Seminar Heidelberg University

Size: px
Start display at page:

Download "Seminar Heidelberg University"

Transcription

1 Seminar Heidelberg University Mobile Human Detection Systems Pedestrian Detection by Stereo Vision on Mobile Robots Philip Mayer Matrikelnummer:

2 Motivation Fig.1: Pedestrians Within Bounding Box [6] Fig.2: Car Pedestrian Detection [7] 2

3 Outline 1. Problem Formulation 2. Solution Approach 3. Stereo Vision 4. Methods 5. Results 6. Summary and Conclusion 3

4 1. Problem Formulation Given: Stereo Vision Depth Image Mobile Robot Unknown Background Cluttered Environment Crowded Places Required: Pedestrian Detection Also If Partially Occluded 4

5 2. Solution Approach Fig.3: Depth Image [1] Fig.4: Segmented Regions [1] Fig.5: Candidates [1] Fig.7: Block Diagram Solution Approach Fig.6: Detected Humans[1] 5

6 3. Stereo Vision y x λ P A, A Optical Axis O, O Lense Centers B Baseline P real Point in real space P Projection of P real on Image 2 P Projection of P real on Image 1 P y x λ y real x real z real P real Fig.10: Stereo Vision Geometric Setup [3] 6

7 3. Stereo Vision Fig.8: Color Image 1 Left Lense [5] Fig.9: Color Image 2 Right Lense [5] 7

8 3. Stereo Vision Distance To Camera: 0,5 m 8 m Undefined Fig.11: Depth Image 1 Left Lense [5] Fig.12: Depth Image 2 Right Lense [5] 8

9 Graph-Based Segmentation Fig.3: Depth Image [1] Fig.4: Segmented Regions [1] 9

10 Graph-Based Segmentation 0,0 α i α i max = j max = image width w cell width α image height h cell height α j Fig.13: Depth Image With Grid [1] E imax,j max 10

11 Graph-Based Segmentation Fig.14: Random Pixel Selection Within Depth Image Grid Cell 11

12 0,0 4. Methods Graph-Based Segmentation i Point P i,j in 3D-Space E i,j P i,j P i,j = p i,j x p i,j y p i,j z j Fig.15: Depth Image With Grid Points For Depth And Normals Graph [1] 12

13 Graph-Based Segmentation P i,j 1 w = Edge Weight w Depth = z 1 z 2 z 1 = Depth of P i,j P i 1,j P i,j P i+1,j z 2 = Depth of P i+1,j P i,j+1 Fig.16: Depth Graph Weights Calculation 13

14 Graph-Based Segmentation P i 1,j 1 P i,j 1 P i+1,j 1 P i,j P i 1,j P i,j P i+1,j 8 Neighbors Of P i,j P i 1,j+1 P i,j+1 P i+1,j+1 Fig.17: Depth Graph Normals Calculation 9 Samples of P in 3D-Space Least-Square-Roots Plane Normals n i,j 14

15 Graph-Based Segmentation P i,j 1 w Normal = cos 1 (v u) w = Edge Weight u = Normal of P i,j P i 1,j P i,j P i+1,j v = Normal of P i+1,j P i,j+1 Fig.18: Normals Graph Weights Calculation 15

16 Graph-Based Segmentation Regions r i R Region points in G Normal Region r i Region points in G Depth Minimal size of a region is β Filtering noise Fig.19: Region Condition 16

17 Filtering and Merging Fig.5: Candidates [1] Fig.4: Segmented Regions [1] 17

18 Filtering and Merging y 1 x h Bounding Box r i w = x 2 x 1 x 1 w x 2 h = y 2 y 1 μ x = w 2 μ y = h 2 μ z = mean depth z (r i ) y y 2 Fig.20: Region Attributes Calculation 18

19 Filtering and Merging y π k 1. Select 3 Points Randomly n-times From r i Hypothesis Plane π k 2. Maximum Number Of Points Fitting The Plane π k n max k=1 p r i : distance of p to π k < ε r i z Fig.21: Hypothesis Plane x 3 randomly selected Points π k Points above π k Points below π k Points with distance to π k < ε 19

20 Filtering and Merging Finding a rule specifiying valid ranges for: Mean Depth Height Width Minimum Inlier Fraction Rule derived from positive examples in the training set Eliminate regions unable to be humans 20

21 Filtering and Merging Region too small but planar: Size(r i ) < β High number of fitting points on π k Mean depth rule satisfied Merging regions (merging condition) μ xz r i μ xz r j < δ xz and μ y r i μ y r j < δ y Important step due to detached parts by segmentation 21

22 Filtering and Merging Set of regions Set of (unscaled) candidates Classifcation needs scaled candidates Copy pixels of regions into candidate image with size w c h c If pixel copied raw depth pixel Undefined otherwise Candidates c i : Candidate image + bounding box Output candidate set C 22

23 Candidate Classification Fig.4: Segmented Regions [1] Fig.6: Detected Humans[1] 23

24 Candidate Classification 8x8 Pixel Cell 2x2 Cell Box Bounding Box Fig.22: Gradient Vector Calculation [2] ΔDepth x = = 167 ΔDepth y = = 202 Gradient Vector v G = ΔDepth x ΔDepth y = Fig.23: Candidate Image With Bounding Box And Fixed Size [1] 24

25 Magnitude 4. Methods Candidate Classification Angle [Deg] Fig.24: Histogram Of Oriented Depth Magnitude M = = 262,1 Gradient Angle Θ = arctan = 69,3 25

26 Candidate Classification 50% Box Overlap 2x2 Cell Box Yellow: Initial Step Green: Preceeding Step 4 Cell Histograms For Normalization Vector of Histograms Candidate Descriptor for SVM Fig.26: Candidate Image With Blocks For Normalization [1] 26

27 Candidate Classification Negative Example Positive Example A B Fig.27: Linear Support Vector Machine [4] 27

28 Candidate Classification - Set of Candidates C - Set of Humans H Fig.28: Support Vector Machine Scheme [2] Depth image frames from training set Candidates labeled as positive or negative 28

29 5. Results Two Sets Of Experiments: 1. Recall & Precision 2. Impact of varying number of training examples on Recall & Precision Hallway Café Distances 0,5 8 [m] 0,5 5 [m] Occlusion Level Varying Often Environment Not Cluttered Cluttered Ergonomic Position of People Upright Various Poses 29

30 5. Results Hallway Dataset Equal Error Rate (EER) Café Dataset Fig.29: Accuracy Results, (a) Hallway Data Set, (b) Café Data Set [1] FP = False Positives TP = True Positives FN = False Negatives Recall = TP TP + FN Precision = TP TP + FP 30

31 5. Results Hallway Dataset Café Dataset Fig.30: Impact On Accuracy By Reduction Of Positive Training Examples, (a) Hallway Data Set, (b) Café Data Set [1] 31

32 6. Summary & Conclusion Stereo Vision Segmentation Algorithm Filtering and merging HOD Descriptor SVM Precision, Recall Comparison of impact on precision and recall due to less training for SVM Missing Information: Impact Of Resolution Loss Comparison Of Datasets: Environmental Difference, Different Ergonomic Positions Presented Depth Image: No Reference About Depth Information Encoding No Measure Units in Data Sheet Table 32

33 Paper (Literatur) 1. Fast Human Detection for Indoor Mobile Robots Using Depth Images 2013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, L. Spinello and K. Arras, People Detection in RGB-D Data, in Proceedings of IROS 2011, pp Perma-Link: 3. Web-Page: 4. Web-Page: 5. Web-Page: 6. Web-Page: 33

Fast Human Detection for Indoor Mobile Robots Using Depth Images

Fast Human Detection for Indoor Mobile Robots Using Depth Images 2013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, 2013 Fast Human Detection for Indoor Mobile Robots Using Depth Images Benjamin Choi 1, Çetin Meriçli 1,

More information

Human detection based on Sliding Window Approach

Human detection based on Sliding Window Approach Human detection based on Sliding Window Approach Heidelberg University Institute of Computer Engeneering Seminar: Mobile Human Detection Systems Name: Njieutcheu Tassi Cedrique Rovile Matr.Nr: 3348513

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Visual Odometry Features, Tracking, Essential Matrix, and RANSAC Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline The

More information

Mobile Human Detection Systems based on Sliding Windows Approach-A Review

Mobile Human Detection Systems based on Sliding Windows Approach-A Review Mobile Human Detection Systems based on Sliding Windows Approach-A Review Seminar: Mobile Human detection systems Njieutcheu Tassi cedrique Rovile Department of Computer Engineering University of Heidelberg

More information

Human detection using histogram of oriented gradients. Srikumar Ramalingam School of Computing University of Utah

Human detection using histogram of oriented gradients. Srikumar Ramalingam School of Computing University of Utah Human detection using histogram of oriented gradients Srikumar Ramalingam School of Computing University of Utah Reference Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection,

More information

Robust PDF Table Locator

Robust PDF Table Locator Robust PDF Table Locator December 17, 2016 1 Introduction Data scientists rely on an abundance of tabular data stored in easy-to-machine-read formats like.csv files. Unfortunately, most government records

More information

Person Detection in Images using HoG + Gentleboost. Rahul Rajan June 1st July 15th CMU Q Robotics Lab

Person Detection in Images using HoG + Gentleboost. Rahul Rajan June 1st July 15th CMU Q Robotics Lab Person Detection in Images using HoG + Gentleboost Rahul Rajan June 1st July 15th CMU Q Robotics Lab 1 Introduction One of the goals of computer vision Object class detection car, animal, humans Human

More information

Tri-modal Human Body Segmentation

Tri-modal Human Body Segmentation Tri-modal Human Body Segmentation Master of Science Thesis Cristina Palmero Cantariño Advisor: Sergio Escalera Guerrero February 6, 2014 Outline 1 Introduction 2 Tri-modal dataset 3 Proposed baseline 4

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Object Category Detection: Sliding Windows

Object Category Detection: Sliding Windows 04/10/12 Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical

More information

CS 231A Computer Vision (Winter 2018) Problem Set 3

CS 231A Computer Vision (Winter 2018) Problem Set 3 CS 231A Computer Vision (Winter 2018) Problem Set 3 Due: Feb 28, 2018 (11:59pm) 1 Space Carving (25 points) Dense 3D reconstruction is a difficult problem, as tackling it from the Structure from Motion

More information

FAST HUMAN DETECTION USING TEMPLATE MATCHING FOR GRADIENT IMAGES AND ASC DESCRIPTORS BASED ON SUBTRACTION STEREO

FAST HUMAN DETECTION USING TEMPLATE MATCHING FOR GRADIENT IMAGES AND ASC DESCRIPTORS BASED ON SUBTRACTION STEREO FAST HUMAN DETECTION USING TEMPLATE MATCHING FOR GRADIENT IMAGES AND ASC DESCRIPTORS BASED ON SUBTRACTION STEREO Makoto Arie, Masatoshi Shibata, Kenji Terabayashi, Alessandro Moro and Kazunori Umeda Course

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 5 - Class 1: Matching, Stitching, Registration September 26th, 2017 ??? Recap Today Feature Matching Image Alignment Panoramas HW2! Feature Matches Feature

More information

HOG-based Pedestriant Detector Training

HOG-based Pedestriant Detector Training HOG-based Pedestriant Detector Training evs embedded Vision Systems Srl c/o Computer Science Park, Strada Le Grazie, 15 Verona- Italy http: // www. embeddedvisionsystems. it Abstract This paper describes

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 13th International Conference on Image Analysis and Recognition, ICIAR 2016, Póvoa de Varzim, Portugal, July 13-15.

More information

Fast Human Detection Algorithm Based on Subtraction Stereo for Generic Environment

Fast Human Detection Algorithm Based on Subtraction Stereo for Generic Environment Fast Human Detection Algorithm Based on Subtraction Stereo for Generic Environment Alessandro Moro, Makoto Arie, Kenji Terabayashi and Kazunori Umeda University of Trieste, Italy / CREST, JST Chuo University,

More information

Category vs. instance recognition

Category vs. instance recognition Category vs. instance recognition Category: Find all the people Find all the buildings Often within a single image Often sliding window Instance: Is this face James? Find this specific famous building

More information

Category-level localization

Category-level localization Category-level localization Cordelia Schmid Recognition Classification Object present/absent in an image Often presence of a significant amount of background clutter Localization / Detection Localize object

More information

A Framework for Efficient Fingerprint Identification using a Minutiae Tree

A Framework for Efficient Fingerprint Identification using a Minutiae Tree A Framework for Efficient Fingerprint Identification using a Minutiae Tree Praveer Mansukhani February 22, 2008 Problem Statement Developing a real-time scalable minutiae-based indexing system using a

More information

Stereo-Based Obstacle Avoidance in Indoor Environments with Active Sensor Re-Calibration

Stereo-Based Obstacle Avoidance in Indoor Environments with Active Sensor Re-Calibration Stereo-Based Obstacle Avoidance in Indoor Environments with Active Sensor Re-Calibration Darius Burschka, Stephen Lee and Gregory Hager Computational Interaction and Robotics Laboratory Johns Hopkins University

More information

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt ECE 47: Homework 5 Due Tuesday, October 7 in class @:3pm Seth Hutchinson Luke A Wendt ECE 47 : Homework 5 Consider a camera with focal length λ = Suppose the optical axis of the camera is aligned with

More information

https://en.wikipedia.org/wiki/the_dress Recap: Viola-Jones sliding window detector Fast detection through two mechanisms Quickly eliminate unlikely windows Use features that are fast to compute Viola

More information

Measurement of Pedestrian Groups Using Subtraction Stereo

Measurement of Pedestrian Groups Using Subtraction Stereo Measurement of Pedestrian Groups Using Subtraction Stereo Kenji Terabayashi, Yuki Hashimoto, and Kazunori Umeda Chuo University / CREST, JST, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan terabayashi@mech.chuo-u.ac.jp

More information

Human Detection using Multimodal and Multidimensional Features

Human Detection using Multimodal and Multidimensional Features Human Detection using Multimodal and Multidimensional Features Luciano Spinello and Roland Siegwart ASL - Swiss Federal Institute of Technology Zurich, Switzerland email: {luciano.spinello, roland.siegwart}@mavt.ethz.ch

More information

Eppur si muove ( And yet it moves )

Eppur si muove ( And yet it moves ) Eppur si muove ( And yet it moves ) - Galileo Galilei University of Texas at Arlington Tracking of Image Features CSE 4392-5369 Vision-based Robot Sensing, Localization and Control Dr. Gian Luca Mariottini,

More information

Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki

Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki 2011 The MathWorks, Inc. 1 Today s Topics Introduction Computer Vision Feature-based registration Automatic image registration Object recognition/rotation

More information

Classification and Detection in Images. D.A. Forsyth

Classification and Detection in Images. D.A. Forsyth Classification and Detection in Images D.A. Forsyth Classifying Images Motivating problems detecting explicit images classifying materials classifying scenes Strategy build appropriate image features train

More information

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients

Three-Dimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients ThreeDimensional Object Detection and Layout Prediction using Clouds of Oriented Gradients Authors: Zhile Ren, Erik B. Sudderth Presented by: Shannon Kao, Max Wang October 19, 2016 Introduction Given an

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

2 OVERVIEW OF RELATED WORK

2 OVERVIEW OF RELATED WORK Utsushi SAKAI Jun OGATA This paper presents a pedestrian detection system based on the fusion of sensors for LIDAR and convolutional neural network based image classification. By using LIDAR our method

More information

cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry

cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry cse 252c Fall 2004 Project Report: A Model of Perpendicular Texture for Determining Surface Geometry Steven Scher December 2, 2004 Steven Scher SteveScher@alumni.princeton.edu Abstract Three-dimensional

More information

INTELLIGENT AUTONOMOUS SYSTEMS LAB

INTELLIGENT AUTONOMOUS SYSTEMS LAB Matteo Munaro 1,3, Alex Horn 2, Randy Illum 2, Jeff Burke 2, and Radu Bogdan Rusu 3 1 IAS-Lab at Department of Information Engineering, University of Padova 2 Center for Research in Engineering, Media

More information

Object Detection Design challenges

Object Detection Design challenges Object Detection Design challenges How to efficiently search for likely objects Even simple models require searching hundreds of thousands of positions and scales Feature design and scoring How should

More information

Real Time Person Detection and Tracking by Mobile Robots using RGB-D Images

Real Time Person Detection and Tracking by Mobile Robots using RGB-D Images Real Time Person Detection and Tracking by Mobile Robots using RGB-D Images Duc My Vo, Lixing Jiang and Andreas Zell Abstract Detecting and tracking humans are key problems for human-robot interaction.

More information

DEPARTMENT OF INFORMATICS

DEPARTMENT OF INFORMATICS DEPARTMENT OF INFORMATICS TECHNISCHE UNIVERSITÄT MÜNCHEN Bachelor s Thesis in Informatics Pedestrian detection in urban environments based on vision and depth data Andreas Kreutz DEPARTMENT OF INFORMATICS

More information

Fast and Stable Human Detection Using Multiple Classifiers Based on Subtraction Stereo with HOG Features

Fast and Stable Human Detection Using Multiple Classifiers Based on Subtraction Stereo with HOG Features 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China Fast and Stable Human Detection Using Multiple Classifiers Based on

More information

Computer Science Faculty, Bandar Lampung University, Bandar Lampung, Indonesia

Computer Science Faculty, Bandar Lampung University, Bandar Lampung, Indonesia Application Object Detection Using Histogram of Oriented Gradient For Artificial Intelegence System Module of Nao Robot (Control System Laboratory (LSKK) Bandung Institute of Technology) A K Saputra 1.,

More information

Adaptive Gesture Recognition System Integrating Multiple Inputs

Adaptive Gesture Recognition System Integrating Multiple Inputs Adaptive Gesture Recognition System Integrating Multiple Inputs Master Thesis - Colloquium Tobias Staron University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Technical Aspects

More information

6. Applications - Text recognition in videos - Semantic video analysis

6. Applications - Text recognition in videos - Semantic video analysis 6. Applications - Text recognition in videos - Semantic video analysis Stephan Kopf 1 Motivation Goal: Segmentation and classification of characters Only few significant features are visible in these simple

More information

C. Premsai 1, Prof. A. Kavya 2 School of Computer Science, School of Computer Science Engineering, Engineering VIT Chennai, VIT Chennai

C. Premsai 1, Prof. A. Kavya 2 School of Computer Science, School of Computer Science Engineering, Engineering VIT Chennai, VIT Chennai Traffic Sign Detection Via Graph-Based Ranking and Segmentation Algorithm C. Premsai 1, Prof. A. Kavya 2 School of Computer Science, School of Computer Science Engineering, Engineering VIT Chennai, VIT

More information

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16 Computer Vision I Dense Stereo Correspondences Anita Sellent Stereo Two Cameras Overlapping field of view Known transformation between cameras From disparity compute depth [ Bradski, Kaehler: Learning

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Generating Object Candidates from RGB-D Images and Point Clouds

Generating Object Candidates from RGB-D Images and Point Clouds Generating Object Candidates from RGB-D Images and Point Clouds Helge Wrede 11.05.2017 1 / 36 Outline Introduction Methods Overview The Data RGB-D Images Point Clouds Microsoft Kinect Generating Object

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Detecting Object Instances Without Discriminative Features

Detecting Object Instances Without Discriminative Features Detecting Object Instances Without Discriminative Features Edward Hsiao June 19, 2013 Thesis Committee: Martial Hebert, Chair Alexei Efros Takeo Kanade Andrew Zisserman, University of Oxford 1 Object Instance

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 6: Feature matching and alignment Szeliski: Chapter 6.1 Reading Last time: Corners and blobs Scale-space blob detector: Example Feature descriptors We know

More information

Human Motion Detection and Tracking for Video Surveillance

Human Motion Detection and Tracking for Video Surveillance Human Motion Detection and Tracking for Video Surveillance Prithviraj Banerjee and Somnath Sengupta Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur,

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Toward Retail Product Recognition on Grocery Shelves

Toward Retail Product Recognition on Grocery Shelves Toward Retail Product Recognition on Grocery Shelves Gül Varol gul.varol@boun.edu.tr Boğaziçi University, İstanbul, Turkey İdea Teknoloji Çözümleri, İstanbul, Turkey Rıdvan S. Kuzu ridvan.salih@boun.edu.tr

More information

Scalable Object Classification using Range Images

Scalable Object Classification using Range Images Scalable Object Classification using Range Images Eunyoung Kim and Gerard Medioni Institute for Robotics and Intelligent Systems University of Southern California 1 What is a Range Image? Depth measurement

More information

A Person Following Algorithm for Use with a Single Forward Facing RGB-D Camera on a Mobile Robot

A Person Following Algorithm for Use with a Single Forward Facing RGB-D Camera on a Mobile Robot Clemson University TigerPrints All Theses Theses 5-2012 A Person Following Algorithm for Use with a Single Forward Facing RGB-D Camera on a Mobile Robot Sean Ficht Clemson University, sficht123@gmail.com

More information

Multiview Pedestrian Detection Based on Online Support Vector Machine Using Convex Hull

Multiview Pedestrian Detection Based on Online Support Vector Machine Using Convex Hull Multiview Pedestrian Detection Based on Online Support Vector Machine Using Convex Hull Revathi M K 1, Ramya K P 2, Sona G 3 1, 2, 3 Information Technology, Anna University, Dr.Sivanthi Aditanar College

More information

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

Histogram of Oriented Gradients for Human Detection

Histogram of Oriented Gradients for Human Detection Histogram of Oriented Gradients for Human Detection Article by Navneet Dalal and Bill Triggs All images in presentation is taken from article Presentation by Inge Edward Halsaunet Introduction What: Detect

More information

CS 231A Computer Vision (Fall 2012) Problem Set 3

CS 231A Computer Vision (Fall 2012) Problem Set 3 CS 231A Computer Vision (Fall 2012) Problem Set 3 Due: Nov. 13 th, 2012 (2:15pm) 1 Probabilistic Recursion for Tracking (20 points) In this problem you will derive a method for tracking a point of interest

More information

People Detection in RGB-D Data

People Detection in RGB-D Data People Detection in RGB-D Data Luciano Spinello Kai O. Arras Abstract People detection is a key issue for robots and intelligent systems sharing a space with people. Previous works have used cameras and

More information

CS 223B Computer Vision Problem Set 3

CS 223B Computer Vision Problem Set 3 CS 223B Computer Vision Problem Set 3 Due: Feb. 22 nd, 2011 1 Probabilistic Recursion for Tracking In this problem you will derive a method for tracking a point of interest through a sequence of images.

More information

CS 231A Computer Vision (Winter 2014) Problem Set 3

CS 231A Computer Vision (Winter 2014) Problem Set 3 CS 231A Computer Vision (Winter 2014) Problem Set 3 Due: Feb. 18 th, 2015 (11:59pm) 1 Single Object Recognition Via SIFT (45 points) In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition

More information

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg Human Detection A state-of-the-art survey Mohammad Dorgham University of Hamburg Presentation outline Motivation Applications Overview of approaches (categorized) Approaches details References Motivation

More information

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016

Pedestrian Detection Using Correlated Lidar and Image Data EECS442 Final Project Fall 2016 edestrian Detection Using Correlated Lidar and Image Data EECS442 Final roject Fall 2016 Samuel Rohrer University of Michigan rohrer@umich.edu Ian Lin University of Michigan tiannis@umich.edu Abstract

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

RECOGNIZING humanoid shape is very easy for humans,

RECOGNIZING humanoid shape is very easy for humans, 380 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009 Stereo-Based Pedestrian Detection for Collision-Avoidance Applications Sergiu Nedevschi, Member, IEEE, Silviu

More information

Feature extraction for efficient image and video segmentation

Feature extraction for efficient image and video segmentation Feature extraction for efficient image and video segmentation Jakub Vojvoda, Vítězslav Beran Brno University of Technology, Faculty of Information Technology Abstract The segmentation of sensory data of

More information

A Discriminatively Trained, Multiscale, Deformable Part Model

A Discriminatively Trained, Multiscale, Deformable Part Model A Discriminatively Trained, Multiscale, Deformable Part Model by Pedro Felzenszwalb, David McAllester, and Deva Ramanan CS381V Visual Recognition - Paper Presentation Slide credit: Duan Tran Slide credit:

More information

Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos

Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos Definition, Detection, and Evaluation of Meeting Events in Airport Surveillance Videos Sung Chun Lee, Chang Huang, and Ram Nevatia University of Southern California, Los Angeles, CA 90089, USA sungchun@usc.edu,

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

A novel template matching method for human detection

A novel template matching method for human detection University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2009 A novel template matching method for human detection Duc Thanh Nguyen

More information

Technical Report No D Object Recognition using Local Shape Descriptors. Mustafa Mohamad

Technical Report No D Object Recognition using Local Shape Descriptors. Mustafa Mohamad Technical Report No. 2013-614 3D Object Recognition using Local Shape Descriptors Mustafa Mohamad School of Computing Queen s University Kingston, Ontario, Canada mustafa@cs.queensu.ca November 7, 2013

More information

Practical Camera Auto-Calibration Based on Object Appearance and Motion for Traffic Scene Visual Surveillance

Practical Camera Auto-Calibration Based on Object Appearance and Motion for Traffic Scene Visual Surveillance Practical Camera Auto-Calibration Based on Object Appearance and Motion for Traffic Scene Visual Surveillance Zhaoxiang Zhang, Min Li, Kaiqi Huang and Tieniu Tan National Laboratory of Pattern Recognition,

More information

Histograms of Oriented Gradients for Human Detection p. 1/1

Histograms of Oriented Gradients for Human Detection p. 1/1 Histograms of Oriented Gradients for Human Detection p. 1/1 Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs INRIA Rhône-Alpes Grenoble, France Funding: acemedia, LAVA,

More information

Camera Drones Lecture 3 3D data generation

Camera Drones Lecture 3 3D data generation Camera Drones Lecture 3 3D data generation Ass.Prof. Friedrich Fraundorfer WS 2017 Outline SfM introduction SfM concept Feature matching Camera pose estimation Bundle adjustment Dense matching Data products

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation

Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation Large-Scale Traffic Sign Recognition based on Local Features and Color Segmentation M. Blauth, E. Kraft, F. Hirschenberger, M. Böhm Fraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1,

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Object Category Detection. Slides mostly from Derek Hoiem

Object Category Detection. Slides mostly from Derek Hoiem Object Category Detection Slides mostly from Derek Hoiem Today s class: Object Category Detection Overview of object category detection Statistical template matching with sliding window Part-based Models

More information

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM CIS 580, Machine Perception, Spring 2015 Homework 1 Due: 2015.02.09. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Camera Model, Focal Length and

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

6-DOF Model Based Tracking via Object Coordinate Regression Supplemental Note

6-DOF Model Based Tracking via Object Coordinate Regression Supplemental Note 6-DOF Model Based Tracking via Object Coordinate Regression Supplemental Note Alexander Krull, Frank Michel, Eric Brachmann, Stefan Gumhold, Stephan Ihrke, Carsten Rother TU Dresden, Dresden, Germany The

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian.

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian. Announcements Project 1 Out today Help session at the end of class Image matching by Diva Sian by swashford Harder case Even harder case How the Afghan Girl was Identified by Her Iris Patterns Read the

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,   ISSN ransactions on Information and Communications echnologies vol 6, 996 WI Press, www.witpress.com, ISSN 743-357 Obstacle detection using stereo without correspondence L. X. Zhou & W. K. Gu Institute of Information

More information

Robotics - Projective Geometry and Camera model. Marcello Restelli

Robotics - Projective Geometry and Camera model. Marcello Restelli Robotics - Projective Geometr and Camera model Marcello Restelli marcello.restelli@polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Ma 2013 Inspired from Matteo

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

Local Patch Descriptors

Local Patch Descriptors Local Patch Descriptors Slides courtesy of Steve Seitz and Larry Zitnick CSE 803 1 How do we describe an image patch? How do we describe an image patch? Patches with similar content should have similar

More information

Text Block Detection and Segmentation for Mobile Robot Vision System Applications

Text Block Detection and Segmentation for Mobile Robot Vision System Applications Proc. of Int. Conf. onmultimedia Processing, Communication and Info. Tech., MPCIT Text Block Detection and Segmentation for Mobile Robot Vision System Applications Too Boaz Kipyego and Prabhakar C. J.

More information

Organized Segmenta.on

Organized Segmenta.on Organized Segmenta.on Alex Trevor, Georgia Ins.tute of Technology PCL TUTORIAL @ICRA 13 Overview Mo.va.on Connected Component Algorithm Planar Segmenta.on & Refinement Euclidean Clustering Timing Results

More information

Human detections using Beagle board-xm

Human detections using Beagle board-xm Human detections using Beagle board-xm CHANDAN KUMAR 1 V. AJAY KUMAR 2 R. MURALI 3 1 (M. TECH STUDENT, EMBEDDED SYSTEMS, DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING, VIJAYA KRISHNA INSTITUTE

More information

Supplementary material: Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features

Supplementary material: Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features Supplementary material: Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel The University of Adelaide,

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 Image Features: Local Descriptors Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 [Source: K. Grauman] Sanja Fidler CSC420: Intro to Image Understanding 2/ 58 Local Features Detection: Identify

More information

Visuelle Perzeption für Mensch- Maschine Schnittstellen

Visuelle Perzeption für Mensch- Maschine Schnittstellen Visuelle Perzeption für Mensch- Maschine Schnittstellen Vorlesung, WS 2009 Prof. Dr. Rainer Stiefelhagen Dr. Edgar Seemann Institut für Anthropomatik Universität Karlsruhe (TH) http://cvhci.ira.uka.de

More information

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale. Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe presented by, Sudheendra Invariance Intensity Scale Rotation Affine View point Introduction Introduction SIFT (Scale Invariant Feature

More information

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford Image matching Harder case by Diva Sian by Diva Sian by scgbt by swashford Even harder case Harder still? How the Afghan Girl was Identified by Her Iris Patterns Read the story NASA Mars Rover images Answer

More information

High-Level Computer Vision

High-Level Computer Vision High-Level Computer Vision Detection of classes of objects (faces, motorbikes, trees, cheetahs) in images Recognition of specific objects such as George Bush or machine part #45732 Classification of images

More information

3D Semantic Parsing of Large-Scale Indoor Spaces Supplementary Material

3D Semantic Parsing of Large-Scale Indoor Spaces Supplementary Material 3D Semantic Parsing of Large-Scale Indoor Spaces Supplementar Material Iro Armeni 1 Ozan Sener 1,2 Amir R. Zamir 1 Helen Jiang 1 Ioannis Brilakis 3 Martin Fischer 1 Silvio Savarese 1 1 Stanford Universit

More information