Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston

Size: px
Start display at page:

Download "Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston"

Transcription

1 Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston NavtechGPS Part #1147 Progress in Astronautics and Aeronautics Series, 207 Published by AIAA, 2004, Revised, 2nd Edition, 574 pages, Hardback Book ISBN: The book provides an up-to-date guide to the techniques and applications of inertial navigation for use by both practicing engineers and post-graduate students. The book satisfies a need for a book on the subject of inertial navigation that provides both an introduction to the techniques involved as well as information on modern technological developments, combined with a more rigorous mathematical treatment for the reader wishing to explore the subject in greater depth. The text describes the basic concepts of inertial navigation with particular emphasis on modern strapdown system technology, providing detailed information on system mechanizations, instrumentation and computational aspects, design analysis, and applications of such systems. In particular, the text provides up-to-date information on inertial sensor technology and inertial navigation system computational techniques, bringing together the broad experience of the authors within a single volume. The text contains both descriptive passages and also mathematical details where appropriate. MEMS is the focus of much research and development activity at the present time; this technology offers rugged and reliable sensors with a performance capability that lends itself to integration with satellite navigation systems. This second edition has been updated in a number of areas to reflect ongoing developments in the field of inertial navigation technology. In addition to a number of refinements covering sensor technology, geodesy, and error modeling, the major additions to the original text are new chapters on MEMS (micro electro-mechanical systems) technology and system applications. A broad range of applications are addressed in a second new chapter, covering ship s inertial navigation, tactical missiles, well bore surveying systems, automobiles, and sightline stabilization systems, to name but a few. Preface 1 Introduction Navigation Inertial navigation Strapdown technology Layout of the book 4

2 2 Fundamental principles and historical developments of inertial navigation Basic concepts Summary Historical developments The modern-day inertial navigation system Trends in inertial sensor development 15 3 Basic principles of strapdown inertial navigation systems Introduction A simple two-dimensional strapdown navigation system Reference frames Three-dimensional strapdown navigation system - general analysis Navigation with respect to a fixed frame Navigation with respect to a rotating frame The choice of reference frame Resolution of accelerometer measurements System example Strapdown system mechanizations Inertial frame mechanization Earth frame mechanization Local geographic navigation frame mechanization Wander azimuth navigation frame mechanization Summary of strapdown system mechanizations Strapdown attitude representations Introductory remarks Direction cosine matrix Euler angles Quaternions Relationships between direction cosines, Euler angles and quaternions Detailed navigation equations Navigation equations expressed in component form The shape of the Earth Datum reference models Variation of gravitational attraction over the Earth 55

3 4 Gyroscope technology Introduction Conventional sensors Introduction Fundamental principles Components of a mechanical gyroscope Sensor errors Rate-integrating gyroscope Dynamically tuned gyroscope Flex gyroscope Rate sensors Dual-axis rate transducer (DART) Magnetohydrodynamic sensor Vibratory gyroscopes Introduction Vibrating wine glass sensor Hemispherical resonator gyroscope Vibrating disc sensor Tuning fork sensor Quartz rate sensor Silicon sensor Vibrating wire rate sensor General characteristics of vibratory sensors Cryogenic devices Nuclear magnetic resonance gyroscope SARDIN Electrostatically suspended gyroscope Other devices for sensing angular motion Fluidic (flueric) sensors Fluxgate magnetometers The transmission line gyroscope Gyroscope technology Optical sensors Introduction Fundamental principles Ring laser gyroscope Three-axis ring laser gyroscope configuration Fibre optic gyroscope 126

4 5.1.6 Photonic crystal optical fibre gyroscope Fibre optic ring resonator gyroscope Ring resonator gyroscope Integrated optical gyroscope Cold atom sensors Introduction Rotation sensing Measurement of acceleration Gravity gradiometer Summary of gyroscope technology Accelerometer and multi-sensor technology Introduction The measurement of translational motion Mechanical sensors Introduction Principles of operation Sensor errors Force-feedback pendulous accelerometer Pendulous accelerometer hinge elements Two-axes force-feedback accelerometer Open-loop accelerometers Solid-state accelerometers Vibratory devices Surface acoustic wave accelerometer Silicon sensors Fibre optic accelerometer Optical accelerometers Other acceleration sensors Multi-functional sensors Introduction Rotating devices Vibratory multi-sensor Mass unbalanced gyroscope Angular accelerometers Liquid rotor angular accelerometer Gas rotor angular accelerometer Inclinometers Summary of accelerometer and multi-sensor technology 186

5 7 MEMS inertial sensors Introduction Silicon processing MEMS gyroscope technology Introduction Tuning fork MEMS gyroscopes Resonant ring MEMS gyroscopes MEMS accelerometer technology Introduction Pendulous mass MEMS accelerometers Resonant MEMS accelerometers Tunnelling MEMS accelerometers Electrostatically levitated MEMS accelerometers Dithered accelerometers MOEMS Multi-axis/rotating structures MEMS based inertial measurement units Silicon IMU Quartz IMU System integration Summary Testing, calibration and compensation Introduction Testing philosophy Test equipment Data-logging equipment Gyroscope testing Stability tests - multi-position tests Rate transfer tests Thermal tests Oscillating rate table tests Magnetic sensitivity tests Centrifuge tests Shock tests Vibration tests Combination tests Ageing and storage tests 24

6 8.6 Accelerometer testing Multi-position tests Long-term stability Thermal tests Magnetic sensitivity tests Centrifuge tests Shock tests Vibration tests Combination tests Ageing and storage tests Calibration and error compensation Introduction Gyroscope error compensation Accelerometer error compensation Further comments on error compensation Testing of inertial navigation systems Hardware in the loop tests Strapdown system technology Introduction The components of a strapdown navigation system The instrument cluster Orthogonal sensor configurations Skewed sensor configurations A skewed sensor configuration using dual-axis gyroscopes Redundant sensor configurations Instrument electronics The attitude computer The navigation computer Power conditioning Anti-vibration mounts Concluding remarks Inertial navigation system alignment Introduction Basic principles Alignment on a fixed platform Alignment on a moving platform Alignment on the ground 282

7 Introduction Ground alignment methods Northfinding techniques In-flight alignment Introduction Sources of error In-flight alignment methods Alignment at sea Introduction Sources of error Shipboard alignment methods Strapdown navigation system computation Introduction Attitude computation Direction cosine algorithms Rotation angle computation Rotation vector compensation Body and navigation frame rotations Quaternion algorithms Orthogonalisation and normalisation algorithms The choice of attitude representation Acceleration vector transformation algorithm Acceleration vector transformation using direction cosines Rotation correction Dynamic correction Acceleration vector transformation using quaternions Navigation algorithm Summary Generalized system performance analysis Introduction Propagation of errors in a two-dimensional strapdown navigation system Navigation in a non-rotating reference frame Navigation in a rotating reference frame The Schuler pendulum 339

8 Propagation of errors in a Schuler tuned system Discussion of results General error equations Derivation of error equations Discussion Analytical assessment Single channel error model Derivation of single channel error propagation equations Single-channel error propagation examples Assessment by simulation Introductory remarks Error modeling Simulation techniques Motion dependence of strapdown system performance Manoeuvre-dependent error terms Vibration dependent error terms Summary Integrated navigation systems Introduction Basic principles External navigation aids Radio navigation aids Satellite navigation aids Star trackers Surface radar trackers On-board measurements Doppler radar Magnetic measurements Altimeters Terrain referenced navigation Scene matching Continuous visual navigation System integration 401

9 13.6 Application of Kalman filtering to aided inertial navigation systems Introduction Design example of aiding INS-GPS integration Uncoupled systems Loosely coupled integration Tightly coupled integration Deep integration Concluding remarks INS aiding of GPS signal tracking Multi-sensor integrated navigation Summary Design example Introduction Background to the requirement The navigation system requirement Navigation data required Operating and storage environment Performance System reaction time Physical characteristics Why choose strapdown inertial navigation? Navigation system design and analysis process Introduction Choice of system mechanization Error budget calculations System alignment Choice of inertial instruments Computational requirements Electrical and mechanical interfaces Testing, calibration and compensation requirements Performance enhancement by aiding Concluding remarks Alternative applications of IN sensors and systems Introduction 441

10 15.2 Borehole surveying Introduction Historical background Inertial survey system System design requirements System design issues System calibration and test Concluding remarks Ship's inertial navigation systems (SINS) NATO SINS Vehicle stabilization and control Autopilots Passive missile roll control (rollerons) Intelligent transport systems - automotive applications Intelligent transport systems - trains Personal transport Equipment stabilization Aero-flexure compensation Laser beam director Laser radar Seeker-head stabilization Sightline stabilization Relative angular alignment Calibration and measurement Geodetic and geophysical measurements and observation of fundamental physical phenomena Other applications Moving-map displays Safety and arming units Aircraft ejection seats Agricultural survey Artillery pointing Other unusual applications Concluding remarks 508 Appendix A Kalman filtering 511 Appendix B Inertial navigation system error budgets 519

11 Appendix C Inertial system configurations 523 Appendix D Comparison of GPS and GLONASS satellite navigation systems 529 List of symbols 535 Glossary of principal terms 539 Index 549

Strapdown Inertial Navigation Technology

Strapdown Inertial Navigation Technology Strapdown Inertial Navigation Technology 2nd Edition David Titterton and John Weston The Institution of Engineering and Technology Preface xv 1 Introduction 1 1.1 Navigation 1 1.2 Inertial navigation 2

More information

Strapdown Inertial Navigation Technology. Second Edition. Volume 207 PROGRESS IN ASTRONAUTICS AND AERONAUTICS

Strapdown Inertial Navigation Technology. Second Edition. Volume 207 PROGRESS IN ASTRONAUTICS AND AERONAUTICS Strapdown Inertial Navigation Technology Second Edition D. H. Titterton Technical leader in Laser Systems at the Defence Science and Technology Laboratory (DSTL) Hampshire, UK J. L. Weston Principal Scientist

More information

Strapdown inertial navigation technology

Strapdown inertial navigation technology Strapdown inertial navigation technology D. H. Titterton and J. L. Weston Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers Contents Preface Page xiii 1 Introduction 1 1.1 Navigation

More information

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM Glossary of Navigation Terms accelerometer. A device that senses inertial reaction to measure linear or angular acceleration. In its simplest form, it consists of a case-mounted spring and mass arrangement

More information

Testing the Possibilities of Using IMUs with Different Types of Movements

Testing the Possibilities of Using IMUs with Different Types of Movements 137 Testing the Possibilities of Using IMUs with Different Types of Movements Kajánek, P. and Kopáčik A. Slovak University of Technology, Faculty of Civil Engineering, Radlinského 11, 81368 Bratislava,

More information

Strapdown system technology

Strapdown system technology Chapter 9 Strapdown system technology 9.1 Introduction The preceding chapters have described the fundamental principles of strapdown navigation systems and the sensors required to provide the necessary

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

Inertial Navigation Systems

Inertial Navigation Systems Inertial Navigation Systems Kiril Alexiev University of Pavia March 2017 1 /89 Navigation Estimate the position and orientation. Inertial navigation one of possible instruments. Newton law is used: F =

More information

Satellite Attitude Determination

Satellite Attitude Determination Satellite Attitude Determination AERO4701 Space Engineering 3 Week 5 Last Week Looked at GPS signals and pseudorange error terms Looked at GPS positioning from pseudorange data Looked at GPS error sources,

More information

Calibration of Inertial Measurement Units Using Pendulum Motion

Calibration of Inertial Measurement Units Using Pendulum Motion Technical Paper Int l J. of Aeronautical & Space Sci. 11(3), 234 239 (2010) DOI:10.5139/IJASS.2010.11.3.234 Calibration of Inertial Measurement Units Using Pendulum Motion Keeyoung Choi* and Se-ah Jang**

More information

Introduction to Inertial Navigation (INS tutorial short)

Introduction to Inertial Navigation (INS tutorial short) Introduction to Inertial Navigation (INS tutorial short) Note 1: This is a short (20 pages) tutorial. An extended (57 pages) tutorial that also includes Kalman filtering is available at http://www.navlab.net/publications/introduction_to

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München Sensors IMUs (inertial measurement units) Accelerometers

More information

STRAPDOWN ANALYTICS - SECOND EDITION. Notice - Strapdown Associates. Inc. Copyrighted Material

STRAPDOWN ANALYTICS - SECOND EDITION. Notice - Strapdown Associates. Inc. Copyrighted Material STRAPDOWN ANALYTICS - SECOND EDITION Notice - Strapdown Associates. Inc. Copyrighted Material 1 Introduction Inertial navigation is an autonomous process of computing position location by doubly integrating

More information

INTEGRATED TECH FOR INDUSTRIAL POSITIONING

INTEGRATED TECH FOR INDUSTRIAL POSITIONING INTEGRATED TECH FOR INDUSTRIAL POSITIONING Integrated Tech for Industrial Positioning aerospace.honeywell.com 1 Introduction We are the world leader in precision IMU technology and have built the majority

More information

navigation Isaac Skog

navigation Isaac Skog Foot-mounted zerovelocity aided inertial navigation Isaac Skog skog@kth.se Course Outline 1. Foot-mounted inertial navigation a. Basic idea b. Pros and cons 2. Inertial navigation a. The inertial sensors

More information

Inflight Alignment Simulation using Matlab Simulink

Inflight Alignment Simulation using Matlab Simulink Inflight Alignment Simulation using Matlab Simulink Authors, K. Chandana, Soumi Chakraborty, Saumya Shanker, R.S. Chandra Sekhar, G. Satheesh Reddy. RCI /DRDO.. 2012 The MathWorks, Inc. 1 Agenda with Challenging

More information

Satellite and Inertial Navigation and Positioning System

Satellite and Inertial Navigation and Positioning System Satellite and Inertial Navigation and Positioning System Project Proposal By: Luke Pfister Dan Monroe Project Advisors: Dr. In Soo Ahn Dr. Yufeng Lu EE 451 Senior Capstone Project December 10, 2009 PROJECT

More information

Inertial Measurement for planetary exploration: Accelerometers and Gyros

Inertial Measurement for planetary exploration: Accelerometers and Gyros Inertial Measurement for planetary exploration: Accelerometers and Gyros Bryan Wagenknecht 1 Significance of Inertial Measurement Important to know where am I? if you re an exploration robot Probably don

More information

CHARACTERIZATION AND CALIBRATION OF MEMS INERTIAL MEASUREMENT UNITS

CHARACTERIZATION AND CALIBRATION OF MEMS INERTIAL MEASUREMENT UNITS CHARACTERIZATION AND CALIBRATION OF MEMS INERTIAL MEASUREMENT UNITS ökçen Aslan 1,2, Afşar Saranlı 2 1 Defence Research and Development Institute (SAE), TÜBİTAK 2 Dept. of Electrical and Electronics Eng.,

More information

Alternative applications of IN sensors and systems

Alternative applications of IN sensors and systems Chapter 15 Alternative applications of IN sensors and systems 15.1 Introduction Much of this text book has concentrated on the design and operation of inertial sensors and systems for inertial navigation.

More information

Camera Drones Lecture 2 Control and Sensors

Camera Drones Lecture 2 Control and Sensors Camera Drones Lecture 2 Control and Sensors Ass.Prof. Friedrich Fraundorfer WS 2017 1 Outline Quadrotor control principles Sensors 2 Quadrotor control - Hovering Hovering means quadrotor needs to hold

More information

Error Simulation and Multi-Sensor Data Fusion

Error Simulation and Multi-Sensor Data Fusion Error Simulation and Multi-Sensor Data Fusion AERO4701 Space Engineering 3 Week 6 Last Week Looked at the problem of attitude determination for satellites Examined several common methods such as inertial

More information

An Intro to Gyros. FTC Team #6832. Science and Engineering Magnet - Dallas ISD

An Intro to Gyros. FTC Team #6832. Science and Engineering Magnet - Dallas ISD An Intro to Gyros FTC Team #6832 Science and Engineering Magnet - Dallas ISD Gyro Types - Mechanical Hubble Gyro Unit Gyro Types - Sensors Low cost MEMS Gyros High End Gyros Ring laser, fiber optic, hemispherical

More information

The Performance Evaluation of the Integration of Inertial Navigation System and Global Navigation Satellite System with Analytic Constraints

The Performance Evaluation of the Integration of Inertial Navigation System and Global Navigation Satellite System with Analytic Constraints Journal of Environmental Science and Engineering A 6 (2017) 313-319 doi:10.17265/2162-5298/2017.06.005 D DAVID PUBLISHING The Performance Evaluation of the Integration of Inertial Navigation System and

More information

Quaternion Kalman Filter Design Based on MEMS Sensors

Quaternion Kalman Filter Design Based on MEMS Sensors , pp.93-97 http://dx.doi.org/10.14257/astl.2014.76.20 Quaternion Kalman Filter Design Based on MEMS Sensors Su zhongbin,yanglei, Kong Qingming School of Electrical and Information. Northeast Agricultural

More information

4INERTIAL NAVIGATION CHAPTER 20. INTRODUCTION TO INERTIAL NAVIGATION...333

4INERTIAL NAVIGATION CHAPTER 20. INTRODUCTION TO INERTIAL NAVIGATION...333 4INERTIAL NAVIGATION CHAPTER 20. INTRODUCTION TO INERTIAL NAVIGATION...333 4 CHAPTER 20 INTRODUCTION TO INERTIAL NAVIGATION INTRODUCTION 2000. Background Inertial navigation is the process of measuring

More information

Line of Sight Stabilization Primer Table of Contents

Line of Sight Stabilization Primer Table of Contents Line of Sight Stabilization Primer Table of Contents Preface 1 Chapter 1.0 Introduction 3 Chapter 2.0 LOS Control Architecture and Design 11 2.1 Direct LOS Stabilization 15 2.2 Indirect LOS Stabilization

More information

ADVANTAGES OF INS CONTROL SYSTEMS

ADVANTAGES OF INS CONTROL SYSTEMS ADVANTAGES OF INS CONTROL SYSTEMS Pavol BOŽEK A, Aleksander I. KORŠUNOV B A Institute of Applied Informatics, Automation and Mathematics, Faculty of Material Science and Technology, Slovak University of

More information

GPS + Inertial Sensor Fusion

GPS + Inertial Sensor Fusion GPS + Inertial Sensor Fusion Senior Project Proposal Aleksey Lykov, William Tarpley, Anton Volkov Advisors: Dr. In Soo Ahn, Dr. Yufeng Lu Date: November 26, 2013 Project Summary The objective of this project

More information

HG4930 INERTIAL MEASUREMENT UNIT (IMU) Installation and Interface Manual

HG4930 INERTIAL MEASUREMENT UNIT (IMU) Installation and Interface Manual HG4930 INERTIAL MEASUREMENT UNIT (IMU) Installation and Interface Manual HG4930 Installation and Interface Manual aerospace.honeywell.com/hg4930 2 Table of Contents 4 5 6 10 11 13 13 Honeywell Industrial

More information

Dynamic Modelling for MEMS-IMU/Magnetometer Integrated Attitude and Heading Reference System

Dynamic Modelling for MEMS-IMU/Magnetometer Integrated Attitude and Heading Reference System International Global Navigation Satellite Systems Society IGNSS Symposium 211 University of New South Wales, Sydney, NSW, Australia 15 17 November, 211 Dynamic Modelling for MEMS-IMU/Magnetometer Integrated

More information

(1) and s k ωk. p k vk q

(1) and s k ωk. p k vk q Sensing and Perception: Localization and positioning Isaac Sog Project Assignment: GNSS aided INS In this project assignment you will wor with a type of navigation system referred to as a global navigation

More information

Satellite/Inertial Navigation and Positioning System (SINAPS)

Satellite/Inertial Navigation and Positioning System (SINAPS) Satellite/Inertial Navigation and Positioning System (SINAPS) Functional Requirements List and Performance Specifications by Daniel Monroe, Luke Pfister Advised By Drs. In Soo Ahn and Yufeng Lu ECE Department

More information

DriftLess Technology to improve inertial sensors

DriftLess Technology to improve inertial sensors Slide 1 of 19 DriftLess Technology to improve inertial sensors Marcel Ruizenaar, TNO marcel.ruizenaar@tno.nl Slide 2 of 19 Topics Problem, Drift in INS due to bias DriftLess technology What is it How it

More information

Introduction to Inertial Navigation and Kalman filtering

Introduction to Inertial Navigation and Kalman filtering Introduction to Inertial Navigation and Kalman filtering INS Tutorial, Norwegian Space Centre 2008.06.09 Kenneth Gade, FFI Outline Notation Inertial navigation Aided inertial navigation system (AINS) Implementing

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

INTEGRATED INERTIAL SATELLITE NAVIGATION SYSTEMS (Collected articles and papers, 235 pages) (in Russian) Under the editorship of V.G.Peshekhonov, Acad

INTEGRATED INERTIAL SATELLITE NAVIGATION SYSTEMS (Collected articles and papers, 235 pages) (in Russian) Under the editorship of V.G.Peshekhonov, Acad INTEGRATED INERTIAL SATELLITE NAVIGATION SYSTEMS (Collected articles and papers, 235 pages) (in Russian) Under the editorship of V.G.Peshekhonov, Academician of the Russian Academy of Sciences Author -

More information

Selection and Integration of Sensors Alex Spitzer 11/23/14

Selection and Integration of Sensors Alex Spitzer 11/23/14 Selection and Integration of Sensors Alex Spitzer aes368@cornell.edu 11/23/14 Sensors Perception of the outside world Cameras, DVL, Sonar, Pressure Accelerometers, Gyroscopes, Magnetometers Position vs

More information

Handout. and. brief description. Marine Gravity Meter KSS 32- M

Handout. and. brief description. Marine Gravity Meter KSS 32- M and brief description of Marine Gravity Meter KSS 32- M Copyright 1999-2010 Bodensee Gravitymeter Geosystem GmbH All rights reserved 1 KSS32-M Marine Gravity Meter Cover removed Copyright 1999-2010 Bodensee

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

AMG Series. Motorized Position and Rate Gimbals. Continuous 360 rotation of azimuth and elevation including built-in slip ring

AMG Series. Motorized Position and Rate Gimbals. Continuous 360 rotation of azimuth and elevation including built-in slip ring AMG Series Optical Mounts AMG Series Motorized Position and Rate Gimbals Continuous rotation of azimuth and elevation including built-in slip ring High accuracy angular position and rate capability Direct-drive

More information

Performance Evaluation of INS Based MEMES Inertial Measurement Unit

Performance Evaluation of INS Based MEMES Inertial Measurement Unit Int'l Journal of Computing, Communications & Instrumentation Engg. (IJCCIE) Vol. 2, Issue 1 (215) ISSN 2349-1469 EISSN 2349-1477 Performance Evaluation of Based MEMES Inertial Measurement Unit Othman Maklouf

More information

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016

Sensor Fusion: Potential, Challenges and Applications. Presented by KVH Industries and Geodetics, Inc. December 2016 Sensor Fusion: Potential, Challenges and Applications Presented by KVH Industries and Geodetics, Inc. December 2016 1 KVH Industries Overview Innovative technology company 600 employees worldwide Focused

More information

Simulation of GNSS/IMU Measurements. M. J. Smith, T. Moore, C. J. Hill, C. J. Noakes, C. Hide

Simulation of GNSS/IMU Measurements. M. J. Smith, T. Moore, C. J. Hill, C. J. Noakes, C. Hide Simulation of GNSS/IMU Measurements M. J. Smith, T. Moore, C. J. Hill, C. J. Noakes, C. Hide Institute of Engineering Surveying and Space Geodesy (IESSG) The University of Nottingham Keywords: Simulation,

More information

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017 Electric Electronic Engineering Bogazici University December 13, 2017 Absolute position measurement Outline Motion Odometry Inertial systems Environmental Tactile Proximity Sensing Ground-Based RF Beacons

More information

E80. Experimental Engineering. Lecture 9 Inertial Measurement

E80. Experimental Engineering. Lecture 9 Inertial Measurement Lecture 9 Inertial Measurement http://www.volker-doormann.org/physics.htm Feb. 19, 2013 Christopher M. Clark Where is the rocket? Outline Sensors People Accelerometers Gyroscopes Representations State

More information

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU

TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU TEST RESULTS OF A GPS/INERTIAL NAVIGATION SYSTEM USING A LOW COST MEMS IMU Alison K. Brown, Ph.D.* NAVSYS Corporation, 1496 Woodcarver Road, Colorado Springs, CO 891 USA, e-mail: abrown@navsys.com Abstract

More information

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education DIPARTIMENTO DI INGEGNERIA INDUSTRIALE Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education Mattia Mazzucato, Sergio Tronco, Andrea Valmorbida, Fabio Scibona and Enrico

More information

EE 570: Location and Navigation: Theory & Practice

EE 570: Location and Navigation: Theory & Practice EE 570: Location and Navigation: Theory & Practice Navigation Mathematics Tuesday 15 Jan 2013 NMT EE 570: Location and Navigation: Theory & Practice Slide 1 of 14 Coordinate Frames - ECI The Earth-Centered

More information

MEMS technology quality requirements as applied to multibeam echosounder. Jerzy DEMKOWICZ, Krzysztof BIKONIS

MEMS technology quality requirements as applied to multibeam echosounder. Jerzy DEMKOWICZ, Krzysztof BIKONIS MEMS technology quality requirements as applied to multibeam echosounder Jerzy DEMKOWICZ, Krzysztof BIKONIS Gdansk University of Technology Gdansk, Narutowicza str. 11/12, Poland demjot@eti.pg.gda.pl Small,

More information

Inertial Systems. Ekinox Series TACTICAL GRADE MEMS. Motion Sensing & Navigation IMU AHRS MRU INS VG

Inertial Systems. Ekinox Series TACTICAL GRADE MEMS. Motion Sensing & Navigation IMU AHRS MRU INS VG Ekinox Series TACTICAL GRADE MEMS Inertial Systems IMU AHRS MRU INS VG ITAR Free 0.05 RMS Motion Sensing & Navigation AEROSPACE GROUND MARINE Ekinox Series R&D specialists usually compromise between high

More information

SENSORIC SUBSYSTEM DESIGN FOR SMALL MODEL OF HELICOPTER

SENSORIC SUBSYSTEM DESIGN FOR SMALL MODEL OF HELICOPTER Acta Electrotechnica et Informatica, Vol. 13, No. 3, 2013, 17 21, DOI: 10.2478/aeei-2013-0034 17 SENSORIC SUBSYSTEM DESIGN FOR SMALL MODEL OF HELICOPTER Ján BAČÍK, Pavol FEDOR, Milan LACKO Department of

More information

DYNAMIC POSITIONING CONFERENCE September 16-17, Sensors

DYNAMIC POSITIONING CONFERENCE September 16-17, Sensors DYNAMIC POSITIONING CONFERENCE September 16-17, 2003 Sensors An Integrated acoustic positioning and inertial navigation system Jan Erik Faugstadmo, Hans Petter Jacobsen Kongsberg Simrad, Norway Revisions

More information

Me 3-Axis Accelerometer and Gyro Sensor

Me 3-Axis Accelerometer and Gyro Sensor Me 3-Axis Accelerometer and Gyro Sensor SKU: 11012 Weight: 20.00 Gram Description: Me 3-Axis Accelerometer and Gyro Sensor is a motion processing module. It can use to measure the angular rate and the

More information

Publ. Astron. Obs. Belgrade No. 91 (2012), COSMIC NAVIGATION AND INERTIAL NAVIGATION SYSTEM 1. INTRODUCTION

Publ. Astron. Obs. Belgrade No. 91 (2012), COSMIC NAVIGATION AND INERTIAL NAVIGATION SYSTEM 1. INTRODUCTION Publ. Astron. Obs. Belgrade No. 91 (212), 89-96 Contributed paper COSMIC NAVIGATION AND INERTIAL NAVIGATION SYSTEM B. SAMARDŽIJA and S. ŠEGAN Department of Astronomy, Faculty of Mathematics, Studentski

More information

Satellite Attitude Determination II

Satellite Attitude Determination II Satellite Attitude Determination II AERO4701 Space Engineering 3 Week 7 Last Week Looked at the problem of attitude determination for satellites Examined several common methods such as inertial navigation,

More information

Chapters 1 9: Overview

Chapters 1 9: Overview Chapters 1 9: Overview Chapter 1: Introduction Chapters 2 4: Data acquisition Chapters 5 9: Data manipulation Chapter 5: Vertical imagery Chapter 6: Image coordinate measurements and refinements Chapters

More information

Perspective Sensing for Inertial Stabilization

Perspective Sensing for Inertial Stabilization Perspective Sensing for Inertial Stabilization Dr. Bernard A. Schnaufer Jeremy Nadke Advanced Technology Center Rockwell Collins, Inc. Cedar Rapids, IA Agenda Rockwell Collins & the Advanced Technology

More information

Deepwater Spoolpiece Metrology and INS

Deepwater Spoolpiece Metrology and INS Deepwater Spoolpiece Metrology and INS ir. Wilbert Brink AVANS Hogeschool - 16 June 2009 Introduction What is a deepwater spoolpiece metrology? What is the classical way of doing a metrology? How can we

More information

Indoor navigation using smartphones. Chris Hide IESSG, University of Nottingham, UK

Indoor navigation using smartphones. Chris Hide IESSG, University of Nottingham, UK Indoor navigation using smartphones Chris Hide IESSG, University of Nottingham, UK Overview Smartphones Available sensors Current positioning methods Positioning research at IESSG 1. Wi-Fi fingerprinting

More information

Exterior Orientation Parameters

Exterior Orientation Parameters Exterior Orientation Parameters PERS 12/2001 pp 1321-1332 Karsten Jacobsen, Institute for Photogrammetry and GeoInformation, University of Hannover, Germany The georeference of any photogrammetric product

More information

SIMA Raw Data Simulation Software for the Development and Validation of Algorithms. Platforms

SIMA Raw Data Simulation Software for the Development and Validation of Algorithms. Platforms FIG working week 2012 Rome SIMA Raw Data Simulation Software for the Development and Validation of Algorithms for GNSS and MEMS based Multi Sensor Navigation Platforms Andreas Hoscislawski HS Karlsruhe,

More information

CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES

CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING 19-21 April 2012, Tallinn, Estonia CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES Tiimus, K. & Tamre, M.

More information

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Przemys law G asior, Stanis law Gardecki, Jaros law Gośliński and Wojciech Giernacki Poznan University of

More information

Inertial Navigation Static Calibration

Inertial Navigation Static Calibration INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 243 248 Manuscript received December 2, 2017; revised April, 2018. DOI: 10.24425/119518 Inertial Navigation Static Calibration

More information

Review Paper: Inertial Measurement

Review Paper: Inertial Measurement Review Paper: Inertial Measurement William T. Conlin (wtconlin@gmail.com) arxiv:1708.04325v1 [cs.ro] 8 Aug 2017 May 2017 Abstract Applications of inertial measurement units are extremely diverse, and are

More information

Modeling, Parameter Estimation, and Navigation of Indoor Quadrotor Robots

Modeling, Parameter Estimation, and Navigation of Indoor Quadrotor Robots Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2013-04-29 Modeling, Parameter Estimation, and Navigation of Indoor Quadrotor Robots Stephen C. Quebe Brigham Young University

More information

COARSE LEVELING OF INS ATTITUDE UNDER DYNAMIC TRAJECTORY CONDITIONS. Paul G. Savage Strapdown Associates, Inc.

COARSE LEVELING OF INS ATTITUDE UNDER DYNAMIC TRAJECTORY CONDITIONS. Paul G. Savage Strapdown Associates, Inc. COARSE LEVELIG OF IS ATTITUDE UDER DYAMIC TRAJECTORY CODITIOS Paul G. Savage Strapdown Associates, Inc. SAI-W-147 www.strapdownassociates.com January 28, 215 ASTRACT Approximate attitude initialization

More information

Attitude Control for Small Satellites using Control Moment Gyros

Attitude Control for Small Satellites using Control Moment Gyros Attitude Control for Small Satellites using Control Moment Gyros V Lappas a, Dr WH Steyn b, Dr CI Underwood c a Graduate Student, University of Surrey, Guildford, Surrey GU 5XH, UK b Professor, University

More information

An Alternative Gyroscope Calibration Methodology

An Alternative Gyroscope Calibration Methodology An Alternative Gyroscope Calibration Methodology by Jan Abraham Francois du Plessis A thesis submitted in partial fulfilment for the degree of DOCTOR INGENERIAE in ELECTRICAL AND ELECTRONIC ENGINEERING

More information

ITEM 9 Navigation Equipment

ITEM 9 Navigation Equipment ITEM 9 Navigation Equipment CATEGORY II ~ ITEM 9 Navigation Instrumentation, navigation and direction finding equipment and systems, and associated production and test equipment as follows; and specially

More information

ROTATING IMU FOR PEDESTRIAN NAVIGATION

ROTATING IMU FOR PEDESTRIAN NAVIGATION ROTATING IMU FOR PEDESTRIAN NAVIGATION ABSTRACT Khairi Abdulrahim Faculty of Science and Technology Universiti Sains Islam Malaysia (USIM) Malaysia A pedestrian navigation system using a low-cost inertial

More information

Inertial Navigation Systems and Its Practical Applications

Inertial Navigation Systems and Its Practical Applications Chapter 10 Inertial Navigation Systems and Its Practical Applications Aleksander Nawrat, Karol Jędrasiak, Krzysztof Daniec and Roman Koteras Additional information is available at the end of the chapter

More information

Calibration of Triaxial Accelerometer and Triaxial Magnetometer for Tilt Compensated Electronic Compass

Calibration of Triaxial Accelerometer and Triaxial Magnetometer for Tilt Compensated Electronic Compass Calibration of Triaxial ccelerometer and Triaxial agnetometer for Tilt Compensated Electronic Compass les Kuncar artin ysel Tomas Urbanek Faculty of pplied Informatics Tomas ata University in lin Nad tranemi

More information

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH

CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 27 CHAPTER 2 SENSOR DATA SIMULATION: A KINEMATIC APPROACH 2.1 INTRODUCTION The standard technique of generating sensor data for navigation is the dynamic approach. As revealed in the literature (John Blakelock

More information

Integrated Inertial Positioning Systems

Integrated Inertial Positioning Systems Integrated Inertial Positioning Systems Some facts, some editorial and some biased opinions Inertial Tools - What instruments are currently in daily use for Survey? In our business Inertial navigation

More information

GI-Eye II GPS/Inertial System For Target Geo-Location and Image Geo-Referencing

GI-Eye II GPS/Inertial System For Target Geo-Location and Image Geo-Referencing GI-Eye II GPS/Inertial System For Target Geo-Location and Image Geo-Referencing David Boid, Alison Brown, Ph. D., Mark Nylund, Dan Sullivan NAVSYS Corporation 14960 Woodcarver Road, Colorado Springs, CO

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY HEAD TRACKING FOR 3D AUDIO USING A GPS-AIDED MEMS IMU THESIS Jacque M. Joffrion, Captain, USAF AFIT/GE/ENG/5-9 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson

More information

MULTI-SENSOR DATA FUSION FOR LAND VEHICLE ATTITUDE ESTIMATION USING A FUZZY EXPERT SYSTEM

MULTI-SENSOR DATA FUSION FOR LAND VEHICLE ATTITUDE ESTIMATION USING A FUZZY EXPERT SYSTEM Data Science Journal, Volume 4, 28 November 2005 127 MULTI-SENSOR DATA FUSION FOR LAND VEHICLE ATTITUDE ESTIMATION USING A FUZZY EXPERT SYSTEM Jau-Hsiung Wang* and Yang Gao Department of Geomatics Engineering,

More information

Preliminary Results with a Low-Cost Fiber-Optic Gyrocompass System

Preliminary Results with a Low-Cost Fiber-Optic Gyrocompass System Preliminary Results with a Low-Cost Fiber-Optic Gyrocompass System Andrew R. Spielvogel and Louis L. Whitcomb Abstract This paper reports results of preliminary numerical simulation studies and preliminary

More information

Qinertia THE NEXT GENERATION INS/GNSS POST-PROCESSING SOFTWARE. For all mobile surveying applications

Qinertia THE NEXT GENERATION INS/GNSS POST-PROCESSING SOFTWARE. For all mobile surveying applications Qinertia THE NEXT GENERATION /GNSS POST-PROCESSING SOFTWARE For all mobile surveying applications Survey Efficiently, Survey Anywhere, Survey Serenely. QINERTIA has been designed to help surveyors get

More information

Use of Image aided Navigation for UAV Navigation and Target Geolocation in Urban and GPS denied Environments

Use of Image aided Navigation for UAV Navigation and Target Geolocation in Urban and GPS denied Environments Use of Image aided Navigation for UAV Navigation and Target Geolocation in Urban and GPS denied Environments Precision Strike Technology Symposium Alison K. Brown, Ph.D. NAVSYS Corporation, Colorado Phone:

More information

Vehicle s Kinematics Measurement with IMU

Vehicle s Kinematics Measurement with IMU 536441 Vehicle dnamics and control laborator Vehicle s Kinematics Measurement with IMU This laborator is design to introduce ou to understand and acquire the inertia properties for using in the vehicle

More information

( B Scheme Main, Re-appear & Improvement)

( B Scheme Main, Re-appear & Improvement) Theory Date Sheet of B. Tech. 2 nd Sem. (May 2018 Examinations) Time of Exam:. 09:30 AM to 12:30 PM for Morning Session (M) Time of Exam:. 02:00 PM to 05:00 PM for Evening Session (E) ( B Scheme Main,

More information

Camera and Inertial Sensor Fusion

Camera and Inertial Sensor Fusion January 6, 2018 For First Robotics 2018 Camera and Inertial Sensor Fusion David Zhang david.chao.zhang@gmail.com Version 4.1 1 My Background Ph.D. of Physics - Penn State Univ. Research scientist at SRI

More information

Encoder applications. I Most common use case: Combination with motors

Encoder applications. I Most common use case: Combination with motors 3.5 Rotation / Motion - Encoder applications 64-424 Intelligent Robotics Encoder applications I Most common use case: Combination with motors I Used to measure relative rotation angle, rotational direction

More information

4-20mA SERIES Single or Dual Axis MEMS Inclinometer

4-20mA SERIES Single or Dual Axis MEMS Inclinometer 4-20mA SERIES Single or Dual Axis MEMS Inclinometer The 2GIG 4-20mA Inclinometer is engineered to work for all applications. The internal software provides unlimited programming capabilities. It offers

More information

Orientation Capture of a Walker s Leg Using Inexpensive Inertial Sensors with Optimized Complementary Filter Design

Orientation Capture of a Walker s Leg Using Inexpensive Inertial Sensors with Optimized Complementary Filter Design Orientation Capture of a Walker s Leg Using Inexpensive Inertial Sensors with Optimized Complementary Filter Design Sebastian Andersson School of Software Engineering Tongji University Shanghai, China

More information

APN-080: SPAN Data Collection Recommendations

APN-080: SPAN Data Collection Recommendations APN-080: SPAN Data Collection Recommendations APN-080 0A January 2018 Table of Contents Chapter 1 Overview 1.1 IMU Type 3 Chapter 2 INS Alignment 2.1 INS Alignment Environment 4 2.2 INS Alignment Quality

More information

System for definition of the pipeline diagram

System for definition of the pipeline diagram System for definition of the pipeline diagram SERGIY SADOVNYCHIY Pipeline research program, Mexican Petroleum Institute, Eje Central Lázaro Cárdenas Nte152 Col San Bartolo Atepehuacan México, DF CP07730,

More information

ECGR4161/5196 Lecture 6 June 9, 2011

ECGR4161/5196 Lecture 6 June 9, 2011 ECGR4161/5196 Lecture 6 June 9, 2011 YouTube Videos: http://www.youtube.com/watch?v=7hag6zgj78o&feature=p layer_embedded Micro Robotics Worlds smallest robot - Version 1 - "tank" Worlds smallest robot

More information

GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing

GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing GPS-Aided Inertial Navigation Systems (INS) for Remote Sensing www.inertiallabs.com 1 EVOLUTION OF REMOTE SENSING The latest progress in Remote sensing emerged more than 150 years ago, as balloonists took

More information

Verified Approaches to Inertial Navigation. Oleg S. Salychev

Verified Approaches to Inertial Navigation. Oleg S. Salychev Verified Approaches to Inertial Navigation Oleg S. Salychev Published by the BMSTU Press Moscow, Russia 2017 Dr. Oleg S. Salychev The Bauman Moscow State Technical University Moscow, Russia A new book

More information

An Overview of Applanix.

An Overview of Applanix. An Overview of Applanix The Company The Industry Leader in Developing Aided Inertial Technology Founded on Canadian Aerospace and Defense Industry Expertise Providing Precise Position and Orientation Systems

More information

Development of a MEMs-Based IMU Unit

Development of a MEMs-Based IMU Unit Development of a MEMs-Based IMU Unit Başaran Bahadır Koçer, Vasfi Emre Ömürlü, Erhan Akdoğan, Celâl Sami Tüfekçi Department of Mechatronics Engineering Yildiz Technical University Turkey, Istanbul Abstract

More information

Tracking of Human Arm Based on MEMS Sensors

Tracking of Human Arm Based on MEMS Sensors Tracking of Human Arm Based on MEMS Sensors Yuxiang Zhang 1, Liuyi Ma 1, Tongda Zhang 2, Fuhou Xu 1 1 23 office, Xi an Research Inst.of Hi-Tech Hongqing Town, Xi an, 7125 P.R.China 2 Department of Automation,

More information

INERTIAL NAVIGATION SYSTEM DEVELOPED FOR MEMS APPLICATIONS

INERTIAL NAVIGATION SYSTEM DEVELOPED FOR MEMS APPLICATIONS INERTIAL NAVIGATION SYSTEM DEVELOPED FOR MEMS APPLICATIONS P. Lavoie 1, D. Li 2 and R. Jr. Landry 3 NRG (Navigation Research Group) of LACIME Laboratory École de Technologie Supérieure 1100, Notre Dame

More information

Inertial Measurement Units I!

Inertial Measurement Units I! ! Inertial Measurement Units I! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 9! stanford.edu/class/ee267/!! Lecture Overview! coordinate systems (world, body/sensor, inertial,

More information

Beam-pointing angle calibration of the Wyoming Cloud Radar on the Wyoming King Air aircraft

Beam-pointing angle calibration of the Wyoming Cloud Radar on the Wyoming King Air aircraft Beam-pointing angle calibration of the Wyoming Cloud Radar on the Wyoming King Air aircraft Samuel Haimov, Alfred Rodi University of Wyoming, Atmospheric Science Department, Laramie, WY 82071, U.S.A.,

More information

The Applanix Approach to GPS/INS Integration

The Applanix Approach to GPS/INS Integration Lithopoulos 53 The Applanix Approach to GPS/INS Integration ERIK LITHOPOULOS, Markham ABSTRACT The Position and Orientation System for Direct Georeferencing (POS/DG) is an off-the-shelf integrated GPS/inertial

More information