 3

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Experiment 5: Polarization and Interference

Experiment 5: Polarization and Interference Experiment 5: Polarization and Interference Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction Outline: Review

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light. 1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

More information

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1 24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

B.Sc.( Srmester-3) Subject: Physics Course: US03CPHY01 Title: Optics

B.Sc.( Srmester-3) Subject: Physics Course: US03CPHY01 Title: Optics B.Sc.( Srmester-3) Subject: Physics Course: US03CPHY01 Title: Optics UNIT III Polarization Introduction:- Interference and diffraction phenomena proved that light is a wave motion. These phenomena are

More information

10.5 Polarization of Light

10.5 Polarization of Light 10.5 Polarization of Light Electromagnetic waves have electric and magnetic fields that are perpendicular to each other and to the direction of propagation. These fields can take many different directions

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization Chapter 33 - Light Properties of Light 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization MFMcGraw-PHY 2426 Chap33-Light - Revised: 6-24-2012 2 Electromagnetic

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

Physics 6C. Wave Properties of Light. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Wave Properties of Light. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Wave Properties of Light Reflection and Refraction When an EM wave encounters an interface etween two materials it will generally e partially reflected and partially transmitted (refracted.

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Basic Optics : Microlithography Optics Part 4: Polarization

Basic Optics : Microlithography Optics Part 4: Polarization Electromagnetic Radiation Polarization: Linear, Circular, Elliptical Ordinary and extraordinary rays Polarization by reflection: Brewster angle Polarization by Dichroism Double refraction (Birefringence)

More information

Polarization. Bởi: OpenStaxCollege

Polarization. Bởi: OpenStaxCollege Polarization Bởi: OpenStaxCollege Polaroid sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass (see [link]). Polaroids have this ability

More information

POLARIZATION 3.5 RETARDATION PLATES

POLARIZATION 3.5 RETARDATION PLATES Nicol Prism as Polarizer and Analyzer: Nicol prism can be used both as polarizer and as an analyzer. When two Nicol prisms are mounted co axially, then the first Nicol prism N 1 which produces plane polarized

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface 1 Propagation of light: Sources E.g. point source a fundamental source Light is emitted in all

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

Physics 1502: Lecture 28 Today s Agenda

Physics 1502: Lecture 28 Today s Agenda Physics 1502: Lecture 28 Today s Agenda Announcements: Midterm 2: Monday Nov. 16 Homework 08: due next Friday Optics Waves, Wavefronts, and Rays Reflection Index of Refraction 1 Waves, Wavefronts, and

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision An optical Tuning Fork Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Where does light actually come

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Rules for Deviation of Light Rays During Refraction

Rules for Deviation of Light Rays During Refraction REFLECTION OF LIGHT Refraction of light is the phenomenon due to which a ray of light deviates from its path, at the surface of separation of two media, when the ray of light is travelling from one optical

More information

PHYS 202 Notes, Week 8

PHYS 202 Notes, Week 8 PHYS 202 Notes, Week 8 Greg Christian March 8 & 10, 2016 Last updated: 03/10/2016 at 12:30:44 This week we learn about electromagnetic waves and optics. Electromagnetic Waves So far, we ve learned about

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

4.4 Polarisation [26 marks]

4.4 Polarisation [26 marks] 4.4 Polarisation [26 marks] 1. Unpolarized light of intensity I 0 is incident on the first of two polarizing sheets. Initially the planes of polarization of the sheets are perpendicular. Which sheet must

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

IB-2 Polarization Practice

IB-2 Polarization Practice Name: 1. Plane-polarized light is incident normally on a polarizer which is able to rotate in the plane perpendicular to the light as shown below. In diagram 1, the intensity of the incident light is 8

More information

3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays

3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays Models of Light The wave model: Under many circumstances, light exhibits the same behavior as material waves. The study of light as a wave is called wave optics. The ray model: The properties of prisms,

More information

Polarization of waves on ropes

Polarization of waves on ropes Polarization of waves on ropes Youtube clip one: the gentleman excites first a wave of vertical polarization, and next of horizontal polarization. Youtube clip two: vertical, horizontal, and even circular

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XIII Refraction of light Snell s law Dispersion and rainbow Mirrors and lens Plane mirrors Concave and convex mirrors Thin lenses http://www.physics.wayne.edu/~apetrov/phy2130/

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from

More information

FINDING THE INDEX OF REFRACTION - WebAssign

FINDING THE INDEX OF REFRACTION - WebAssign Name: Book: Period: Due Date: Lab Partners: FINDING THE INDEX OF REFRACTION - WebAssign Purpose: The theme in this lab is the interaction between light and matter. Matter and light seem very different

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS THE WAVE NATURE OF LIGHT L Polarization of Light (P.532-537) What is Polarized Light? Polarized sunglasses eliminate the glare of reflected light off the surface of a stream while

More information

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee Module-01 Lecture 03 Double Refraction Okay, this is the third lecture of the five lecture series

More information

Light II. Physics 2415 Lecture 32. Michael Fowler, UVa

Light II. Physics 2415 Lecture 32. Michael Fowler, UVa Light II Physics 2415 Lecture 32 Michael Fowler, UVa Today s Topics Huygens principle and refraction Snell s law and applications Dispersion Total internal reflection Huygens Principle Newton s contemporary

More information

12. Reflection and Refraction

12. Reflection and Refraction 12. Reflection and Refraction Wave fronts Spherical waves are solutions to Maxwell s equations Molecules scatter spherical waves Spherical waves can add up to plane waves Reflection and refraction from

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday

University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday University Physics 227N/232N Chapters 30-32: Optics Homework Optics 1 Due This Friday at Class Time Quiz This Friday Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter Reading: Light Key concepts: Huygens s principle; reflection; refraction; reflectivity; total reflection; Brewster angle; polarization by absorption, reflection and Rayleigh scattering. 1.! Questions about

More information

Physics Midterm Exam (3:00-4:00 pm 10/20/2009) TIME ALLOTTED: 60 MINUTES Name: Signature:

Physics Midterm Exam (3:00-4:00 pm 10/20/2009) TIME ALLOTTED: 60 MINUTES Name: Signature: Physics 431 - Midterm Exam (3:00-4:00 pm 10/20/2009) TIME ALLOTTED: 60 MINUTES Name: SID: Signature: CLOSED BOOK. ONE 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

AP Practice Test ch 22

AP Practice Test ch 22 AP Practice Test ch 22 Multiple Choice 1. Tripling the wavelength of the radiation from a monochromatic source will change the energy content of the individually radiated photons by what factor? a. 0.33

More information

Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science What are some devices that you use in everyday life that require optics? Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

Refraction and Polarization of Light

Refraction and Polarization of Light Chapter 9 Refraction and Polarization of Light Name: Lab Partner: Section: 9.1 Purpose The purpose of this experiment is to demonstrate several consequences of the fact that materials have di erent indexes

More information

Polarisation and Diffraction

Polarisation and Diffraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Polarisation and Diffraction Polarization Polarization is a characteristic of all transverse waves. Oscillation which take places

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

Introduction to Light

Introduction to Light Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer from the source to the observer. Images in mirrors Reflection

More information

Total Internal Reflection

Total Internal Reflection Total nternal Reflection Consider light moving from glass (n.5) to air (n.) i r n sin n sin n n incident ra r refracted ra reflected ra GLASS AR sin n sin n >.e., light is bent awa from the normal. as

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

History of Light. 5 th Century B.C.

History of Light. 5 th Century B.C. History of Light 5 th Century B.C. Philosophers thought light was made up of streamers emitted by the eye making contact with an object Others thought that light was made of particles that traveled from

More information

Lecture 24 EM waves Geometrical optics

Lecture 24 EM waves Geometrical optics Physics 2102 Jonathan Dowling Lecture 24 EM waves Geometrical optics EM spherical waves The intensity of a wave is power per unit area. If one has a source that emits isotropically (equally in all directions)

More information

OPTICS MIRRORS AND LENSES

OPTICS MIRRORS AND LENSES Downloaded from OPTICS MIRRORS AND LENSES 1. An object AB is kept in front of a concave mirror as shown in the figure. (i)complete the ray diagram showing the image formation of the object. (ii) How will

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-3 WAVE CHARACTERISTICS Reading Activity Questions? Essential Idea: All waves can be described by the same sets of mathematical ideas.

More information

LECTURE 37: Ray model of light and Snell's law

LECTURE 37: Ray model of light and Snell's law Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 37: Ray model of light and Snell's law Understand when the ray model of light is applicable. Be able to apply Snell's Law of Refraction to any system.

More information

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n sin θ Total Internal Reflection Consider light moving from glass (n 1 =1.5) to air (n =1.0) n 1 incident ray θ 1 θ r reflected ray GLASS sinθ sinθ 1 > 1 = n n 1 θ > θ 1 n θ refracted

More information

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves Physics 2102 Jonathan Dowling Lecture 24: TUE 20 APR 2010 Ch.33.6 10: E&M Waves Radiation Pressure Waves not only carry energy but also momentum. The effect is very small (we don t ordinarily feel pressure

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection distance the carrying the moves away from rest position Brightness Loudness The angle between the incident ray and the normal line Amplitude Amplitude of a light Amplitude of a sound incidence Angle between

More information

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

More information

Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

Properties of Light I

Properties of Light I Properties of Light I Light definition Light Spectrum Wavelength in nm (1nm = 10-7 cm) Visible/White Light Cosmic Gamma X-Rays Ultra Violet Infra Red Micro Waves Radio Waves 1 Theory of Light Two complimentary

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. The eye sees by focusing a diverging bundle of rays from

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information