AMTH142 Lecture 10. Scilab Graphs Floating Point Arithmetic

Size: px
Start display at page:

Download "AMTH142 Lecture 10. Scilab Graphs Floating Point Arithmetic"

Transcription

1 AMTH142 Lecture 1 Scilab Graphs Floating Point Arithmetic April 2, 27 Contents 1.1 Graphs in Scilab Simple Graphs Line Styles Multiple Curves Multiple Plots Titles and Captions Other Features D Curves Histograms Floating Point Arithmetic Representation of Floating Point Numbers Precision Exceptional Values Rounding Cancellation

2 1.1 Graphs in Scilab Simple Graphs The simplest graph takes two vectors and plots one against the other: -->x = (-2:.1:2); -->y = sin(x)./x; -->plot2d(x,y) You should have noticed the use of the dot operator. To see why it is necessary first note that x is a vector. So is sin(x) whose components are obtained by applying the sin function element-by-element to the vector x. To construct the vector y whose components are obtained by applying the function sin x/x element-by-element to the vector x we preform element-byelement division of the vector sin(x) by the vector x. Scilab graphs joins points by straight lines which sometimes gives the graph a slight polygonal look. If you want a smooth looking graph you need to take a fairly dense of points, 1 will usually do, for the x-coordinates. We can also plot a single vector, whose components are plotted against 1, 2,..., n where n is the length of the vector. First we use clf to clear the graphics window and then plot the components of the vector y used earlier: -->clf -->plot2d(y) 2

3 Notice the different scaling on the x-axis. Here is another example: -->x = linspace(-1, 1, 1); -->y = 2*sin(x) + 3*sin(2*x) + 7*sin(3*x) + 5*sin(4*x); -->clf, plot2d(x,y) In this example linspace(-1,1,1) produces a vector which consists of 1 evenly spaced points between -1 and 1. Also note that we can use commas or semicolons to separate two or more commands on the one line. 3

4 1.1.2 Line Styles The graphs we have looked at so far were of continuous curves. Data can also be plotted as points by using the style option to the plot2d command. Negative values for style correspond to different types of points, positive values for style correspond to different colours. You can use the xset() command to bring up a menu to set different styles and colours as well as things like line thickness. -->x = rand(1,1); -->y = rand(1,1); -->clf, plot2d(x,y,style = -1) Multiple Curves We can plot multiple curves, one on top of the other, by plotting them successively without clearing the screen. Alternatively, if y is a matrix, the command plot2d(x, y) plots each of the columns of the matrix y as a separate curve. In this case x has to be a column vector the same length as the columns of y. We could also plot the curves in different styles, by setting style to a vector of style numbers. -->x = linspace(-1, 1, 1) ; -->y1 = 2*sin(x); y2 = 3*sin(2*x); -->y3 = 7*sin(3*x); y4 = 5*sin(4*x); 4

5 -->y = y1 + y2 + y3 + y4; -->clf, plot2d(x,[y1 y2 y3 y4 y]) Note that the use of the transpose to define x as a column vector. Then each of y1, y2, y3, y4, and y is also a column vector and [y1 y2 y3 y4 y] is a 5 column matrix Multiple Plots Multiple graphs can included in one figure using the subplot command. -->clf -->subplot(2,2,1) -->plot2d(x,y1) -->subplot(2,2,2) -->plot2d(x,y1+y2) -->subplot(2,2,3) -->plot2d(x,y1+y2+y3) -->subplot(2,2,4) -->plot2d(x,y1+y2+y3+y4) 5

6 Titles and Captions Titles and captions can be added, after a graph has been drawn, using the xtitle command. It takes three arguments the title for graph, the caption for the x-axis and the caption for the y-axis. If you don t need a title just use a blank string, i.e.. -->x = -2:.1:2; -->clf, plot2d(x, sin(x)./x) -->xtitle( A TITLE, x, sin(x)/x ) sin(x)/x A TITLE x 6

7 Note the unusual placement of the axis labels. There is nothing that I am aware of that you can do about this Other Features There a lot more Scilab can do with graphs, for example -->clf, plot2d(x, sin(x)./x, rect=[ ],... -->axesflag=5) In this example, the rect option sets the bounds on the x and y axes and the axesflag=5 places the axes so that they cross at the origin (, ). The latest version (3.1.1) of Scilab seems to have much enhanced graphics facilities. Try Scilab s help if you want more information D Curves Curves in 3 dimensional space can be plotted using param3d. It takes three vectors containing the values the x, y and z coordinates of the points on the curve. By clicking on the 3D Rot button on the graphics window and playing around with the mouse you can alter the orientation of the graph. Here is a 3-D spiral: -->z = :.1:1; -->clf, param3d(z.*sin(5*z), z.*cos(5*z), z) 7

8 Z Y X Histograms Histograms can be plotted with the histplot(n, data) command. Here n is the number of bins in the histogram and data is the vector of data for which we want to draw the histogram. The following example draws a histogram from a vector of normally distributed random numbers. -->rr = rand(1,1, normal ); -->clf, histplot(1, rr)

9 1.2 Floating Point Arithmetic Representation of Floating Point Numbers The arithmetic used by Scilab is called floating point arithmetic. Scientific notation is used to express floating point numbers; the number is written in Scilab as e-6. Internally floating point numbers are stored in a binary format known as IEEE double precision arithmetic. Each floating point number occupies 64 bits, which contain the sign, digits and exponent of the number. The details of the binary representation are not usually important in practical applications, but the finite precision of floating point numbers has some important implications: 1. Each floating point number is capable of representing about 16 decimal digits (actually 53 bits). 2. There is a limit on the range of exponents; from about 1 38 to (actually to ). The most important consequence of this is that it is impossible to calculate with more than 16 digits precision. This, in itself, is not a problem since it is rare in practical applications to require more accuracy than this. However it can happen that much less accuracy is attained in actual calculations due to rounding errors Precision The usual measure of precision in floating point arithmetic is the number machine epsilon, written ε mach, and defined to be difference between the number 1 and the next largest floating point number. In IEEE arithmetic the number 1 has the representation 1 } {{ } 52bits and the next largest floating point number is 1 } {{ 1 } 52bits Thus ε mach =

10 In Scilab ε mach is denoted by %eps. -->%eps %eps = 2.22E-16 To check the defining property of ε mach, note that -->(1 + %eps) - 1 ans = 2.22E-16 -->(1 + %eps/2) - 1 ans =. In floating point arithmetic if we add ε mach to 1 we get a number different to 1, while if add half this much the result is still Exceptional Values Besides the usual floating point numbers, IEEE arithmetic has two special numbers Inf, for infinity, and Nan, for not-a-number. Inf typically occurs when we try try to produce a number whose exponent is greater than the maximum exponent: -->z = 1e3 z = >w = z*z w = Inf This is called overflow. It is easy to recognize when overflow has occurred since an Inf always results. If the result of a calculation has exponent less than the smallest exponent, the result is set to zero. This is called underflow and, while it is usually harmless it can sometimes cause unexpected errors. 1

11 -->z = 1e-3 z = >w = z*z w =. The following shows some ways Nan s can arise: -->z = (1e3)^2 z = Inf -->w = *z w = Nan -->w = z - z w = Nan Rounding When arithmetic operations are preformed on floating point numbers the exact result will not, in general, be representable as a floating point number. The exact result will be rounded to the nearest 1 floating point number, a process called, obviously enough, rounding. In IEEE arithmetic all results of floating point operations are correctly rounded, something that was rarely done on early computers. We will look at an example to give an idea of the rounding process using base 1 arithmetic (although as pointed out above computers use binary arithmetic). Suppose we are doing arithmetic with, say, 5 decimal digits precision. Let x = y = In the case of a tie, the round to even rule is used. 11

12 then, in exact arithmetic, x + y = x y = x y = and these are rounded to x + y = x y = x y = respectively. Rounding errors are unavoidable in numerical computation due to the finite precision of floating point arithmetic. The relative error due to rounding is less than 1/2ε mach , but this can be expected to occur in every floating point operation, including binary/decimal conversion on reading/writing floating point numbers Cancellation Cancellation error occurs when two nearly equal numbers are subtracted. Consider the calculation -->x = x = >y = y = -->x-y ans = E-12 Here x is a 16 digit approximation to π while y agrees with π to 12 digits. What is the error in the calculation? We know the relative error due to rounding is less than 1/2ε mach The problem is that in converting x and y from decimal to 12

13 binary, that is approximating x and y by floating point numbers, we have relative errors of the same magnitude. Thus the absolute error in x is E abs 1/2ε mach x with the same size error in y. We would expect the same size error in their difference, giving a relative error of about E rel / = Any number that is not an exact floating point number, and this includes the results of almost all calculations, will have a relative error of the order of 1/2ε mach. Whenever two such numbers which are nearly equal are subtracted, cancellation error will occur giving a result with less precision than the original numbers. Example An instructive example of cancellation error occurs when we approximate the derivative of function by a formula such as f (x) f(x + h) f(x) h As h gets smaller and smaller the approximation gets better until in the limit as h we get the definition of the derivative. Computing with this formula has the numerical problem that as h gets smaller, f(x + h) and f(x) get closer together and cancellation error will occur. In fact if h is small enough, f(x + h) and f(x) will be represented by the same floating point numbers giving the approximation f (x). We will take f(x) = sin x and approximate the derivative at x = 1 using values of h from 1 2 down to 1 16 : -->n = -2:-2:-16 n =! ! -->h = 1.^n h = 1.E-8 * 13

14 column 1 to 6! ! column 7 to 8!.1 1.E-8! Note (1) the use of the dot operator and (2) how Scilab puts a scale factor outside of the array. -->approx = (sin(1+h) - sin(1))./h approx = column 1 to 4! ! column 5 to 8! ! The error in the approximation is: -->err = approx - cos(1) err = column 1 to 4! E-9! column 5 to 8! E ! At first the main cause of error is the approximation itself and the error decreases as h decreases. At h = 1 1 the error begins to increase. The main cause of error now is cancellation and the error increases rapidly until at h = 1 16 the approximate derivative is zero and totally useless. 14

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

MATH 353 Engineering mathematics III

MATH 353 Engineering mathematics III MATH 353 Engineering mathematics III Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware Instructor: Francisco-Javier Pancho Sayas MATH 353 1 / 20 MEET YOUR COMPUTER Instructor:

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy. Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic September 28, 2018 Lecture 1 September 28, 2018 1 / 25 Floating point arithmetic Computers use finite strings of binary digits to represent

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

More information

Floating Point Representation. CS Summer 2008 Jonathan Kaldor

Floating Point Representation. CS Summer 2008 Jonathan Kaldor Floating Point Representation CS3220 - Summer 2008 Jonathan Kaldor Floating Point Numbers Infinite supply of real numbers Requires infinite space to represent certain numbers We need to be able to represent

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic Raymond J. Spiteri Lecture Notes for CMPT 898: Numerical Software University of Saskatchewan January 9, 2013 Objectives Floating-point numbers Floating-point arithmetic Analysis

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Lecture Notes: Floating-Point Numbers

Lecture Notes: Floating-Point Numbers Lecture Notes: Floating-Point Numbers CS227-Scientific Computing September 8, 2010 What this Lecture is About How computers represent numbers How this affects the accuracy of computation Positional Number

More information

Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers 1/2. The Real Line Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

More information

Binary floating point encodings

Binary floating point encodings Week 1: Wednesday, Jan 25 Binary floating point encodings Binary floating point arithmetic is essentially scientific notation. Where in decimal scientific notation we write in floating point, we write

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan August 28, 2011 Outline 1 Round-off errors and computer arithmetic IEEE

More information

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester.

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester. AM205: lecture 2 Luna and Gary will hold a Python tutorial on Wednesday in 60 Oxford Street, Room 330 Assignment 1 will be posted this week Chris will hold office hours on Thursday (1:30pm 3:30pm, Pierce

More information

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3. ECS231 Handout Computer Arithmetic I: Floating-point numbers and representations 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.1416 10 1 sign significandbase

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1 Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

More information

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = ( Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point Error Analysis. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point Error Analysis. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point Error Analysis Ramani Duraiswami, Dept. of Computer Science Class Outline Recap of floating point representation Matlab demos

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued CS 6210 Fall 2016 Bei Wang Lecture 4 Floating Point Systems Continued Take home message 1. Floating point rounding 2. Rounding unit 3. 64 bit word: double precision (IEEE standard word) 4. Exact rounding

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY Computing Basics 1 Sources of Error Numerical solutions to problems differ from their analytical counterparts. Why? The reason for the difference is

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

More information

Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

More information

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI 3.5 Today s Contents Floating point numbers: 2.5, 10.1, 100.2, etc.. How

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

Introduction to Scientific Computing Lecture 1

Introduction to Scientific Computing Lecture 1 Introduction to Scientific Computing Lecture 1 Professor Hanno Rein Last updated: September 10, 2017 1 Number Representations In this lecture, we will cover two concept that are important to understand

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic ECS30 Winter 207 January 27, 207 Floating point numbers Floating-point representation of numbers (scientific notation) has four components, for example, 3.46 0 sign significand

More information

Floating Point Considerations

Floating Point Considerations Chapter 6 Floating Point Considerations In the early days of computing, floating point arithmetic capability was found only in mainframes and supercomputers. Although many microprocessors designed in the

More information

The Perils of Floating Point

The Perils of Floating Point The Perils of Floating Point by Bruce M. Bush Copyright (c) 1996 Lahey Computer Systems, Inc. Permission to copy is granted with acknowledgement of the source. Many great engineering and scientific advances

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

Chapter 3. Errors and numerical stability

Chapter 3. Errors and numerical stability Chapter 3 Errors and numerical stability 1 Representation of numbers Binary system : micro-transistor in state off 0 on 1 Smallest amount of stored data bit Object in memory chain of 1 and 0 10011000110101001111010010100010

More information

Lecture 10. Floating point arithmetic GPUs in perspective

Lecture 10. Floating point arithmetic GPUs in perspective Lecture 10 Floating point arithmetic GPUs in perspective Announcements Interactive use on Forge Trestles accounts? A4 2012 Scott B. Baden /CSE 260/ Winter 2012 2 Today s lecture Floating point arithmetic

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Class 5. Data Representation and Introduction to Visualization

Class 5. Data Representation and Introduction to Visualization Class 5. Data Representation and Introduction to Visualization Visualization Visualization is useful for: 1. Data entry (initial conditions). 2. Code debugging and performance analysis. 3. Interpretation

More information

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Dr Richard Greenaway

Dr Richard Greenaway SCHOOL OF PHYSICS, ASTRONOMY & MATHEMATICS 4PAM1008 MATLAB 2 Basic MATLAB Operation Dr Richard Greenaway 2 Basic MATLAB Operation 2.1 Overview 2.1.1 The Command Line In this Workshop you will learn how

More information

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. ! Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

More information

Computer Systems C S Cynthia Lee

Computer Systems C S Cynthia Lee Computer Systems C S 1 0 7 Cynthia Lee 2 Today s Topics LECTURE: Floating point! Real Numbers and Approximation MATH TIME! Some preliminary observations on approximation We know that some non-integer numbers

More information

What Every Programmer Should Know About Floating-Point Arithmetic

What Every Programmer Should Know About Floating-Point Arithmetic What Every Programmer Should Know About Floating-Point Arithmetic Last updated: October 15, 2015 Contents 1 Why don t my numbers add up? 3 2 Basic Answers 3 2.1 Why don t my numbers, like 0.1 + 0.2 add

More information

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time. Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point

More information

Finite arithmetic and error analysis

Finite arithmetic and error analysis Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

More information

Data Representation and Introduction to Visualization

Data Representation and Introduction to Visualization Data Representation and Introduction to Visualization Massimo Ricotti ricotti@astro.umd.edu University of Maryland Data Representation and Introduction to Visualization p.1/18 VISUALIZATION Visualization

More information

Floating Point January 24, 2008

Floating Point January 24, 2008 15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

More information

OUTLINE. Number system. Creating MATLAB variables Overwriting variable Error messages Making corrections Entering multiple statements per line

OUTLINE. Number system. Creating MATLAB variables Overwriting variable Error messages Making corrections Entering multiple statements per line 1 LECTURE 2 OUTLINE Number system Integer number Decimal number Binary number Hexadecimal number Creating MATLAB variables Overwriting variable Error messages Making corrections Entering multiple statements

More information

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

More information

FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Exponential Notation FLOATING POINT NUMBERS Englander Ch. 5 The following are equivalent representations of 1,234 123,400.0 x 10-2 12,340.0 x 10-1 1,234.0 x 10 0 123.4 x 10 1 12.34 x 10 2 1.234 x 10 3

More information

Numerical Precision. Or, why my numbers aren t numbering right. 1 of 15

Numerical Precision. Or, why my numbers aren t numbering right. 1 of 15 Numerical Precision Or, why my numbers aren t numbering right 1 of 15 What s the deal? Maybe you ve seen this #include int main() { float val = 3.6f; printf( %.20f \n, val); Print a float with

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2015 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Data Representation Floating Point

Data Representation Floating Point Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

Data Representation Floating Point

Data Representation Floating Point Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

More information

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems Hani Mehrpouyan, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Error and Computer Arithmetic) April 8 th, 2013 The material in these lectures is

More information

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers Real Numbers We have been studying integer arithmetic up to this point. We have discovered that a standard computer can represent a finite subset of the infinite set of integers. The range is determined

More information

Plotting x-y (2D) and x, y, z (3D) graphs

Plotting x-y (2D) and x, y, z (3D) graphs Tutorial : 5 Date : 9/08/2016 Plotting x-y (2D) and x, y, z (3D) graphs Aim To learn to produce simple 2-Dimensional x-y and 3-Dimensional (x, y, z) graphs using SCILAB. Exercises: 1. Generate a 2D plot

More information

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation Class Outline Computational Methods CMSC/AMSC/MAPL 460 Errors in data and computation Representing numbers in floating point Ramani Duraiswami, Dept. of Computer Science Computations should be as accurate

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Fractions in Binary Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU)

More information

AMS 27L LAB #2 Winter 2009

AMS 27L LAB #2 Winter 2009 AMS 27L LAB #2 Winter 2009 Plots and Matrix Algebra in MATLAB Objectives: 1. To practice basic display methods 2. To learn how to program loops 3. To learn how to write m-files 1 Vectors Matlab handles

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Computer Systems, Section 2.4 Abstraction Anything that is not an integer can be thought of as . e.g. 391.1356 Or can be thought of as + /

More information

AN INTRODUCTION TO MATLAB

AN INTRODUCTION TO MATLAB AN INTRODUCTION TO MATLAB 1 Introduction MATLAB is a powerful mathematical tool used for a number of engineering applications such as communication engineering, digital signal processing, control engineering,

More information

Computational Mathematics: Models, Methods and Analysis. Zhilin Li

Computational Mathematics: Models, Methods and Analysis. Zhilin Li Computational Mathematics: Models, Methods and Analysis Zhilin Li Chapter 1 Introduction Why is this course important (motivations)? What is the role of this class in the problem solving process using

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers. class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

More information

3.1 DATA REPRESENTATION (PART C)

3.1 DATA REPRESENTATION (PART C) 3.1 DATA REPRESENTATION (PART C) 3.1.3 REAL NUMBERS AND NORMALISED FLOATING-POINT REPRESENTATION In decimal notation, the number 23.456 can be written as 0.23456 x 10 2. This means that in decimal notation,

More information

Interactive MATLAB use. Often, many steps are needed. Automated data processing is common in Earth science! only good if problem is simple

Interactive MATLAB use. Often, many steps are needed. Automated data processing is common in Earth science! only good if problem is simple Chapter 2 Interactive MATLAB use only good if problem is simple Often, many steps are needed We also want to be able to automate repeated tasks Automated data processing is common in Earth science! Automated

More information

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD Introduction to Computer Programming with MATLAB Calculation and Programming Errors Selis Önel, PhD Today you will learn Numbers, Significant figures Error analysis Absolute error Relative error Chopping

More information

Introduction to numerical algorithms

Introduction to numerical algorithms Introduction to numerical algorithms Given an algebraic equation or formula, we may want to approximate the value, and while in calculus, we deal with equations or formulas that are well defined at each

More information

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor.

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. CS 261 Fall 2018 Mike Lam, Professor https://xkcd.com/217/ Floating-Point Numbers Floating-point Topics Binary fractions Floating-point representation Conversions and rounding error Binary fractions Now

More information

Signed Multiplication Multiply the positives Negate result if signs of operand are different

Signed Multiplication Multiply the positives Negate result if signs of operand are different Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

ELEC4042 Signal Processing 2 MATLAB Review (prepared by A/Prof Ambikairajah)

ELEC4042 Signal Processing 2 MATLAB Review (prepared by A/Prof Ambikairajah) Introduction ELEC4042 Signal Processing 2 MATLAB Review (prepared by A/Prof Ambikairajah) MATLAB is a powerful mathematical language that is used in most engineering companies today. Its strength lies

More information

Finding, Starting and Using Matlab

Finding, Starting and Using Matlab Variables and Arrays Finding, Starting and Using Matlab CSC March 6 &, 9 Array: A collection of data values organized into rows and columns, and known by a single name. arr(,) Row Row Row Row 4 Col Col

More information

MATLAB Project: Getting Started with MATLAB

MATLAB Project: Getting Started with MATLAB Name Purpose: To learn to create matrices and use various MATLAB commands for reference later MATLAB functions used: [ ] : ; + - * ^, size, help, format, eye, zeros, ones, diag, rand, round, cos, sin,

More information

AMTH142 Lecture 12. Programming in Scilab Files in Scilab and Maxima

AMTH142 Lecture 12. Programming in Scilab Files in Scilab and Maxima AMTH42 Lecture 2 Programming in Scilab Files in Scilab and Maxima April 20, 2007 In the directory for this Lecture you will find scilab.pdf which is a reference on Scilab I prepared for 2nd year students.

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

More information

1.3 Floating Point Form

1.3 Floating Point Form Section 1.3 Floating Point Form 29 1.3 Floating Point Form Floating point numbers are used by computers to approximate real numbers. On the surface, the question is a simple one. There are an infinite

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

1 Introduction to MATLAB

1 Introduction to MATLAB 1 Introduction to MATLAB 1.1 General Information Quick Overview This chapter is not intended to be a comprehensive manual of MATLAB R. Our sole aim is to provide sufficient information to give you a good

More information

MATLAB Tutorial. Mohammad Motamed 1. August 28, generates a 3 3 matrix.

MATLAB Tutorial. Mohammad Motamed 1. August 28, generates a 3 3 matrix. MATLAB Tutorial 1 1 Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 87131 August 28, 2016 Contents: 1. Scalars, Vectors, Matrices... 1 2. Built-in variables, functions,

More information