# REFLECTION & REFRACTION

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction of light. THEORY: Two common ways that the path of light gets bent are reflection and refraction. Both usually occur when light is traveling in one medium and then hits a boundary with a different medium. For example, when light traveling in air hits a piece of glass, some of the light is reflected back into the air and most of the remaining light is refracted into the glass. (A small amount of light energy may be absorbed by the glass.) The Law of Reflection and the Law of Refraction (more commonly called Snell s Law) predict the amount of bending that the light undergoes upon reflection and refraction. GENERAL PROCEDURE: We will determine the path of light rays by sighting along pairs of pins stuck through paper into the soft board. By connecting the holes left in the paper by the pairs of pins with a straight line, the paths of the light rays can be recorded. The angles and distances can then be measured with protractor and ruler. The results of this experiment will depend on the accuracy and neatness of your work. A sharp pencil is required since a dull point may throw off an angle by as much as five degrees. Before any pins are stuck in the paper, the reflecting and refracting surfaces of the object should be outlined on the paper with a sharp pencil approximately in the center of the paper. Part 1: Reflection and Image Formation By a Plane Mirror THEORY: The Law of Reflection states that if the incoming light forms an angle of incidence ( i ) with a line normal to the surface, then the light reflected off the surface will form an angle of reflection ( r ) with the normal line which is equal to the angle of incidence. This is shown in Figure 1. i r PROCEDURE: 1. On a piece of paper draw a line to represent the reflecting surface of the mirror. Place the paper on the soft board. Fig Place the mirror on the paper with the back of the mirror on the line for the reflecting surface. Push a pin into the paper at a point about 5 cm from the mirror. This pin will be your OBJECT, and the location of its IMAGE will be determined. 3. Try determining the position of the IMAGE of the pin in the mirror by pointing to the place it seems to be. (This should be somewhere behind the mirror.) This is the position we will try to more accurately determine with the following procedure. 4. With your eye level with the surface of the paper, determine a reflected ray by lining up two pins with the IMAGE of the first pin in the mirror. When you have them lined up, push the pins into the paper. Your partner should determine a second reflected ray in the same manner using a second pair of pins.

2 Reflection & Refraction 2 5. Remove the pins and mirror. In order to locate the position of the IMAGE on your paper, draw two lines, one through each pair of pinholes. Be sure you extend these lines to where they meet behind the mirror. The point of intersection is the location of the IMAGE. 6. In order to actually follow the path of the light, draw two lines each beginning at the OBJECT [just like the light does] to the intersection of the mirror with each of the lines previously drawn. The light actually begins at the OBJECT pin and bounces off the mirror and then proceeds just like it came from the IMAGE position behind the mirror. 7. Measure and label the angles of incidence and reflection for the light rays. Theoretically, they should be equal. Are they (within experimental error)? 8. Measure and label the object and image distances, i.e., the distances from the object to the mirror and the image position to the mirror. Theoretically, they should also be equal. Are they? REPORT: 1. Does the Law of Reflection seem valid? 2. What kind of image is formed by a plane mirror. a real or virtual image? (A real image can be seen on a piece of paper if the paper is placed at the location of the image. A virtual image cannot be seen on a piece of paper. It only appears that light comes from the image to our eyes.) 3. Where is the image located? Part 2: Refraction and Image Formation By a Plane Surface THEORY: Snell s Law states that if the incoming light is traveling in a medium with an index of refraction of n 1 and forms an angle of 1 with a line normal to the surface as shown in Figure 2, then the light that enters the second medium of index n 2 will form an angle of 2 with the normal line where the refracted angle is given by the equation 1 n 1 sin 1 = n 2 sin 2 n 1 Snell s Law predicts that the light will get bent toward the perpendicular line if n 1 < n 2 (such as for light in air entering glass) and will get bent away from the perpendicular line if n 1 > n 2 (such as for light in glass entering air). n 2 2 Fig. 2 PROCEDURE: 1. Place a fresh piece of paper on the soft board. Lay the glass block down on the paper. Outline the glass block so you may remove it and then replace it at the same location. 2. Place one pin right next to a long side near the middle. This pin will be our OBJECT. Since it is touching the glass block, we can assume that it is actually just in the glass block.

3 Reflection & Refraction 3 3. Now view this pin from the opposite side. Again look through the glass and point to where the IMAGE of the pin seems to be. This is the position we will try to determine more accurately. 4. Align at least two pins with the IMAGE of the pin in the glass (just as you did in the previous part). You partner should do the same. 5. Now remove the pins and glass block from the board, and draw the sighting lines connecting the sets of two pinholes you and your partner made. Extend the lines to the area where the glass block was. Where the lines intersect is the IMAGE location. You probably will observe that sighting lines that have smaller angles of incidence intersect farther away from the front of the block. 6. Measure the distance from the front of the block to the OBJECT pin. This is the real depth (d real ) of the pin in the glass. Measure the distance from the front of the block to the IMAGE location. This is the apparent depth (d app ) of the pin. From theory the following formula can be derived as long as angles are small: d app = d real / n where n is the index of refraction of the glass. (The value of n indicates how much bending the glass does.) Because this holds only for small angles, measure the apparent distance using sighting lines with small angles of incidence. From this expression, calculate the index of refraction of the glass. Estimate the uncertainty in this value based on the experimental uncertainty in locating the image position. 8. Now determine the actual paths of the light rays: draw a line from the object pin to the place where the ray emerges from the glass for each set of pins. Note how the light is bent at the airglass interface. 9. Measure the angles 1 and 2 for at least two of the light rays and use Snell s Law to calculate values of the index of the glass. Average your values. REPORT: 1. Is the image formed by the refraction of the light real or virtual in this case? 2. Where is the image located? 3. Compare your two values for the index of refraction of the glass from Steps 6 & 9. Are they close? Are they reasonable? 4. Does the light bend toward the perpendicular line or away from it as it leaves the glass and enters the air? Is this consistent with the values of refractive index for the glass and air? 5. Describe how the "bending" of the light behaves as your angle of looking increases: that is, does the amount of bending depend on the angle you are looking at? (This is the reason lenses work!) 6. Does water do the same to light that glass does? Justify your answer by referring to some real-life example.

4 Reflection & Refraction 4 Part 3: Reflection and Refraction THEORY: In general, a beam of light incident on the boundary between two optical materials will undergo BOTH reflection and refraction. (The amount of light that is reflected or refracted depends upon the refractive indices of the materials and the incident angle of the beam.) If other boundaries are encountered by the first reflected and refracted beams, these beams themselves undergo additional reflections and refractions. PROCEDURE: On the next page, there are two drawings of a cross-section of a piece of glass. One can be used as a spare in what follows. Starting with the given incident ray, use Snell s Law and the Law of Reflection to determine, and then trace, the path of light within the glass until there are three refracted rays leaving the glass. You will need to use a protractor, a straight edge, and a pencil with a sharp point. After you have finished, check your work by placing the piece of glass on your paper, aligning the laser so that the beam is directly over the incident ray on the paper, and then seeing whether the actual light rays coming from the glass block are where you predicted them to be. While doing this, mark where the light rays actually do exit the block so that your instructor can see how good your predictions were.

5 Reflection & Refraction 5 For the glass, n =1.57. Incident ray Only reflection occurs at the silvered surfaces. Incident ray

### Name Section Date. Experiment Reflection and Refraction

Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement

### Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

### Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

### Physics Experiment 13

Fig. 13-1 Equipment This side of the mirror is gray. Place this side on the baseline. You can see your reflection on this side of the mirror. Fig. 13-2 Mirror Placement: The "Plexi-Ray Kit" contains a

### Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

### Investigation 21A: Refraction of light

Investigation 21A: Refraction of light Essential question: How does light refract at a boundary? What is the index of refraction of water? Refraction may change the direction of light rays passing from

### Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Experiment 6 Snell s Law 6.1 Objectives Use Snell s Law to determine the index of refraction of Lucite. Observe total internal reflection and calculate the critical angle. Explain the basis of how optical

### Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

### Reflection and Refraction

rev 05/2018 Equipment List and Refraction Qty Items Part Numbers 1 Light Source, Basic Optics OS-8517 1 Ray Optics Set OS-8516 2 White paper, sheet 1 Metric ruler 1 Protractor Introduction The purpose

### Reflection and Refraction

rev 10/2018 Equipment List and Refraction Qty Items Part Numbers 1 Light Source, Basic Optics OS-8517 1 Ray Optics Set OS-8516 2 White paper, sheet 1 Metric ruler 1 Protractor Introduction The purpose

### Index of Refraction and Total Internal Reflection

Index of Refraction and Total Internal Reflection Name: Group Members: Date: TA s Name: Materials: Ray box, two different transparent blocks, two letter size white pages, pencil, protractor, two nails,

### Lab 10: Index of Refraction and Total Internal Reflection

Lab 10: Index of Refraction and Total Internal Reflection Name: Group Members: Date: TA s Name: Materials: Ray box, two different transparent blocks, two letter size white pages, pencil, protractor, two

### REFLECTION AND REFRACTION OF LIGHT

PHYSICS LAB REFLECTION AND REFRACTION OF LIGHT Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision Spring 2002 REF 45 blank page REF 46

### Refraction of Light. Research Problem. Materials. Procedure. Due Date. Glass Block Protractor Ruler PENCIL 4 Pins Cardboard

Name SI Physics Period Date Lab #0(90 pts) Mrs. Nadworny Due Date Research Problem Materials Refraction of Light When a ray of light passes obliquely (at an angle) from air to glass, it is refracted. The

### Refraction of Light. Research Problem. Materials. Procedure. Honors Physics Lab #30H. Due Date. Glass Block Protractor Ruler PENCIL 4 Pins Cardboard

Name Date Honors Physics Lab #0H Period Mrs. Nadworny Research Problem Materials Refraction of Light Due Date When a ray of light passes obliquely (at an angle) from air to glass, it is refracted. The

### Speed of Light in Glass

Name Date Regents Physics Lab #R Period Mrs. Nadworny Research Problem Materials Speed of Light in Glass Due Date When a ray of light passes obliquely (at an angle) from air to glass, it is refracted.

### Refraction and Its Applications

Refraction and Its Applications Background: Snell s Law describes how light is refracted as it passes between two mediums. This happens when light travels at different speeds in each medium. The way we

### The Ray model of Light. Reflection. Class 18

The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

### Chapter 5 Mirrors and Lenses

Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

### Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

### Reflection and Refraction of Light

PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

### Reflection and Refraction of Light

PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

### Experiment 3: Reflection

Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

### M = h' h = #i. n = c v

Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

### Regents Physics Lab #30R. Due Date. Refraction of Light

Name Date Regents Physics Lab #0R Period Mrs. Nadworny Research Problem Materials Refraction of Light Due Date When a ray of light passes obliquely (at an angle) from air to glass, it is refracted. The

### Purpose: To determine the index of refraction of glass, plastic and water.

LAB 9 REFRACTION-THE BENDING OF LIGHT Purpose: To determine the index of refraction of glass, plastic and water. Materials: Common pins, glass block, plastic block, small semi-circular water container,

### Lab 10 - GEOMETRICAL OPTICS

L10-1 Name Date Partners OBJECTIVES OVERVIEW Lab 10 - GEOMETRICAL OPTICS To examine Snell s Law. To observe total internal reflection. To understand and use the lens equations. To find the focal length

### Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11)

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11) Introduction In this lab you will investigate the reflection and refraction of light. Reflection of light from a surface is

### Reflection and Refraction

Reflection and Refraction Theory: Whenever a wave traveling in some medium encounters an interface or boundary with another medium either (or both) of the processes of (1) reflection and (2) refraction

### P202/219 Laboratory IUPUI Physics Department REFRACTION OF LIGHT

REFRCTION OF LIGHT OBJECTIVE To verify the Law of Refraction (n 1 sin θ 1 = n 2 sin θ 2 ) by measuring the index of refraction of glass and water. EQUIPMENT corkboard, two 8½ 11 in. pieces of paper, glass

### Figure 1 - Refraction

Geometrical optics Introduction Refraction When light crosses the interface between two media having different refractive indices (e.g. between water and air) a light ray will appear to change its direction

### Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

### Reflection & Refraction

Reflection & Refraction Reflection Occurs when light hits a medium and bounces back towards the direction it came from Reflection is what allows us to see objects: Lights reflects off an object and travels

### Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

### How Does Light Move?

How Does Light Move? Name: Class: Date: Group Members: Station #1 Checklist Did you draw both diagrams? (2) Did you explain why this happened? (1) Station #2 Checklist Did you draw the diagram with the

### Reflection and Image Formation by Mirrors

Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

### Reflection, Refraction and Polarization of Light Physics 246

Reflection, Refraction and Polarization of Light Physics 46 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

### Part 1: Plane Mirrors!

Algodoo Optics Part 1: Plane Mirrors This activity will model, using Algodoo, the mirror lab experiment from class. With a physical model, students are asked to look into the mirror from two different

### Reflection and Refraction. Chapter 29

Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

### Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

### Reflection & refraction

2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

### Refraction of Light. This bending of the ray is called refraction

Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

### 1. What is the law of reflection?

Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

### Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

### 4. Refraction. glass, air, Perspex and water.

Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

### Geometrical Optics. 1 st year physics laboratories. University of Ottawa

Geometrical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Geometrical optics deals with light as a ray that can be bounced (reflected)

### 16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016

16/05/2016 Snell s Law cgrahamphysics.com 2016 Book page 110 and 112 Syllabus 3.18, 3.19 Match the words to the objects absorbs transmits emits diffracts disperses refracts reflects Fibre optics Totally

### GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

### Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

### Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

### FINDING THE INDEX OF REFRACTION - WebAssign

Name: Book: Period: Due Date: Lab Partners: FINDING THE INDEX OF REFRACTION - WebAssign Purpose: The theme in this lab is the interaction between light and matter. Matter and light seem very different

### Chapter 12 Notes: Optics

Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

### Optics Worksheet. Chapter 12: Optics Worksheet 1

Optics Worksheet Triangle Diagram: This represents a triangular prism. We want to follow the path of a light ray striking one of the surfaces as it passes through the prism and exits one of the other surfaces.

### Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

### Algebra Based Physics

Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

### Lesson Plan Outline for Rainbow Science

Lesson Plan Outline for Rainbow Science Lesson Title: Rainbow Science Target Grades: Middle and High School Time Required: 120 minutes Background Information for Teachers and Students Rainbows are fascinating

### Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

### Lab 9 - Geometrical Optics

Lab 9 Geometrical Optics L9-1 Name Date Partners Lab 9 - Geometrical Optics OBJECTIVES To examine Snell s Law To observe total internal reflection. To understand and use the lens equations. To find the

### Lab 9 - Geometrical Optics

Lab 9 Geometrical Optics L9-1 Name Date Partners Lab 9 - Geometrical Optics OBJECTIVES To examine Snell s Law To observe total internal reflection. To understand and use the lens equations. To find the

### PHYS1004 Problem Sheet - Optics - with Solutions

PHYS004 Problem Sheet - Optics - with Solutions Do not write on these question sheets - there is not enough room to do a good job of answering these questions. The answers need to be written in your life

### Light, Photons, and MRI

Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

### LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

### Physics 10. Lecture 28A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 10 Lecture 28A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright The Nature of Light From now on we will have to treat light as

### ACTIVITY A FIRST LOOK AT REFRACTION OBJECTIVE To observe optical refraction and theorize the mechanism for the observation.

Name (printed) ACTIVITY A FIRST LOOK AT REFRACTION OBJECTIVE To observe optical refraction and theorize the mechanism for the observation. PROCEDURE 1. Start with no water in the cup and orient your line

### Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

### IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law Objective In this experiment, you are required to determine the refractive index of an acrylic trapezoid (or any block with

### Geometrical optics: Refraction *

OpenStax-CNX module: m40065 1 Geometrical optics: Refraction * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

### ENGR142 PHYS 115 Geometrical Optics and Lenses

ENGR142 PHYS 115 Geometrical Optics and Lenses Part A: Rays of Light Part B: Lenses: Objects, Images, Aberration References Pre-lab reading Serway and Jewett, Chapters 35 and 36. Introduction Optics play

### Reflection, Refraction and Polarization of Light Physics 246

Reflection, Refraction and Polarization of Light Physics 46 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

### Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

### CHAP: REFRACTION OF LIGHT AT PLANE SURFACES

CHAP: REFRACTION OF LIGHT AT PLANE SURFACES Ex : 4A Q: 1 The change in the direction of the path of light, when it passes from one transparent medium to another transparent medium, is called refraction

### Reflections. I feel pretty, oh so pretty

Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

### Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

### PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

### index of refraction-light speed

AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

### Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

### Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

### Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

### The Question. What are the 4 types of interactions that waves can have when they encounter an object?

The Question What are the 4 types of interactions that waves can have when they encounter an object? Waves, Wave fronts and Rays Wave Front: Crests of the waves. Rays: Lines that are perpendicular to the

### NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #7: Reflection & Refraction

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #7: Reflection & Refraction Lab Writeup Due: Mon/Wed/Thu/Fri, March 26/28/29/30, 2018 Background Light

### Reflection and Refraction

Reflection and Refraction INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of refraction and reflection. The law of reflection 1 was known to the ancient Greeks

### Key Terms write the definitions of the boldface terms on your own paper, definitions are available at theteterszone.net

On-level Physics Optics This unit will allow each student to: a. gain a better understanding of the behavior and characteristics of light as it is reflected and refracted by s and lenses b. continue making

### Introduction: The Nature of Light

O1 Introduction: The Nature of Light Introduction Optical elements and systems Basic properties O1.1 Overview Generally Geometrical Optics is considered a less abstract subject than Waves or Physical Optics

### 3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays

Models of Light The wave model: Under many circumstances, light exhibits the same behavior as material waves. The study of light as a wave is called wave optics. The ray model: The properties of prisms,

### Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

### Light and refractive index

17 Fig. 7.1 shows a ray of light incident on a rectangular glass block at point X. W P X air glass Q R S Fig. 7.1 The ray of light is refracted at X. On Fig. 7.1, (a) draw the normal at X, [1] (b) draw

### Refraction of Light Finding the Index of Refraction and the Critical Angle

Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

### Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

### Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

### Physics 132: Lecture Fundamentals of Physics II Agenda for Today

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Reflection of light Law of reflection Refraction of light Snell s law Dispersion PHY132 Lecture 17, Pg1 Electromagnetic waves A changing

### Student Exploration: Refraction

Name: Date: Student Exploration: Refraction Vocabulary: angle of incidence, angle of refraction, frequency, index of refraction, medium, refraction, Snell s law, total internal reflection, wave front,

### Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

### FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

### Physics 23 Fall 1988

Lab 3 - Geometrical Optics Physics 23 Fall 1988 Theory This laboratory is an exercise in geometrical optics, the reflection and refraction of light when it strikes the surface between air and glass, or

### On Fig. 7.1, draw a ray diagram to show the formation of this image.

1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

### At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. The eye sees by focusing a diverging bundle of rays from

### REFLECTION & REFRACTION

Name_ Date Period NOTES/LAB DIRECTIONS: REFLECTION & REFRACTION SHOW ALL WORK USING G.U.E.S.S. WRITE ANSWERS IN A COMPLETE SENTENCE IN CONTEXT OF THE PROBLEM. BOX FINAL ANSWERS PHYSICS U6-10 DUE: End of