Evacuate Now? Faster-than-real-time Shallow Water Simulations on GPUs. NVIDIA GPU Technology Conference San Jose, California, 2010 André R.

Size: px
Start display at page:

Download "Evacuate Now? Faster-than-real-time Shallow Water Simulations on GPUs. NVIDIA GPU Technology Conference San Jose, California, 2010 André R."

Transcription

1 Evacuate Now? Faster-than-real-time Shallow Water Simulations on GPUs NVIDIA GPU Technology Conference San Jose, California, 2010 André R. Brodtkorb

2 Talk Outline Learn how to simulate a half an hour dam break in 27 seconds Introduction Why Shallow Water Simulations? The Shallow Water Equations Numerical scheme Our contribution Simulator Implementation Results including screen capture video Live Demo on a standard Laptop Summary 2

3 The Shallow Water Equations First described by de Saint-Venant ( ) Gravity-induced fluid motion 2D free surface Negligible vertical acceleration Wave length much larger than depth Conservation of mass and momentum Not only for water: Atmospheric flow Avalanches... Water image from / Ian Britton 3

4 Target application areas Tsunamis Floods 2004 Indian Ocean (230000) 2010: Pakistan (2000+) Storm Surges Dam breaks 2005 Hurricane Katrina (1836) 1959 Malpasset (423) Images from wikipedia.org 4

5 Mathematical Formulation Vector of Conserved variables Flux Functions Bed slope source term Bed friction source term 5

6 The Shallow Water Equations Water depth, discharge (u), and discharge (v) 6

7 Explicit Numerical Schemes Hyperbolic partial differential equation Enables explicit schemes Accurate modeling of discontinuities / shocks High accuracy in smooth parts without oscillations near discontinuities Capable of representing dry states Negative water depths ruin simulations Images from wikipedia.org, James Kilfiger 7

8 Explicit Numerical Schemes Additional wanted properties: Second order accurate fluxes Total variation diminishing Well balancedness 8

9 Explicit Numerical Schemes Additional wanted properties: Second order accurate fluxes Total variation diminishing Well balancedness Scheme of choice: A. Kurganov and G. Petrova, A Second-Order Well-Balanced Positivity Preserving Central-Upwind Scheme for the Saint-Venant System Communications in Mathematical Sciences, 5 (2007),

10 Kurganov-Petrova Spatial discretization Rewrite in terms of w=h+b Write on vector form Impose finite-volume grid 10

11 Kurganov-Petrova Finite Volume Grid Q defined as cell averages B defined as piecewise bilinear F and G calculated across cell interfaces Source terms, H, calculated as cell averages 11

12 Kurganov-Petrova Flux calculations Continuous variables Discrete variables Slope reconstruction Flux calculation Integration points Dry states fix 12

13 Kurganov-Petrova Temporal discretization Gather all explicit terms One ordinary differential equation in time per cell 13

14 Kurganov-Petrova Temporal discretization Discretize using second order Runge-Kutta Total variation diminishing Semi-implicit friction source term Discretize in time 14

15 Kurganov-Petrova CFL condition Explicit scheme, time step restriction: Time step size restricted by a Courant-Friedrichs-Lewy condition The numerical domain of dependence must include the domain of dependence of the equation Each wave is allowed to travel at most one quarter grid cell per time step Space Mathematical propagation speed Unstable Time Stable 15

16 Kurganov-Petrova Simulation cycle 1. Calculate fluxes 2. Calculate Dt 6. Boundary conditions 3. Halfstep 5. Evolve in time 4. Calculate fluxes 16

17 Implementation GPU code Four CUDA kernels: 87% Flux <1% Timestep size (CFL condition) 12% Forward euler step <1% Set boundary conditions Step 17

18 Flux kernel Domain decomposition A nine-point nonlinear stencil Comprised of simpler stencils Heavy use of shmem Computationally demanding Traditional Block Decomposition Overlaping ghost cells (aka. apron) Global ghost cells for boundary conditions Domain padding 18

19 Flux kernel Block size Block size is 16x14 Warp size: multiple of 32 Shared memory use: 16 shmem buffers use ~16 KB Occupancy Use 48 KB shared mem, 16 KB cache Three resident blocks Trades cache for occupancy Fermi cache Global memory access 19

20 Flux kernel - computations Input Slopes Integration points Flux Calculations Flux across north and east interface Bed slope source term for the cell Collective stencil operations n threads, and n+1 interfaces one warp performs extra calculations! Alternative is one thread per stencil operation Many idle threads, and extra register pressure 20

21 Flux kernel flux limiter Limits the fluxes to obtain non-oscillatory solution Generalized minmod limiter Least steep slope, or Zero if signs differ Creates divergent code paths Use branchless implementation (2007) Requires special sign function Much faster than naïve approach float minmod(float a, float b, float c) { return 0.25f *sign(a) *(sign(a) + sign(b)) *(sign(b) + sign(c)) *min( min(abs(a), abs(b)), abs(c) ); } (2007) T. Hagen, M. Henriksen, J. Hjelmervik, and K.-A. Lie. How to solve systems of conservation laws numerically using the graphics processor as a high-performance computational engine. Geometrical Modeling, Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF, ( ). Springer Verlag,

22 Timestep size kernel Flux kernel calculates wave speed per cell Find global maximum Calculate timestep using the CFL condition Parallel reduction: Models CUDA SDK sample Template code Fully coalesced reads Without bank conflicts Optimization Perform partial reduction in flux kernel Reduces memory and bandwidth by a factor x14 1 Image from Optimizing Parallel Reduction in CUDA, Mark Harris 22

23 Time integration kernel Computes Q* or Q n+1 Solves the time-ode per cell Trivial to implement Fully coalesced memory access Memory bound 23

24 Boundary conditions kernel Global boundary uses ghost cells Fixed inlet / outlet discharge Fixed depth Reflecting Outflow/Absorbing Global boundary Local ghost cells Currently no mixed boundaries Can also supply hydrograph Tsunamies Storm surges Tidal waves 3.5m Tsunami, 1h 10m Storm Surge, 4d 24

25 Boundary conditions kernel Similar to CUDA SDK reduction sample, using templates: One block sets all four boundaries Boundary length (>64, >128, >256, >512) Boundary type ( none, reflecting, fixed depth, fixed discharge, absorbing outlet) In total: 4*5*5*5*5 = 2500 realizations switch(block.x) { case 512: BCKernelLauncher<512, N, S, E, W>(grid, block, stream); break; case 256: BCKernelLauncher<256, N, S, E, W>(grid, block, stream); break; case 128: BCKernelLauncher<128, N, S, E, W>(grid, block, stream); break; case 64: BCKernelLauncher< 64, N, S, E, W>(grid, block, stream); break; } 25

26 Optimization: Early exit Observation: Many dry areas do not require computation Use a small buffer to store wet blocks Exit flux kernel if nearest neighbours are dry Up-to 6x speedup Blocks still have to be scheduled Blocks read the auxiliary buffer One wet cell marks the whole block as wet 26

27 Results - Performance Circular Dam break 1st order Euler 30% wet cells: 1200 megacells / s 50% wet cells: 900 megacells / s 100% wet cells: 300 megacells / s 2nd order Runge-Kutta 30% wet cells: 600 megacells / s 50% wet cells: 450 megacells / s 100% wet cells: 150 megacells / s 27

28 Results Multiple GPUs Single-node multi-gpu Four Tesla GPUs Threading Near-perfect weak scaling Near-perfect strong scaling Up-to 380 million cells (16 GB) x cells 28

29 Verification 2D Parabolic basin Planar water surface oscillates 100 x 100 cells Horizontal scale: 8 km Vertical scale: 3.3 m Simulation and analytical match well But, as most schemes, growing errors along wet-dry interface 29

30 Validation Barrage de Malpasset South-east France near Fréjus Bursts at 21:13 December 2nd meter high wall of water 70 km/h (43 mi/h) Reaches mediterranean in 30 minutes 423 casualties, $68 million in damages Double curvature dam 66.5 m high 220 m crest length 55 million cubic metres of water Images from Google maps, TeraMetrics 30

31 Validation Experimental data from 1:400 model cells 1100 x 440 bathymetry values 15 meter resolution Accurately predicts maximum elevation and front arrival time Largest discrepancy at gauges 14 (arrival time) and 9 (elevation) Compares well with published results 31

32 Implementation CPU framework Simulation loop executed by CPU Output to netcdf Direct visualization via OpenGL 32

33 Video: 33

34 Live Demo Dell XPS m1330, Flamingo Pink Purchased , price ~$1850 Intel Core 2 duo 2.5 GHz 4.0 GB RAM NVIDIA GeForce 8400M GS 128 MB graphics RAM Only 16 cuda cores (GTX 480 has 448) Windows Vista Ultimate SP2 32-bit CUDA toolkit/sdk bit CUDA Driver Microsoft Visual Studio 2008 Images from dell.com 34

35 Summary Learn how to simulate a half an hour dam break in seconds Faster than real-time performance megacells per second Verified and validated results Can accurately predict real-world events using single precision Direct visualization Interactive exploration of simulation results 35

36 References A. R. Brodtkorb, T. R. Hagen, K.-A. Lie and J. R. Natvig, Simulation and Visualization of the Saint-Venant System using GPUs, Computing and Visualization in Science, 2010 special issue on Hot topics in Computational Engineering, [forthcoming]. A. R. Brodtkorb, M. L. Sætra, and M. Altinakar, Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation, in review, A. R. Brodtkorb, Scientific Computing on Heterogeneous Architectures Ph.D. Thesis, University of Oslo, Submitted,

37 Thank you for your attention. Questions?

Shallow Water Simulations on Graphics Hardware

Shallow Water Simulations on Graphics Hardware Shallow Water Simulations on Graphics Hardware Ph.D. Thesis Presentation 2014-06-27 Martin Lilleeng Sætra Outline Introduction Parallel Computing and the GPU Simulating Shallow Water Flow Topics of Thesis

More information

Simulaciones Eficientes de las Ecuaciones de Aguas Someras en GPU

Simulaciones Eficientes de las Ecuaciones de Aguas Someras en GPU Simulaciones Eficientes de las Ecuaciones de Aguas Someras en GPU André R. Brodtkorb, Ph.D., Research Scientist, SINTEF ICT, Department of Applied Mathematics, Norway Email: Andre.Brodtkorb@sintef.no 2012-07-30

More information

Load-balancing multi-gpu shallow water simulations on small clusters

Load-balancing multi-gpu shallow water simulations on small clusters Load-balancing multi-gpu shallow water simulations on small clusters Gorm Skevik master thesis autumn 2014 Load-balancing multi-gpu shallow water simulations on small clusters Gorm Skevik 1st August 2014

More information

Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation

Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation 1 Revised personal version of final journal article : Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation André R. Brodtkorb a,, Martin L. Sætra b,

More information

Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation

Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation Efficient Shallow Water Simulations on GPUs: Implementation, Visualization, Verification, and Validation André R. Brodtkorb a,, Martin L. Sætra b, Mustafa Altinakar c a SINTEF ICT, Department of Applied

More information

EXPLICIT SHALLOW WATER SIMULATIONS ON GPUS: GUIDELINES AND BEST PRACTICES

EXPLICIT SHALLOW WATER SIMULATIONS ON GPUS: GUIDELINES AND BEST PRACTICES XIX International Conference on Water Resources CMWR University of Illinois at Urbana-Champaign June 7-, EXPLICIT SHALLOW WATER SIMULATIONS ON GPUS: GUIDELINES AND BEST PRACTICES André R. Brodtkorb, Martin

More information

Auto-tuning Shallow water simulations on GPUs

Auto-tuning Shallow water simulations on GPUs Auto-tuning Shallow water simulations on GPUs André B. Amundsen Master s Thesis Spring 2014 Auto-tuning Shallow water simulations on GPUs André B. Amundsen 15th May 2014 ii Abstract Graphic processing

More information

This is a draft of the paper entitled Simulation and Visualization of the Saint-Venant System using GPUs

This is a draft of the paper entitled Simulation and Visualization of the Saint-Venant System using GPUs SIMULATION AND VISUALIZATION OF THE SAINT-VENANT SYSTEM USING GPUS ANDRÉ R. BRODTKORB, TROND R. HAGEN, KNUT-ANDREAS LIE, AND JOSTEIN R. NATVIG This is a draft of the paper entitled Simulation and Visualization

More information

This is a draft of the paper entitled Simulation and Visualization of the Saint-Venant System using GPUs

This is a draft of the paper entitled Simulation and Visualization of the Saint-Venant System using GPUs SIMULATION AND VISUALIZATION OF THE SAINT-VENANT SYSTEM USING GPUS ANDRÉ R. BRODTKORB, TROND R. HAGEN, KNUT-ANDREAS LIE, AND JOSTEIN R. NATVIG This is a draft of the paper entitled Simulation and Visualization

More information

This is a draft. The full paper can be found in Journal of Scientific Computing xx(x):xx xx:

This is a draft. The full paper can be found in Journal of Scientific Computing xx(x):xx xx: EFFICIENT GPU-IMPLEMENTATION OF ADAPTIVE MESH REFINEMENT FOR THE SHALLOW-WATER EQUATIONS MARTIN L. SÆTRA 1,2, ANDRÉ R. BRODTKORB 3, AND KNUT-ANDREAS LIE 1,3 This is a draft. The full paper can be found

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

A GPU Implementation for Two-Dimensional Shallow Water Modeling arxiv: v1 [cs.dc] 5 Sep 2013

A GPU Implementation for Two-Dimensional Shallow Water Modeling arxiv: v1 [cs.dc] 5 Sep 2013 A GPU Implementation for Two-Dimensional Shallow Water Modeling arxiv:1309.1230v1 [cs.dc] 5 Sep 2013 Kerry A. Seitz, Jr. 1, Alex Kennedy 1, Owen Ransom 2, Bassam A. Younis 2, and John D. Owens 3 1 Department

More information

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Stefan Vater 1 Kaveh Rahnema 2 Jörn Behrens 1 Michael Bader 2 1 Universität Hamburg 2014 PDES Workshop 2 TU München Partial

More information

Simulating Shallow Water on GPUs Programming of Heterogeneous Systems in Physics

Simulating Shallow Water on GPUs Programming of Heterogeneous Systems in Physics Simulating Shallow Water on GPUs Programming of Heterogeneous Systems in Physics Martin Pfeiffer (m.pfeiffer@uni-jena.de) Friedrich Schiller University Jena 06.10.2011 Simulating Shallow Water on GPUs

More information

MET report. One-Layer Shallow Water Models on the GPU

MET report. One-Layer Shallow Water Models on the GPU MET report no. 27/2013 Oceanography One-Layer Shallow Water Models on the GPU André R. Brodtkorb 1, Trond R. Hagen 2, Lars Petter Røed 3 1 SINTEF IKT, Avd. for Anvendt Matematikk 2 SINTEF IKT, Avd. for

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Simulation of one-layer shallow water systems on multicore and CUDA architectures

Simulation of one-layer shallow water systems on multicore and CUDA architectures Noname manuscript No. (will be inserted by the editor) Simulation of one-layer shallow water systems on multicore and CUDA architectures Marc de la Asunción José M. Mantas Manuel J. Castro Received: date

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA Adaptive Mesh Astrophysical Fluid Simulations on GPU San Jose 10/2/2009 Peng Wang, NVIDIA Overview Astrophysical motivation & the Enzo code Finite volume method and adaptive mesh refinement (AMR) CUDA

More information

Solving the Euler Equations on Graphics Processing Units

Solving the Euler Equations on Graphics Processing Units Solving the Euler Equations on Graphics Processing Units Trond Runar Hagen 1,2, Knut-Andreas Lie 1,2,andJosteinR.Natvig 1,2 1 SINTEF, Dept. Applied Math., P.O. Box 124 Blindern, N-0314 Oslo, Norway 2 Centre

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

Two-Phase flows on massively parallel multi-gpu clusters

Two-Phase flows on massively parallel multi-gpu clusters Two-Phase flows on massively parallel multi-gpu clusters Peter Zaspel Michael Griebel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Workshop Programming of Heterogeneous

More information

XP Solutions has a long history of Providing original, high-performing software solutions Leading the industry in customer service and support

XP Solutions has a long history of Providing original, high-performing software solutions Leading the industry in customer service and support XP Solutions has a long history of Providing original, high-performing software solutions Leading the industry in customer service and support Educating our customers to be more successful in their work.

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009

Scalable Multi Agent Simulation on the GPU. Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Scalable Multi Agent Simulation on the GPU Avi Bleiweiss NVIDIA Corporation San Jose, 2009 Reasoning Explicit State machine, serial Implicit Compute intensive Fits SIMT well Collision avoidance Motivation

More information

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow Archives of Hydro-Engineering and Environmental Mechanics Vol. 60 (2013), No. 1 4, pp. 51 62 DOI: 10.2478/heem-2013-0008 IBW PAN, ISSN 1231 3726 Lax-Wendroff and McCormack Schemes for Numerical Simulation

More information

A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates

A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates A mass-conservative version of the semi- Lagrangian semi-implicit HIRLAM using Lagrangian vertical coordinates Peter Hjort Lauritzen Atmospheric Modeling & Predictability Section National Center for Atmospheric

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Ivan Christov 1,* Bojan Popov 1 Peter Popov 2 1 Department of Mathematics, 2 Institute for Scientific

More information

Fast Tridiagonal Solvers on GPU

Fast Tridiagonal Solvers on GPU Fast Tridiagonal Solvers on GPU Yao Zhang John Owens UC Davis Jonathan Cohen NVIDIA GPU Technology Conference 2009 Outline Introduction Algorithms Design algorithms for GPU architecture Performance Bottleneck-based

More information

GPU Implementation of Implicit Runge-Kutta Methods

GPU Implementation of Implicit Runge-Kutta Methods GPU Implementation of Implicit Runge-Kutta Methods Navchetan Awasthi, Abhijith J Supercomputer Education and Research Centre Indian Institute of Science, Bangalore, India navchetanawasthi@gmail.com, abhijith31792@gmail.com

More information

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD 18th Engineering Mechanics Division Conference (EMD007) NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD Abstract S. Fu University of Texas at Austin, Austin,

More information

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli High performance 2D Discrete Fourier Transform on Heterogeneous Platforms Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli Motivation Fourier Transform widely used in Physics, Astronomy, Engineering

More information

How to Optimize Geometric Multigrid Methods on GPUs

How to Optimize Geometric Multigrid Methods on GPUs How to Optimize Geometric Multigrid Methods on GPUs Markus Stürmer, Harald Köstler, Ulrich Rüde System Simulation Group University Erlangen March 31st 2011 at Copper Schedule motivation imaging in gradient

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing

Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Radial Basis Function-Generated Finite Differences (RBF-FD): New Opportunities for Applications in Scientific Computing Natasha Flyer National Center for Atmospheric Research Boulder, CO Meshes vs. Mesh-free

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Mass-Spring Systems. Last Time?

Mass-Spring Systems. Last Time? Mass-Spring Systems Last Time? Implicit Surfaces & Marching Cubes/Tetras Collision Detection & Conservative Bounding Regions Spatial Acceleration Data Structures Octree, k-d tree, BSF tree 1 Today Particle

More information

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Interaction of Fluid Simulation Based on PhysX Physics Engine Huibai Wang, Jianfei Wan, Fengquan Zhang College

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

Towards real-time prediction of Tsunami impact effects on nearshore infrastructure

Towards real-time prediction of Tsunami impact effects on nearshore infrastructure Towards real-time prediction of Tsunami impact effects on nearshore infrastructure Manfred Krafczyk & Jonas Tölke Inst. for Computational Modeling in Civil Engineering http://www.cab.bau.tu-bs.de 24.04.2007

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

Parallelising Pipelined Wavefront Computations on the GPU

Parallelising Pipelined Wavefront Computations on the GPU Parallelising Pipelined Wavefront Computations on the GPU S.J. Pennycook G.R. Mudalige, S.D. Hammond, and S.A. Jarvis. High Performance Systems Group Department of Computer Science University of Warwick

More information

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Nikolai Sakharnykh - NVIDIA San Jose Convention Center, San Jose, CA September 21, 2010 Introduction Tridiagonal solvers very popular

More information

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences,

More information

GPGPU LAB. Case study: Finite-Difference Time- Domain Method on CUDA

GPGPU LAB. Case study: Finite-Difference Time- Domain Method on CUDA GPGPU LAB Case study: Finite-Difference Time- Domain Method on CUDA Ana Balevic IPVS 1 Finite-Difference Time-Domain Method Numerical computation of solutions to partial differential equations Explicit

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Ivan Christov Bojan Popov Department of Mathematics, Texas A&M University, College Station, Texas

More information

2006: Short-Range Molecular Dynamics on GPU. San Jose, CA September 22, 2010 Peng Wang, NVIDIA

2006: Short-Range Molecular Dynamics on GPU. San Jose, CA September 22, 2010 Peng Wang, NVIDIA 2006: Short-Range Molecular Dynamics on GPU San Jose, CA September 22, 2010 Peng Wang, NVIDIA Overview The LAMMPS molecular dynamics (MD) code Cell-list generation and force calculation Algorithm & performance

More information

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards

Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards Very fast simulation of nonlinear water waves in very large numerical wave tanks on affordable graphics cards By Allan P. Engsig-Karup, Morten Gorm Madsen and Stefan L. Glimberg DTU Informatics Workshop

More information

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the

More information

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION TODD F. DUPONT AND YINGJIE LIU Abstract. We propose a method that significantly

More information

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA

CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0. Julien Demouth, NVIDIA CUDA Optimization with NVIDIA Nsight Visual Studio Edition 3.0 Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nsight VSE APOD

More information

DISCONTINUOUS GALERKIN SHALLOW WATER SOLVER ON CUDA ARCHITECTURES

DISCONTINUOUS GALERKIN SHALLOW WATER SOLVER ON CUDA ARCHITECTURES 9 th International Conference on Hydroinformatics HIC 2010, Tianjin, CHINA DISCONTINUOUS GALERKIN SHALLOW WATER SOLVER ON CUDA ARCHITECTURES D. SCHWANENBERG Operational Water Management, Deltares, Rotterdamseweg

More information

Using GPUs to compute the multilevel summation of electrostatic forces

Using GPUs to compute the multilevel summation of electrostatic forces Using GPUs to compute the multilevel summation of electrostatic forces David J. Hardy Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

GPU - Next Generation Modeling for Catchment Floodplain Management. ASFPM Conference, Grand Rapids (June 2016) Chris Huxley

GPU - Next Generation Modeling for Catchment Floodplain Management. ASFPM Conference, Grand Rapids (June 2016) Chris Huxley GPU - Next Generation Modeling for Catchment Floodplain Management ASFPM Conference, Grand Rapids (June 2016) Chris Huxley Presentation Overview 1. What is GPU flood modeling? 2. What is possible using

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

Numerical Methods for Hyperbolic and Kinetic Equations

Numerical Methods for Hyperbolic and Kinetic Equations Numerical Methods for Hyperbolic and Kinetic Equations Organizer: G. Puppo Phenomena characterized by conservation (or balance laws) of physical quantities are modelled by hyperbolic and kinetic equations.

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

Homework 4A Due November 7th IN CLASS

Homework 4A Due November 7th IN CLASS CS207, Fall 2014 Systems Development for Computational Science Cris Cecka, Ray Jones Homework 4A Due November 7th IN CLASS Previously, we ve developed a quite robust Graph class to let us use Node and

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

Technology for a better society. SINTEF ICT, Applied Mathematics, Heterogeneous Computing Group

Technology for a better society. SINTEF ICT, Applied Mathematics, Heterogeneous Computing Group Technology for a better society SINTEF, Applied Mathematics, Heterogeneous Computing Group Trond Hagen GPU Computing Seminar, SINTEF Oslo, October 23, 2009 1 Agenda 12:30 Introduction and welcoming Trond

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

Introduction to MIKE FLOOD

Introduction to MIKE FLOOD Introduction to MIKE FLOOD HYDROEUROPE, Sophia-Antipolis, February 2011 Julie Landrein, DHI Denmark Introduction to MIKE FLOOD - Introduction to MIKE FLOOD - 1D Modelling: MIKE 11, MIKE URBAN - 2D Modelling:

More information

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement Lian Shen Department of Mechanical Engineering

More information

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA 3D ADI Method for Fluid Simulation on Multiple GPUs Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA Introduction Fluid simulation using direct numerical methods Gives the most accurate result Requires

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

In Proc. of the 13th Int. Conf. on Hydroinformatics, Preprint

In Proc. of the 13th Int. Conf. on Hydroinformatics, Preprint In Proc. of the 13th Int. Conf. on Hydroinformatics, 218 Theme: F. Environmental and Coastal Hydroinformatics Subtheme: F2. Surface and ground water modeling Special session: S7. Development and application

More information

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka

DIFFERENTIAL. Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka USE OF FOR Tomáš Oberhuber, Atsushi Suzuki, Jan Vacata, Vítězslav Žabka Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Mini workshop on advanced numerical methods

More information

Multi Agent Navigation on GPU. Avi Bleiweiss

Multi Agent Navigation on GPU. Avi Bleiweiss Multi Agent Navigation on GPU Avi Bleiweiss Reasoning Explicit Implicit Script, storytelling State machine, serial Compute intensive Fits SIMT architecture well Navigation planning Collision avoidance

More information

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs Gordon Erlebacher Department of Scientific Computing Sept. 28, 2012 with Dimitri Komatitsch (Pau,France) David Michea

More information

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Journal of the Persian Gulf (Marine Science)/Vol.1/No.1/September 2010/6/45-50 Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Sabbagh-Yazdi,

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

Accelerating CFD with Graphics Hardware

Accelerating CFD with Graphics Hardware Accelerating CFD with Graphics Hardware Graham Pullan (Whittle Laboratory, Cambridge University) 16 March 2009 Today Motivation CPUs and GPUs Programming NVIDIA GPUs with CUDA Application to turbomachinery

More information

Acceleration of a Python-based Tsunami Modelling Application via CUDA and OpenHMPP

Acceleration of a Python-based Tsunami Modelling Application via CUDA and OpenHMPP Acceleration of a Python-based Tsunami Modelling Application via CUDA and OpenHMPP Zhe Weng and Peter Strazdins*, Computer Systems Group, Research School of Computer Science, The Australian National University

More information

Coastal impact of a tsunami Review of numerical models

Coastal impact of a tsunami Review of numerical models Coastal impact of a tsunami Review of numerical models Richard Marcer 2 Content Physics to simulate Different approaches of modelling 2D depth average Full 3D Navier-Stokes 3D model Key point : free surface

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

The Shallow Water Equations and CUDA

The Shallow Water Equations and CUDA The Shallow Water Equations and CUDA Oliver Meister December 17 th 2014 Tutorial Parallel Programming and High Performance Computing, December 17 th 2014 1 Last Tutorial Discretized Heat Equation System

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

GPU-accelerated data expansion for the Marching Cubes algorithm

GPU-accelerated data expansion for the Marching Cubes algorithm GPU-accelerated data expansion for the Marching Cubes algorithm San Jose (CA) September 23rd, 2010 Christopher Dyken, SINTEF Norway Gernot Ziegler, NVIDIA UK Agenda Motivation & Background Data Compaction

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters

Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Flux Vector Splitting Methods for the Euler Equations on 3D Unstructured Meshes for CPU/GPU Clusters Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences,

More information

A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain

A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain 2th Annual CFD Symposium, August 9-1, 218, Bangalore A-posteriori Diffusion Analysis of Numerical Schemes in Wavenumber Domain S. M. Joshi & A. Chatterjee Department of Aerospace Engineering Indian Institute

More information

Asynchronous OpenCL/MPI numerical simulations of conservation laws

Asynchronous OpenCL/MPI numerical simulations of conservation laws Asynchronous OpenCL/MPI numerical simulations of conservation laws Philippe HELLUY 1,3, Thomas STRUB 2. 1 IRMA, Université de Strasbourg, 2 AxesSim, 3 Inria Tonus, France IWOCL 2015, Stanford Conservation

More information

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD TASK QUARTERLY 12 No 3, 273 287 FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD ZBIGNIEW KOSMA Institute of Applied Mechanics, Technical University

More information

A Two-Dimensional Numerical Scheme of Dry/Wet Fronts for the Saint-Venant System of Shallow Water Equations

A Two-Dimensional Numerical Scheme of Dry/Wet Fronts for the Saint-Venant System of Shallow Water Equations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 04; 00: 6 Published online in Wiley InterScience www.interscience.wiley.com. DOI: 0.00/fld A Two-Dimensional Numerical

More information

arxiv: v1 [cs.ms] 8 Aug 2018

arxiv: v1 [cs.ms] 8 Aug 2018 ACCELERATING WAVE-PROPAGATION ALGORITHMS WITH ADAPTIVE MESH REFINEMENT USING THE GRAPHICS PROCESSING UNIT (GPU) XINSHENG QIN, RANDALL LEVEQUE, AND MICHAEL MOTLEY arxiv:1808.02638v1 [cs.ms] 8 Aug 2018 Abstract.

More information

Advanced CUDA Optimizing to Get 20x Performance. Brent Oster

Advanced CUDA Optimizing to Get 20x Performance. Brent Oster Advanced CUDA Optimizing to Get 20x Performance Brent Oster Outline Motivation for optimizing in CUDA Demo performance increases Tesla 10-series architecture details Optimization case studies Particle

More information

Parallel Hyperbolic PDE Simulation on Clusters: Cell versus GPU

Parallel Hyperbolic PDE Simulation on Clusters: Cell versus GPU Parallel Hyperbolic PDE Simulation on Clusters: Cell versus GPU Scott Rostrup and Hans De Sterck Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada Abstract Increasingly,

More information

A laboratory-dualsphysics modelling approach to support landslide-tsunami hazard assessment

A laboratory-dualsphysics modelling approach to support landslide-tsunami hazard assessment A laboratory-dualsphysics modelling approach to support landslide-tsunami hazard assessment Lake Lucerne case, Switzerland, 2007 Dr. Valentin Heller (www.drvalentinheller.com) Geohazards and Earth Processes

More information

Exploiting graphical processing units for data-parallel scientific applications

Exploiting graphical processing units for data-parallel scientific applications CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2009; 21:2400 2437 Published online 20 July 2009 in Wiley InterScience (www.interscience.wiley.com)..1462 Exploiting

More information

Computational Astrophysics 5 Higher-order and AMR schemes

Computational Astrophysics 5 Higher-order and AMR schemes Computational Astrophysics 5 Higher-order and AMR schemes Oscar Agertz Outline - The Godunov Method - Second-order scheme with MUSCL - Slope limiters and TVD schemes - Characteristics tracing and 2D slopes.

More information

Graphics Processor Acceleration and YOU

Graphics Processor Acceleration and YOU Graphics Processor Acceleration and YOU James Phillips Research/gpu/ Goals of Lecture After this talk the audience will: Understand how GPUs differ from CPUs Understand the limits of GPU acceleration Have

More information

A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws

A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws HYP 2012, Padova A new multidimensional-type reconstruction and limiting procedure for unstructured (cell-centered) FVs solving hyperbolic conservation laws Argiris I. Delis & Ioannis K. Nikolos (TUC)

More information

State-of-the-art in Heterogeneous Computing

State-of-the-art in Heterogeneous Computing State-of-the-art in Heterogeneous Computing Guest Lecture NTNU Trond Hagen, Research Manager SINTEF, Department of Applied Mathematics 1 Overview Introduction GPU Programming Strategies Trends: Heterogeneous

More information