Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School

Size: px
Start display at page:

Download "Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School"

Transcription

1 Chapter 8.1 Conic Sections/Parabolas Honors Pre-Calculus Rogers High School

2 Introduction to Conic Sections Conic sections are defined geometrically as the result of the intersection of a plane with a right circular cone. Algebraically, conic sections are second degree equations of two variables which includes equations of the form Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 where A, B, and C do not all equal 0. The type of conic section is determined by the value of the coefficients. The most commonly studied conic sections include parabolas, ellipses, circles, lines, and points. For the next 2 or 3 weeks, we will focus on parabolas, circles, ellipses, and hyperbolas.

3 Graphical Representation of Conic Sections

4 Parabolas (Basics) Parabolas are defined as follows:

5 Parabola Terminology Focus a fixed point which lies on the axis of symmetry and inside the parabola Directrix a fixed line which is perpendicular to the axis of symmetry and lies outside the parabola Vertex the point where the parabola and the axis of symmetry intersect; it is halfway between the focus and directrix Focal Axis or Axis of Symmetry a line which passes through the middle of a parabola and intersects the focus, vertex, and directrix

6 Parabola Terminology Focal Length the directed distance from the vertex to the focus of a parabola Focal Width the length of a chord which is perpendicular to the focal axis and passes through the focus of a parabola Latus Rectum a chord which is perpendicular to the axis and passes through the focus of the parabola Standard Form (Equation) equations of the form x h 2 = 4p(y k) or y k 2 = 4p(x h)

7 Parabolas with Vertex at (0,0)

8 Graphs of Parabolas with Vertex at Origin

9 EXAMPLE #1 Find the focus, directrix, and the focal width of the parabola defined by the equation: y = 1 3 x 2 First, we need this to be in standard form. So we have x 2 = 3y. We need the value of p. From the equation, we know 4p = 3. Thus, p is 3 4. The focus is always at (0, p). So it is at (0, -3/4). The directrix is located at y = p. Thus, the directrix is at y = 3 4. Finally, the focal width is 4p. Thus, the focal width is 3.

10 EXAMPLE #2 Find the equation, in standard form, of a parabola if the focus is (-2, 0) and the directrix is the line x = 2. It may help to briefly sketch the elements given to visualize the graph. From your sketch, you should see that the parabola opens to the left. Additionally, its vertex must be halfway between the focus and directrix. So the vertex is at (0, 0). We need to find p. We know p is the directed distance from the vertex to the focus. So p is -2. Thus, our equation is of the form y 2 = 4px so y 2 = 8x is the equation.

11 HOMEWORK ASSIGNMENT (DAY 1) p. 587 [7 10, 11 16, 17 20, 31, 32, 37, 39]

12 Parabolas with Vertex (h, k)

13 Graphs of Parabolas with Vertex (h, k)

14 EXAMPLE #3 Find the standard form equation of a parabola with vertex (3, 4) and focus (5, 4). By graphing the information given, we can see this parabola opens to right. So the equation is of the form y k 2 = 4p(x h) and p is positive as well. We know the vertex is (3, 4). Thus, h = 3 and k = 4. Finally, we need to find p. Recall that p is the directed distance from vertex to focus. So we are moving from x = 3 to x = 5. That is a distance of 2. So p = 2. y k 2 = 4p(x h) becomes y 4 2 = 8(x 3)

15 EXAMPLE #4 Use your calculator to graph y 4 2 = 8(x 3) which was the equation we just found. Notice that this equation will contain y 2 which cannot normally be graphed in your standard Y = screen. So let s work on solving for y. y 4 2 = 8 x 3 [ORIGINAL] y 4 = ± 8 x 3 [SQUARE ROOT BOTH SIDES] y = 4 ± 8 x 3 [ADD 4 BOTH SIDES] We can graph each part + and separately in the calculator.

16 EXAMPLE #4 Put each part into the Y = screen. Then graph the result. You may need to change the window to get it to work well. Here I am using x values from -1 to 7 and y values from -2 to 10.

17 EXAMPLE #5 Show that y 2 6x + 2y + 13 = 0 is a parabola and find its vertex, focus, and directrix. First of all, this is a parabola because it has only one variable squared. However, let s put it into standard form to see that as well. y 2 6x + 2y + 13 = 0 y 2 + 2y + 1 = 6x [COMPLETE SQUARE] y = 6x 12 FACTOR y = 6 x 2 [FACTOR]

18 EXAMPLE #5 y = 6 x 2 Standard form is y k 2 = 4p x h Thus, we know the vertex is (h, k) which is (2, -1). The value of p must be 6/4 or 3/2. The focus would be at (h + p, k) which is (3.5, -1). The directrix is the line x = h p which would be x = 0.5.

19 Applications of Parabolas Since everyone wonders Why do we need to know this? I will point out the following reasons that parabolas are useful. Some of these may be known already. Projectile Motion Generally, projectiles follow parabolic curves when it motion Physics Many physics applications such as the stopping distance of a car use quadratic functions Electromagnetic Waves Many products which rely on electromagnetic waves such as car headlights, some headers, high tech microphones, and satellites use parabolic shapes to maximize effectiveness

20 EXAMPLE #6 On the sidelines of each of its televised football games, the ESPN uses a parabolic reflector with a microphone at the reflector s focus to capture the conversations among players on the field. If the parabolic reflector is 3 ft across and 1 ft deep, where should the microphone be placed? First of all, we will sketch a 2 dimension representation of the parabolic curve being used here.

21 EXAMPLE #6 From our drawing, we have a parabola of the form x 2 = 4py. We know the points (-1.5, 1) and (1.5, 1) lie on the graph as we were told it was 3 feet across. We can use these points to find p. ±1.5 2 = 4p 1 SUBSTITUTION 2.25 = 4p SIMPLIFY = p [DIVIDE BY 4] So the microphone should be feet from the vertex of the reflector.

22 HOMEWORK ASSIGNMENT (DAY 2) p. 587 [1 6, odd, 33 36, odd, 61]

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Unit 5: Quadratic Functions

Unit 5: Quadratic Functions Unit 5: Quadratic Functions LESSON #5: THE PARABOLA GEOMETRIC DEFINITION DIRECTRIX FOCUS LATUS RECTUM Geometric Definition of a Parabola Quadratic Functions Geometrically, a parabola is the set of all

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

Ex. 1-3: Put each circle below in the correct equation form as listed!! above, then determine the center and radius of each circle.

Ex. 1-3: Put each circle below in the correct equation form as listed!! above, then determine the center and radius of each circle. Day 1 Conics - Circles Equation of a Circle The circle with center (h, k) and radius r is the set of all points (x, y) that satisfies!! (x h) 2 + (y k) 2 = r 2 Ex. 1-3: Put each circle below in the correct

More information

Conic Sections and Analytic Geometry

Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry Chapter 9 Conic Sections and Analytic Geometry 9.1 The Ellipse 9.2 The Hyperbola 9.3 The Parabola 9.4 Rotation of Axes 9.5 Parametric Equations 9.6 Conic

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text. We start

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Acc. Pre Calculus Day 5 - Parabolas Notesheet PARABOLAS

Acc. Pre Calculus Day 5 - Parabolas Notesheet PARABOLAS Acc. Pre Calculus Day 5 - Parabolas Notesheet Name Date Block 1) Complete these truths about parabolas: * Parabolas are - shaped. PARABOLAS * Parabolas have a line of. * Parabolas are the graphs of functions.

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips:

We start by looking at a double cone. Think of this as two pointy ice cream cones that are connected at the small tips: Math 1330 Chapter 8 Conic Sections In this chapter, we will study conic sections (or conics). It is helpful to know exactly what a conic section is. This topic is covered in Chapter 8 of the online text.

More information

Math 155, Lecture Notes- Bonds

Math 155, Lecture Notes- Bonds Math 155, Lecture Notes- Bonds Name Section 10.1 Conics and Calculus In this section, we will study conic sections from a few different perspectives. We will consider the geometry-based idea that conics

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

Pre-Calculus. 2) Find the equation of the circle having (2, 5) and (-2, -1) as endpoints of the diameter.

Pre-Calculus. 2) Find the equation of the circle having (2, 5) and (-2, -1) as endpoints of the diameter. Pre-Calculus Conic Review Name Block Date Circles: 1) Determine the center and radius of each circle. a) ( x 5) + ( y + 6) = 11 b) x y x y + 6 + 16 + 56 = 0 ) Find the equation of the circle having (,

More information

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r

The point (x, y) lies on the circle of radius r and center (h, k) iff. x h y k r NOTES +: ANALYTIC GEOMETRY NAME LESSON. GRAPHS OF EQUATIONS IN TWO VARIABLES (CIRCLES). Standard form of a Circle The point (x, y) lies on the circle of radius r and center (h, k) iff x h y k r Center:

More information

Mid-Chapter Quiz: Lessons 7-1 through 7-3

Mid-Chapter Quiz: Lessons 7-1 through 7-3 Write an equation for and graph a parabola with the given focus F and vertex V 1. F(1, 5), V(1, 3) Because the focus and vertex share the same x coordinate, the graph is vertical. The focus is (h, k +

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

Conics. By: Maya, Dietrich, and Jesse

Conics. By: Maya, Dietrich, and Jesse Conics By: Maya, Dietrich, and Jesse Exploring Conics (This is basically the summary too) A conic section curve formed by intersection of a plane and double cone: by changing plane, one can create parabola,

More information

MATH 110 analytic geometry Conics. The Parabola

MATH 110 analytic geometry Conics. The Parabola 1 MATH 11 analytic geometry Conics The graph of a second-degree equation in the coordinates x and y is called a conic section or, more simply, a conic. This designation derives from the fact that the curve

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

Conic Sections: Parabolas

Conic Sections: Parabolas Conic Sections: Parabolas Why are the graphs of parabolas, ellipses, and hyperbolas called 'conic sections'? Because if you pass a plane through a double cone, the intersection of the plane and the cone

More information

Chapter 9 Topics in Analytic Geometry

Chapter 9 Topics in Analytic Geometry Chapter 9 Topics in Analytic Geometry What You ll Learn: 9.1 Introduction to Conics: Parabolas 9.2 Ellipses 9.3 Hyperbolas 9.5 Parametric Equations 9.6 Polar Coordinates 9.7 Graphs of Polar Equations 9.1

More information

8.2 Graph and Write Equations of Parabolas

8.2 Graph and Write Equations of Parabolas 8.2 Graph and Write Equations of Parabolas Where is the focus and directrix compared to the vertex? How do you know what direction a parabola opens? How do you write the equation of a parabola given the

More information

Standard Equation of a Circle

Standard Equation of a Circle Math 335 Trigonometry Conics We will study all 4 types of conic sections, which are curves that result from the intersection of a right circular cone and a plane that does not contain the vertex. (If the

More information

9.3 Hyperbolas and Rotation of Conics

9.3 Hyperbolas and Rotation of Conics 9.3 Hyperbolas and Rotation of Conics Copyright Cengage Learning. All rights reserved. What You Should Learn Write equations of hyperbolas in standard form. Find asymptotes of and graph hyperbolas. Use

More information

CK 12 Algebra II with Trigonometry Concepts 1

CK 12 Algebra II with Trigonometry Concepts 1 10.1 Parabolas with Vertex at the Origin Answers 1. up 2. left 3. down 4.focus: (0, 0.5), directrix: y = 0.5 5.focus: (0.0625, 0), directrix: x = 0.0625 6.focus: ( 1.25, 0), directrix: x = 1.25 7.focus:

More information

Figures adapted from Mathworld.wolfram.com and vectosite.net.

Figures adapted from Mathworld.wolfram.com and vectosite.net. MTH 11 CONIC SECTIONS 1 The four basic types of conic sections we will discuss are: circles, parabolas, ellipses, and hyperbolas. They were named conic by the Greeks who used them to describe the intersection

More information

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle.

1.) Write the equation of a circle in standard form with radius 3 and center (-3,4). Then graph the circle. Welcome to the world of conic sections! http://www.youtube.com/watch?v=bfonicn4bbg Some examples of conics in the real world: Parabolas Ellipse Hyperbola Your Assignment: Circle -Find at least four pictures

More information

Chapter 3: The Parabola

Chapter 3: The Parabola Chapter 3: The Parabola SSMth1: Precalculus Science and Technology, Engineering and Mathematics (STEM) Mr. Migo M. Mendoza Chapter 3: The Parabola Lecture 7: Introduction to Parabola Lecture 8: Converting

More information

Assignment 3/17/15. Section 10.2(p 568) 2 12 (E) (E)

Assignment 3/17/15. Section 10.2(p 568) 2 12 (E) (E) Section 10.2 Warm Up Assignment 3/17/15 Section 10.2(p 568) 2 12 (E) 24 40 (E) Objective We are going to find equations for parabolas identify the vertex, focus, and directrix of a parabola The parabola

More information

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles 13 Conic Sections 13.1 Conic Sections: Parabolas and Circles 13.2 Conic Sections: Ellipses 13.3 Conic Sections: Hyperbolas 13.4 Nonlinear Systems of Equations 13.1 Conic Sections: Parabolas and Circles

More information

What you will learn today

What you will learn today What you will learn today Conic Sections (in 2D coordinates) Cylinders (3D) Quadric Surfaces (3D) Vectors and the Geometry of Space 1/24 Parabolas ellipses Hyperbolas Shifted Conics Conic sections result

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

Summary of Formulas: see

Summary of Formulas: see To review the Conic Sections, Identify them and sketch them from the given equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering

More information

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Conics Multiple Choice Pre-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 Graph the equation x 2 + y 2 = 36. Then describe the

More information

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila

KEMATH1 Calculus for Chemistry and Biochemistry Students. Francis Joseph H. Campeña, De La Salle University Manila KEMATH1 Calculus for Chemistry and Biochemistry Students Francis Joseph H Campeña, De La Salle University Manila January 26, 2015 Contents 1 Conic Sections 2 11 A review of the coordinate system 2 12 Conic

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

, minor axis of length 12. , asymptotes y 2x. 16y

, minor axis of length 12. , asymptotes y 2x. 16y Math 4 Midterm 1 Review CONICS [1] Find the equations of the following conics. If the equation corresponds to a circle find its center & radius. If the equation corresponds to a parabola find its focus

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents

Algebra II. Slide 1 / 181. Slide 2 / 181. Slide 3 / 181. Conic Sections Table of Contents Slide 1 / 181 Algebra II Slide 2 / 181 Conic Sections 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 181 Review of Midpoint and Distance Formulas Introduction

More information

Assignment Assignment for Lesson 14.1

Assignment Assignment for Lesson 14.1 Assignment Assignment for Lesson.1 Name Date The Origin of Parabolas Parabolas Centered at the Origin 1. Consider the parabola represented by the equation y 2 12x 0. a. Write the equation of the parabola

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Algebra II Chapter 10 Conics Notes Packet. Student Name Teacher Name

Algebra II Chapter 10 Conics Notes Packet. Student Name Teacher Name Algebra II Chapter 10 Conics Notes Packet Student Name Teacher Name 1 Conic Sections 2 Identifying Conics Ave both variables squared?' No PARABOLA y = a(x- h)z + k x = a(y- k)z + h YEs Put l'h squared!'erms

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

Math 370 Exam 5 Review Name

Math 370 Exam 5 Review Name Math 370 Exam 5 Review Name Graph the ellipse and locate the foci. 1) x2 6 + y2 = 1 1) Objective: (9.1) Graph Ellipses Not Centered at the Origin Graph the ellipse. 2) (x + 2)2 + (y + 1)2 9 = 1 2) Objective:

More information

PARABOLA SYNOPSIS 1.S is the focus and the line l is the directrix. If a variable point P is such that SP

PARABOLA SYNOPSIS 1.S is the focus and the line l is the directrix. If a variable point P is such that SP PARABOLA SYNOPSIS.S is the focus and the line l is the directrix. If a variable point P is such that SP PM = where PM is perpendicular to the directrix, then the locus of P is a parabola... S ax + hxy

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Geometry: Conic Sections

Geometry: Conic Sections Conic Sections Introduction When a right circular cone is intersected by a plane, as in figure 1 below, a family of four types of curves results. Because of their relationship to the cone, they are called

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review

Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review Accelerated Pre-Calculus Unit 1 Task 1: Our Only Focus: Circles & Parabolas Review Name: Date: Period: For most students, you last learned about conic sections in Analytic Geometry, which was a while ago.

More information

x y 2 2 CONIC SECTIONS Problem 1

x y 2 2 CONIC SECTIONS Problem 1 CONIC SECTIONS Problem For the equations below, identify each conic section If it s a parabola, specify its vertex, focus and directrix If it s an ellipse, specify its center, vertices and foci If it s

More information

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin,

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin, Conics onic sections are the curves which result from the intersection of a plane with a cone. These curves were studied and revered by the ancient Greeks, and were written about extensively by both Euclid

More information

Chapter 11. Parametric Equations And Polar Coordinates

Chapter 11. Parametric Equations And Polar Coordinates Instructor: Prof. Dr. Ayman H. Sakka Chapter 11 Parametric Equations And Polar Coordinates In this chapter we study new ways to define curves in the plane, give geometric definitions of parabolas, ellipses,

More information

12.6 Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces 12 Vectors and the Geometry of Space 12.6 and Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and We have already looked at two special types of surfaces:

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

Analytic Geometry. Affine space. 3D y. Dimensions

Analytic Geometry. Affine space. 3D y. Dimensions y x Analytic Geometry Analytic geometry, usually called coordinate geometry or analytical geometry, is the study of geometry using the principles of algebra The link between algebra and geometry was made

More information

2.) Write the standard form of the equation of a circle whose endpoints of diameter are (4, 7) and (2,3).

2.) Write the standard form of the equation of a circle whose endpoints of diameter are (4, 7) and (2,3). Ch 10: Conic Sections Name: Objectives: Students will be able to: -graph parabolas, hyperbolas and ellipses and answer characteristic questions about these graphs. -write equations of conic sections Dec

More information

Chapter 10. Homework

Chapter 10. Homework Chapter 0 Homework Lesson 0- pages 538 5 Exercises. 2. Hyperbola: center (0, 0), y-intercepts at ±, no x-intercepts, the lines of symmetry are the x- and y-axes; domain: all real numbers, range: y 5 3

More information

Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment.1-.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The arch beneath a bridge is semi-elliptical, a one-way

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Chapter 10 Test Review

Chapter 10 Test Review Name: Class: Date: Chapter 10 Test Review Short Answer 1. Write an equation of a parabola with a vertex at the origin and a focus at ( 2, 0). 2. Write an equation of a parabola with a vertex at the origin

More information

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Conic Sections. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Conic Sections MATH 211, Calculus II J. Robert Buchanan Department o Mathematics Spring 2018 Introduction The conic sections include the parabola, the ellipse, and the hyperbola. y y y x x x Parabola A

More information

Flash Light Reflectors. Fountains and Projectiles. Algebraically, parabolas are usually defined in two different forms: Standard Form and Vertex Form

Flash Light Reflectors. Fountains and Projectiles. Algebraically, parabolas are usually defined in two different forms: Standard Form and Vertex Form Sec 6.1 Conic Sections Parabolas Name: What is a parabola? It is geometrically defined by a set of points or locus of points that are equidistant from a point (the focus) and a line (the directrix). To

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

) 2 + (y 2. x 1. y c x2 = y

) 2 + (y 2. x 1. y c x2 = y Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since this

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

Unit 8, Ongoing Activity, Little Black Book of Algebra II Properties

Unit 8, Ongoing Activity, Little Black Book of Algebra II Properties Unit 8, Ongoing Activity, Little Black Book of Algebra II Properties Little Black Book of Algebra II Properties Unit 8 Conic Sections 8.1 Circle write the definition, provide examples of both the standard

More information

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Imagine the path of a basketball as it leaves a player s hand and swooshes through the net. Or, imagine the path of an Olympic diver

More information

Preliminary Mathematics Extension 1

Preliminary Mathematics Extension 1 Phone: (0) 8007 684 Email: info@dc.edu.au Web: dc.edu.au 018 HIGHER SCHOOL CERTIFICATE COURSE MATERIALS Preliminary Mathematics Extension 1 Parametric Equations Term 1 Week 1 Name. Class day and time Teacher

More information

Chapter 2: Polynomial and Rational Functions Power Standard #7

Chapter 2: Polynomial and Rational Functions Power Standard #7 Chapter 2: Polynomial and Rational s Power Standard #7 2.1 Quadratic s Lets glance at the finals. Learning Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions.

More information

UNIT NUMBER 5.6. GEOMETRY 6 (Conic sections - the parabola) A.J.Hobson

UNIT NUMBER 5.6. GEOMETRY 6 (Conic sections - the parabola) A.J.Hobson JUST THE MATHS UNIT NUMBER 5.6 GEMETRY 6 (Conic sections - the parabola) b A.J.Hobson 5.6.1 Introduction (the standard parabola) 5.6.2 ther forms of the equation of a parabola 5.6. Exercises 5.6.4 Answers

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Chapter. Implicit Function Graphs

Chapter. Implicit Function Graphs Chapter 14 Implicit Function Graphs You can graph any one of the following types of implicit functions using the calculator s built-in functions. Parabolic graph Circle graph Elliptical graph Hyperbolic

More information

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46 Math 1330 Section 6.2 Section 7.1: Right-Triangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often

More information

PreCalculus Chapter 9 Practice Test Name:

PreCalculus Chapter 9 Practice Test Name: This ellipse has foci 0,, and therefore has a vertical major axis. The standard form for an ellipse with a vertical major axis is: 1 Note: graphs of conic sections for problems 1 to 1 were made with the

More information

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function...

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function... Year 10 Term 2 Homework Student Name: Grade: Date: Score: Table of contents 3 Year 10 Term 2 Week 3 Homework 1 3.1 Graphs in the number plane................................. 1 3.1.1 The parabola....................................

More information

OpenStax-CNX module: m The Ellipse. OpenStax College. Abstract

OpenStax-CNX module: m The Ellipse. OpenStax College. Abstract OpenStax-CNX module: m49438 1 The Ellipse OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will: Write equations

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

Section 12.2: Quadric Surfaces

Section 12.2: Quadric Surfaces Section 12.2: Quadric Surfaces Goals: 1. To recognize and write equations of quadric surfaces 2. To graph quadric surfaces by hand Definitions: 1. A quadric surface is the three-dimensional graph of an

More information

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Quadric Surfaces Philippe B. Laval KSU Today Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Introduction A quadric surface is the graph of a second degree equation in three variables. The general

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying linear expressions factoring quadratic equations finding the value of a in the vertex form of a quadratic equation

More information

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring /

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring / .... Quadric Surfaces Philippe B. Laval KSU Spring 2012 Philippe B. Laval (KSU) Quadric Surfaces Spring 2012 1 / 15 Introduction A quadric surface is the graph of a second degree equation in three variables.

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions Chapter 2 Polynomial and Rational Functions 2.2 Quadratic Functions 1 /27 Chapter 2 Homework 2.2 p298 1, 5, 17, 31, 37, 41, 43, 45, 47, 49, 53, 55 2 /27 Chapter 2 Objectives Recognize characteristics of

More information

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice Algebra 2CP Name Algebra 2CP S1 Final Exam Information Your final exam will consist of two parts: Free Response and Multiple Choice Part I: Free Response: Five questions, 10 points each (50 points total),

More information

Algebra II. Midpoint and Distance Formula. Slide 1 / 181 Slide 2 / 181. Slide 3 / 181. Slide 4 / 181. Slide 6 / 181. Slide 5 / 181.

Algebra II. Midpoint and Distance Formula. Slide 1 / 181 Slide 2 / 181. Slide 3 / 181. Slide 4 / 181. Slide 6 / 181. Slide 5 / 181. Slide 1 / 181 Slide 2 / 181 lgebra II onic Sections 2015-04-21 www.njctl.org Slide 3 / 181 Slide 4 / 181 Table of ontents click on the topic to go to that section Review of Midpoint and istance Formulas

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Pre-Calculus Mid Term Review. January 2014 Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use the graph of the function f, plotted with a solid

More information

Quadratic Forms Formula Vertex Axis of Symmetry. 2. Write the equation in intercept form. 3. Identify the Vertex. 4. Identify the Axis of Symmetry.

Quadratic Forms Formula Vertex Axis of Symmetry. 2. Write the equation in intercept form. 3. Identify the Vertex. 4. Identify the Axis of Symmetry. CC Algebra II Test # Quadratic Functions - Review **Formulas Name Quadratic Forms Formula Vertex Axis of Symmetry Vertex Form f (x) = a(x h) + k Standard Form f (x) = ax + b x + c x = b a Intercept Form

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

7. r = r = r = r = r = 2 5

7. r = r = r = r = r = 2 5 Exercise a: I. Write the equation in standard form of each circle with its center at the origin and the given radius.. r = 4. r = 6 3. r = 7 r = 5 5. r = 6. r = 6 7. r = 0.3 8. r =.5 9. r = 4 0. r = 3.

More information

Study Guide and Review

Study Guide and Review Graph the hyperbola given by each equation. 30. = 1 The equation is in standard form, and h = 6 and k = 3. Because a 2 = 30 and b 2 = 8, a = 5.5 and b =. The values of a and b can be used to find c. c

More information

Topic: Conics Verify the solution to a linear-quadratic system of equations by graphing and using Intersection Point(s).

Topic: Conics Verify the solution to a linear-quadratic system of equations by graphing and using Intersection Point(s). Nonlinear Systems of Equations ID: 9982 Time required 45 minutes Activity Overview This activity is designed to be used an as introduction to nonlinear systems of equations. It begins by allowing students

More information

Quadratics and their Properties

Quadratics and their Properties Algebra 2 Quadratics and their Properties Name: Ms. Williams/Algebra 2 Pd: 1 Table of Contents Day 1: COMPLETING THE SQUARE AND SHIFTING PARABOLAS SWBAT: Write a quadratic from standard form to vertex

More information

3. Solve the following. Round to the nearest thousandth.

3. Solve the following. Round to the nearest thousandth. This review does NOT cover everything! Be sure to go over all notes, homework, and tests that were given throughout the semester. 1. Given g ( x) i, h( x) x 4x x, f ( x) x, evaluate the following: a) f

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2 12.6 Quadrics and Cylinder Surfaces: Example: What is y = x? More correctly what is {(x,y,z) R 3 : y = x}? It s a plane. What about y =? Its a cylinder surface. What about y z = Again a cylinder surface

More information