CS452/552; EE465/505. Color Display Issues

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CS452/552; EE465/505. Color Display Issues"

Transcription

1 CS452/552; EE465/505 Color Display Issues

2 2

3 Outline! Color Display Issues Color Systems Dithering and Halftoning! Splines Hermite Splines Bezier Splines Catmull-Rom Splines Read: Angel, Chapter 8, section 8.13 Display Considerations Chapter 11, Curves and Surfaces Chapter 12, section Advanced Rendering: Ray-Tracing Lab#5 posted, due: April 22nd simple scene: platform & object; 1 light; shadow map; camera controls Project#2 posted due: April 23rd

4 Light mapping

5 Recursive Ray Tracer (Simple version) // starting point p, direction d, max # of steps; returns a color c (single light source) trace(p, d, step) { color local, reflected, transmitted; point q; normal n; if(step > max) return(background_color); q = intersect(p, d, status); if(status==light_source) return(light_source_color); if(status==no_intersection) return(background_color); n = normal(q); r = reflect(q, n); t = transmit(q,n); local = phong(q, n, r); reflected = trace(q, r, step+1); // recursive call transmitted = trace(q, t, step+1); // recursive call return(local + reflected + transmitted); }

6 Ray Tracing: Summary! Efficiency replace the recursion with iteration use bounding boxes to simplify the math used to compute intersections! Aliasing errors, due to sampling use a stochastic sampling method in which the decision on where to cast the next ray is based on the rays cast so far (used in Renderman)! Ray tracing is an inherently parallel process! There are many free ray tracers available

7 Next Topic: Displays & Color! Consider perceptual issues related to displays! Introduce chromaticity space Color systems Color transformations! Standard Color Systems Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

8 Displays & Color! Problems that affect the quality of a display two different displays may have the same resolution, but display pixels at different sizes the colors displayed on two different monitors may differ map software-defined colors onto the display map brightness values onto the display RGB values are independent of display properties, but do not account for the full range of the human visual system! The range of displayable colors for a device is called its color gamut

9 Luminance and Color Images! Luminance Image Monochromatic Values are gray levels Analogous to working with black and white film or television! Color Image Has perceptional attributes of hue, saturation, and lightness Do we have to match every frequency in visible spectrum? No! E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

10 Perception Review! Light is the part of the electromagnetic spectrum between ~ nm! A color C(λ) is a distribution of energies within this range! Human visual system has two types of sensors Rods: monochromatic, night vision Cones: color sensitive Three types of cones! Consequently, only three values, the tristimulus values, are perceived by the brain E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

11 Color vision deficiency! red-green difficulty distinguishing between shades of red + green affects ~8% of males and ~0.5% of females in populations of North European ancestry! blue-yellow difficulty differentiating shades of blue and yellow affects males & females equally, < 1/10,000! achromatopsia cannot perceive any colors rare, < 1/30,000 for most populations

12 Tristimulus Values! The human visual center has three cones with sensitivity curves S 1 (λ), S 2 (λ), and S 3 (λ)! For a color C(λ), the cones output the tristimulus values T = S λ) C( λ) dλ 1 1 ( C(λ) T = S λ) C( λ) dλ 2 2 ( T = S λ) C( λ) dλ 3 3 ( cones optic nerve T 1, T 2, T 3 E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

13 Three Color Theory! Any two colors with the same tristimulus values are perceived to be identical! Thus a display (CRT, LCD, film) must only produce the correct tristimulus values to match a color! Is this possible? Not always Different primaries (different sensitivity curves) in different systems E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

14 The Problem! The sensitivity curves of the human are not the same as those of physical devices! Human: curves centered in blue, green, and green-yellow! CRT: RGB! Print media: CMY or CMYK! Which colors can we match and, if we cannot match, how close can we come? E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

15 Representing Colors! Consider a color C(λ)! It generates tristimulus values T 1, T 2, T 3 Write C = (T 1, T 2, T 3 ) Conventionally,we assume 1 T 1, T 2, T 3 0 because there is a maximum brightness we can produce and energy is nonnegative 1 C is a point in color solid C 1 T 3 T 2 T 1 1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

16 Producing Colors! Consider a device such as a CRT with RGB primaries and sensitivity curves! Tristimulus values T = R( λ) C( λ) dλ T = G( λ) C( λ) dλ T = B( λ) C( λ) dλ E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

17 Matching! This T 1, T 2, T 3 is dependent on the particular device! If we use another device, we will get different values and these values will not match those of the human cone curves! Need a way of matching and a way of normalizing E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

18 Color Systems! Various color systems are used Based on real primaries: RGB UVW CMYK HLS (aka HSB) NTSC YIQ (National Television System Committee) Theoretical XYZ! Prefer to separate brightness (luminance) from color (chromatic) information Reduce to two dimensions E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

19 Tristimulus Coordinates! For any set of primaries, define t = T T T Note: T t 3 = T T T t = T T T T 3 T + + 1,, 0 t t t = 1 t t 2 t E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

20 Maxwell Triangle 1 T 1 + T 2 +T 3 =1 1 1 color solid Project onto 2D: chromaticity space 1 t 1 + t 2 =1 t 1 possible colors t 2 1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

21 NTSC RGB 1 r+g+b=1 g r+g=1 r 1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

22 Producing Other Colors! However colors producible on one system (its color gamut) is not necessarily producible on any other! Note that if we produce all the pure spectral colors in the nm range, we can produce all others by adding spectral colors! With real systems (CRT, film), we cannot produce the pure spectral colors! We can project the color solid of each system into chromaticity space (of some system) to see how close we can get E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

23 Color Gamuts 600 nm spectral colors CRT colors printer colors producible color on CRT but not on printer unproducible color 350 nm producible color on both CRT and printer 750 nm E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

24 XYZ! Reference system in which all visible pure spectral colors can be produced! Theoretical systems, as there are no corresponding physical primaries! Standard reference system E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

25 Color Systems! Most correspond to real primaries National Television Systems Committee (NTSC) RGB matches phosphors in CRTs! Film both additive (RGB) and subtractive (CMY) for positive and negative film! Print industry CMYK (K = black) K used to produce sharp crisp blacks Example: ink jet printers E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

26 Color Transformations! Each additive color system is a linear transformation of another G G C = (T 1, T 2, T 3 ) = (T 1, T 2, T 3 ) B B R in R G B system R in RGB system E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

27 Additive and Subtractive Color! Additive color Form a color by adding amounts of three primaries CRTs, projection systems, positive film Primaries are Red (R), Green (G), Blue (B)! Subtractive color Form a color by filtering white light with cyan (C), Magenta (M), and Yellow (Y) filters Light-material interactions Printing Negative film E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

28 RGB: Red, Green, Blue! Primary colors: red, green, blue! Secondary colors: yellow = red+green cyan = green+blue magenta = blue+red! All colors white = red+green+blue black = no color C = T 1 R + T 2 G + T 3 B Color Cube

29 CMYK: Cyan, Magenta, Yellow, Black! Primary colors: cyan, magenta, yellow! Secondary colors: blue = cyan+magenta red = magenta+yellow green = yellow+cyan! All colors white = no color black = cyan+magenta+yellow for true black, add in black (+black) Also known as process color (used to print full-color images)

30 RGB, CMY, CMYK! Assuming 1 is max of a primary C = 1 R M = 1 G Y = 1 B! Convert CMY to CMYK by K = min(c, M, Y) C = C K M = M K Y = Y - K E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

31 Color Matrix! Exists a 3 x 3 matrix to convert from representation in one system to representation in another # &! $! = M$! $ " %! Example: XYZ to NTSC RGB find in colorimetry references & $ $ $ % T' T' T' T T T! Can take a color in XYZ and find out if it is producible by transforming and then checking if resulting tristimulus values lie in (0,1) #!!! " E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

32 YIQ! NTSC Transmission Colors! Here Y is the luminance arose from the need to separate brightness from chromatic information in TV broadcasting & Y# $! $ I! $ % Q! " = & $ $ $ % #& R# ! $!! $ G! 0.311!" $ % B! "! Note luminance shows high green sensitivity E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

33 Other Color Systems! UVW: equal numerical errors are closer to equal perceptual errors! HLS: perceptual color (hue, saturation, lightness) Polar representation of color space Single and double cone versions E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

34 HSB: Hue, Saturation, Brightness! Hue is the actual color. It is measured in angular degrees counter-clockwise around the cone starting and ending at red=0 or 360 (yellow = 60, green = 120, etc.).! Saturation is the purity of the color, measured in percent from the center of the cone (0) to the surface (100).! Brightness is measured in percent from black (0%) to white (100%). grayscale axis from 0% (white) to 100% (black)

35 Gamma Correction! Intensity vs CRT voltage is nonlinear I = cv γ! Gamma correction (encoding) can code/decode luminance or tristimulus values! Can use a lookup table to correct! Human brightness response is logarithmic Equal steps in gray levels are not perceived equally Can use lookup table! CRTs cannot produce a full black Limits contrast ratio E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012

36 Dithering (digital halftoning)

37 Black/White Dithering

38 Color Dithering

39 Halftoning

40 Modeling Complex Shapes

41 What do we need from curves in Computer Graphics?! Local control of shape so that it is easy to build and modify! Stability! Smoothness and continuity! Ability to evaluate derivatives! Ease of rendering

42 Utah Teapot! Most famous data set in computer graphics! Widely available as a list of 306 3D vertices and the indices that define 32 Bezier patches

43 Curve Representations

44 Parameterization of a Curve

45 Polynomial Interpolation

46 Splines: Piecewise Polynomials

47 Piecewise Polynomials

48 Splines

49 Cubic Curves in 3D

50 Cubic Hermite Splines

51 Deriving Hermite Splines

52 Deriving Hermite Splines

53 Deriving Hermite Splines

54 The Cubic Hermite Spline Equation

55 Four Basis Functions for Hermite Splines

56 Piecing together Hermite Splines

57 Hermite Splines in Adobe Illustrator

58 Bezier s Idea! In graphics and CAD, we do not usually have derivative data! Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form

59 Bezier Splines

60 Approximating Derivatives p 1 located at u=1/3 p 1 p 2 p 2 located at u=2/3 p p0 p'(0) 1/ 3 1 p p2 p'(1) 1/ 3 3 slope p (0) slope p (1) p 0 u p 3

61 The Bezier Spline Matrix

62 Bezier Blending Functions

63 DeCasteljau Construction

64 Bezier Patches Using same data array P=[p ij ] as with interpolating form p( u, v) 3 3 = i= 0 j= 0 bi( u) b j ( v) p ij = u T M B P M T B v Patch lies in convex hull

65 Analysis! Although the Bezier form is much better than the interpolating form, we have the derivatives are not continuous at join points! Can we do better? Go to higher order Bezier More work Derivative continuity still only approximate Supported by OpenGL Apply different conditions Tricky without letting order increase

66 Catmull-Rom Splines

67 Constructing the Catmull-Rom Spline

68 Catmull-Rom Spline Matrix

69 Splines with More Continuity?

70 Comparison of Basic Cubic Splines

71 Natural Cubic Splines

72 B-Splines

73 B-Splines! Basis splines: use the data at p=[p i-2 p i-1 p i p i-1 ] T to define curve only between p i-1 and p i! Allows us to apply more continuity conditions to each segment! For cubics, we can have continuity of function, first and second derivatives at join points! Cost is 3 times as much work for curves Add one new point each time rather than three! For surfaces, we do 9 times as much work

74 B-Spline Basis

75 Other Common Types of Splines

76 Generalizing Splines! We can extend to splines of any degree! Data and conditions to not have to given at equally spaced values (the knots) Nonuniform and uniform splines Can have repeated knots Can force spline to interpolate points! Cox-deBoor recursion gives method of evaluation

77 NURBS! Nonuniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,z Can interpret as weight to give more importance to some control data Can also interpret as moving to homogeneous coordinate! Requires a perspective division NURBS act correctly for perspective viewing! Quadrics are a special case of NURBS

78 How to Draw Spline Curves

79 Drawing Splines, continued

80 Summary

81 Project: Roller Coaster! use Catmull-Rom splines along with lighting and texture mapping to create a roller coaster simulation! runs in a first-person view, allowing the user to ride the coaster in an immersive environment

82 Animation

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Image Formation Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Fundamental imaging notions Physical basis for image formation

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Image Formation

More information

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2 Color Theory Physical Color Visible energy - small portion of the electro-magnetic spectrum Pure monochromatic colors are found at wavelengths between 380nm (violet) and 780nm (red) 380 780 Color Theory

More information

Visible Color. 700 (red) 580 (yellow) 520 (green)

Visible Color. 700 (red) 580 (yellow) 520 (green) Color Theory Physical Color Visible energy - small portion of the electro-magnetic spectrum Pure monochromatic colors are found at wavelengths between 380nm (violet) and 780nm (red) 380 780 Color Theory

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information

Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13

Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13 Lecture 1 Computer Graphics and Systems What is Computer Graphics? Image Formation Sun Object Figure from Ed Angel,D.Shreiner: Interactive Computer Graphics, 6 th Ed., 2012 Addison Wesley Computer Graphics

More information

INTRODUCTION. Slides modified from Angel book 6e

INTRODUCTION. Slides modified from Angel book 6e INTRODUCTION Slides modified from Angel book 6e Fall 2012 COSC4328/5327 Computer Graphics 2 Objectives Historical introduction to computer graphics Fundamental imaging notions Physical basis for image

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson

Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson Computer Graphics Curves and Surfaces Hermite/Bezier Curves, (B-)Splines, and NURBS By Ulf Assarsson Most of the material is originally made by Edward Angel and is adapted to this course by Ulf Assarsson.

More information

The Elements of Colour

The Elements of Colour Color science 1 The Elements of Colour Perceived light of different wavelengths is in approximately equal weights achromatic.

More information

COMP3421. Global Lighting Part 2: Radiosity

COMP3421. Global Lighting Part 2: Radiosity COMP3421 Global Lighting Part 2: Radiosity Recap: Global Lighting The lighting equation we looked at earlier only handled direct lighting from sources: We added an ambient fudge term to account for all

More information

Main topics in the Chapter 2. Chapter 2. Digital Image Representation. Bitmaps digitization. Three Types of Digital Image Creation CS 3570

Main topics in the Chapter 2. Chapter 2. Digital Image Representation. Bitmaps digitization. Three Types of Digital Image Creation CS 3570 Main topics in the Chapter Chapter. Digital Image Representation CS 3570 Three main types of creating digital images Bitmapping, Vector graphics, Procedural modeling Frequency in digital image Discrete

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

Spectral Color and Radiometry

Spectral Color and Radiometry Spectral Color and Radiometry Louis Feng April 13, 2004 April 13, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics Spectral Color Light and Color Spectrum Spectral Power Distribution Spectral Color

More information

Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

More information

CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 2: Graphics Pipeline. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Lecture 2: Graphics Pipeline Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices - raster displays show images as a rectangular array

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday, October 14

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 49 CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 3.1 PREAMBLE Software has been developed following the CIE 1931 standard of Chromaticity Coordinates to convert the RGB data into its

More information

COMP3421. Global Lighting Part 2: Radiosity

COMP3421. Global Lighting Part 2: Radiosity COMP3421 Global Lighting Part 2: Radiosity Recap: Global Lighting The lighting equation we looked at earlier only handled direct lighting from sources: We added an ambient fudge term to account for all

More information

Animation & Rendering

Animation & Rendering 7M836 Animation & Rendering Introduction, color, raster graphics, modeling, transformations Arjan Kok, Kees Huizing, Huub van de Wetering h.v.d.wetering@tue.nl 1 Purpose Understand 3D computer graphics

More information

CS452/552; EE465/505. Image Formation

CS452/552; EE465/505. Image Formation CS452/552; EE465/505 Image Formation 1-15-15 Outline! Image Formation! Introduction to WebGL, continued Draw a colored triangle using WebGL Read: Angel, Chapters 2 & 3 Homework #1 will be available on

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #13: Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 4 due Monday Nov 27 at 2pm Next Tuesday:

More information

Multimedia Technology CHAPTER 4. Video and Animation

Multimedia Technology CHAPTER 4. Video and Animation CHAPTER 4 Video and Animation - Both video and animation give us a sense of motion. They exploit some properties of human eye s ability of viewing pictures. - Motion video is the element of multimedia

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008

Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008 Color and Light CSCI 4229/5229 Computer Graphics Summer 2008 Solar Spectrum Human Trichromatic Color Perception Are A and B the same? Color perception is relative Transmission,Absorption&Reflection Light

More information

Lecture #2: Color and Linear Algebra pt.1

Lecture #2: Color and Linear Algebra pt.1 Lecture #2: Color and Linear Algebra pt.1 John McNelly, Alexander Haigh, Madeline Saviano, Scott Kazmierowicz, Cameron Van de Graaf Department of Computer Science Stanford University Stanford, CA 94305

More information

COURSE DELIVERY PLAN - THEORY Page 1 of 6

COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Department of Computer Science and Engineering B.E/B.Tech/M.E/M.Tech : Department of Computer Science and Engineering Regulation : 2013 Sub. Code

More information

Image Formation. CS418 Computer Graphics Eric Shaffer.

Image Formation. CS418 Computer Graphics Eric Shaffer. Image Formation CS418 Computer Graphics Eric Shaffer http://graphics.cs.illinois.edu/cs418/fa14 Some stuff about the class Grades probably on usual scale: 97 to 93: A 93 to 90: A- 90 to 87: B+ 87 to 83:

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

3D Modeling techniques

3D Modeling techniques 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

More information

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

More information

Lecture 2 5 Aug 2004

Lecture 2 5 Aug 2004 TOPICS in IT: ADVANCED GRAPHICS (CS & SE 233.420) Lecture 2 5 Aug 2004 1 Topics Image Formation Electromagnetic spectrum Light Human Visual Image processing Color Programming in OpenGL Background Programming

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

More information

Computer Graphics and Visualization. Graphics Systems and Models

Computer Graphics and Visualization. Graphics Systems and Models UNIT -1 Graphics Systems and Models 1.1 Applications of computer graphics: Display Of Information Design Simulation & Animation User Interfaces 1.2 Graphics systems A Graphics system has 5 main elements:

More information

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves David L. Finn Over the next few days, we will be looking at extensions of Bezier

More information

Advanced Texture-Mapping Curves and Curved Surfaces. Pre-Lecture Business. Texture Modes. Texture Modes. Review quiz

Advanced Texture-Mapping Curves and Curved Surfaces. Pre-Lecture Business. Texture Modes. Texture Modes. Review quiz Advanced Texture-Mapping Curves and Curved Surfaces Pre-ecture Business loadtexture example midterm handed bac, code posted (still) get going on pp3! more on texturing review quiz CS148: Intro to CG Instructor:

More information

Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space

Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space Extensions of One-Dimensional Gray-level Nonlinear Image Processing Filters to Three-Dimensional Color Space Orlando HERNANDEZ and Richard KNOWLES Department Electrical and Computer Engineering, The College

More information

Image Analysis and Formation (Formation et Analyse d'images)

Image Analysis and Formation (Formation et Analyse d'images) Image Analysis and Formation (Formation et Analyse d'images) James L. Crowley ENSIMAG 3 - MMIS Option MIRV First Semester 2010/2011 Lesson 4 19 Oct 2010 Lesson Outline: 1 The Physics of Light...2 1.1 Photons

More information

A Data Flow Approach to Color Gamut Visualization

A Data Flow Approach to Color Gamut Visualization A Data Flow Approach to Color Gamut Visualization Gary W. Meyer and Chad A. Robertson Department of Computer and Information Science University of Oregon, Eugene, Oregon 97403 Abstract Software has been

More information

ICC color management for print production

ICC color management for print production ICC color management for print production TAGA Annual Technical Conference 2002 W Craig Revie Principal Consultant Fuji Film Electronic Imaging Limited ICC Chair of the Graphic Arts Special Interest Group

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents

Mathematical Tools in Computer Graphics with C# Implementations Table of Contents Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, Willi-Hans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation

More information

When this experiment is performed, subjects find that they can always. test field. adjustable field

When this experiment is performed, subjects find that they can always. test field. adjustable field COLORIMETRY In photometry a lumen is a lumen, no matter what wavelength or wavelengths of light are involved. But it is that combination of wavelengths that produces the sensation of color, one of the

More information

CS681 Computational Colorimetry

CS681 Computational Colorimetry 9/14/17 CS681 Computational Colorimetry Min H. Kim KAIST School of Computing COLOR (3) 2 1 Color matching functions User can indeed succeed in obtaining a match for all visible wavelengths. So color space

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

Outline. The de Casteljau Algorithm. Properties of Piecewise Linear Interpolations. Recall: Linear Interpolation

Outline. The de Casteljau Algorithm. Properties of Piecewise Linear Interpolations. Recall: Linear Interpolation CS 430/585 Computer Graphics I Curve Drawing Algorithms Week 4, Lecture 8 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Artistic Rendering of Function-based Shape Models

Artistic Rendering of Function-based Shape Models Artistic Rendering of Function-based Shape Models by Shunsuke Suzuki Faculty of Computer and Information Science Hosei University n00k1021@k.hosei.ac.jp Supervisor: Alexander Pasko March 2004 1 Abstract

More information

TWO APPROACHES IN SCANNER-PRINTER CALIBRATION: COLORIMETRIC SPACE-BASED VS. CLOSED-LOOP.

TWO APPROACHES IN SCANNER-PRINTER CALIBRATION: COLORIMETRIC SPACE-BASED VS. CLOSED-LOOP. TWO APPROACHES I SCAER-PRITER CALIBRATIO: COLORIMETRIC SPACE-BASED VS. CLOSED-LOOP. V. Ostromoukhov, R.D. Hersch, C. Péraire, P. Emmel, I. Amidror Swiss Federal Institute of Technology (EPFL) CH-15 Lausanne,

More information

CS GAME PROGRAMMING Question bank

CS GAME PROGRAMMING Question bank CS6006 - GAME PROGRAMMING Question bank Part A Unit I 1. List the different types of coordinate systems. 2. What is ray tracing? Mention some applications of ray tracing. 3. Discuss the stages involved

More information

Visual cues The human headway

Visual cues The human headway Visual cues The human headway Overlapping objects Quantized scenes Lo sposalizio della Vergine Raffaello Sanzio Pinacoteca di Brera Perspective geometry Depth from shading Multi-presence Depth from texture

More information

2003 Steve Marschner 7 Light detection discrete approx. Cone Responses S,M,L cones have broadband spectral sensitivity This sum is very clearly a dot

2003 Steve Marschner 7 Light detection discrete approx. Cone Responses S,M,L cones have broadband spectral sensitivity This sum is very clearly a dot 2003 Steve Marschner Color science as linear algebra Last time: historical the actual experiments that lead to understanding color strictly based on visual observations Color Science CONTD. concrete but

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

CS770/870 Spring 2017 Curve Generation

CS770/870 Spring 2017 Curve Generation CS770/870 Spring 2017 Curve Generation Primary resources used in preparing these notes: 1. Foley, van Dam, Feiner, Hughes, Phillips, Introduction to Computer Graphics, Addison-Wesley, 1993. 2. Angel, Interactive

More information

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler Curves & Surfaces Schedule Sunday October 5 th, * 3-5 PM * Review Session for Quiz 1 Extra Office Hours on Monday Tuesday October 7 th : Quiz 1: In class 1 hand-written 8.5x11 sheet of notes allowed Wednesday

More information

Foundations of 3D Graphics Programming

Foundations of 3D Graphics Programming Foundations of 3D Graphics Programming Jim X. Chen Edward J. Wegman Foundations of 3D Graphics Programming Using JOGL and Java3D With 139 Figures Jim X. Chen, PhD Computer Science Department George Mason

More information

Curves and Curved Surfaces. Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006

Curves and Curved Surfaces. Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006 Curves and Curved Surfaces Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006 Outline for today Summary of Bézier curves Piecewise-cubic curves, B-splines Surface

More information

Computer graphics 2 Marks 1. Define Computer graphics.

Computer graphics 2 Marks 1. Define Computer graphics. Computer graphics 2 Marks 1. Define Computer graphics. Computer graphics remains one of the most existing and rapidly growing computer fields. Computer graphics may be defined as a pictorial representation

More information

Announcements. Written Assignment 2 out (due March 8) Computer Graphics

Announcements. Written Assignment 2 out (due March 8) Computer Graphics Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading

More information

Color Balancing Experimental Projection Displays

Color Balancing Experimental Projection Displays Color Balancing Experimental Projection Displays Maureen C. Stone StoneSoup Consulting, Los Altos, CA Abstract Experimental, tiled displays made of commodity projectors provide a relatively easy and cost

More information

CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling

CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling CSE 167: Introduction to Computer Graphics Lecture #10: View Frustum Culling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 4 due tomorrow Project

More information

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models

3D Programming. 3D Programming Concepts. Outline. 3D Concepts. 3D Concepts -- Coordinate Systems. 3D Concepts Displaying 3D Models 3D Programming Concepts Outline 3D Concepts Displaying 3D Models 3D Programming CS 4390 3D Computer 1 2 3D Concepts 3D Model is a 3D simulation of an object. Coordinate Systems 3D Models 3D Shapes 3D Concepts

More information

Computer Graphics and Visualization. What is computer graphics?

Computer Graphics and Visualization. What is computer graphics? CSCI 120 Computer Graphics and Visualization Shiaofen Fang Department of Computer and Information Science Indiana University Purdue University Indianapolis What is computer graphics? Computer graphics

More information

Photorealistic 3D Rendering for VW in Mobile Devices

Photorealistic 3D Rendering for VW in Mobile Devices Abstract University of Arkansas CSCE Department Advanced Virtual Worlds Spring 2013 Photorealistic 3D Rendering for VW in Mobile Devices Rafael Aroxa In the past few years, the demand for high performance

More information

Note to users of this presentation (this slide does not display during show)

Note to users of this presentation (this slide does not display during show) ICC Colour Management Venue Presenter Organisation Date Note to users of this presentation (this slide does not display during show) Some content in this presentation is excerpted, with permission, from

More information

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic.

Lets assume each object has a defined colour. Hence our illumination model is looks unrealistic. Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary

More information

Wednesday, 26 January 2005, 14:OO - 17:OO h.

Wednesday, 26 January 2005, 14:OO - 17:OO h. Delft University of Technology Faculty Electrical Engineering, Mathematics, and Computer Science Mekelweg 4, Delft TU Delft Examination for Course IN41 5 1-3D Computer Graphics and Virtual Reality Please

More information

Color. Phillip Otto Runge ( )

Color. Phillip Otto Runge ( ) Color Phillip Otto Runge (1777-1810) Overview The nature of color Color processing in the human visual system Color spaces Adaptation and constancy White balance Uses of color in computer vision What is

More information

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Optical Flow CS 637 Fuxin Li With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Motion and perceptual organization Sometimes, motion is the only cue Motion and perceptual

More information

Digital Images. Kyungim Baek. Department of Information and Computer Sciences. ICS 101 (November 1, 2016) Digital Images 1

Digital Images. Kyungim Baek. Department of Information and Computer Sciences. ICS 101 (November 1, 2016) Digital Images 1 Digital Images Kyungim Baek Department of Information and Computer Sciences ICS 101 (November 1, 2016) Digital Images 1 iclicker Question I know a lot about how digital images are represented, stored,

More information

Photorealism: Ray Tracing

Photorealism: Ray Tracing Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any

More information

A DATA FLOW APPROACH TO COLOR GAMUT VISUALIZATION

A DATA FLOW APPROACH TO COLOR GAMUT VISUALIZATION A DATA FLOW APPROACH TO COLOR GAMUT VISUALIZATION by CHAD ANDREW ROBERTSON A THESIS Presented to the Department of Computer and Information Science and the Graduate School of the University of Oregon in

More information

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017) Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Overview CS Plans for this semester. References. CS 4600 Fall Prerequisites

Overview CS Plans for this semester. References. CS 4600 Fall Prerequisites Overview CS 4600 What is CS 4600? What should know (pre reqs)? What will you get out of this course? Chuck Hansen Website: www.eng.utah.edu/~cs4600 Thanks to Ed Angel and Jeff Parker for slides and materials

More information

Shading Languages. Seminar Computer Graphics. Markus Kummerer

Shading Languages. Seminar Computer Graphics. Markus Kummerer Shading Languages Markus Kummerer ABSTRACT Shading Languages provide a highly flexible approach for creating visual structures in computer imagery. The RenderMan Interface provides an API for scene description,

More information

Shadow Algorithms. CSE 781 Winter Han-Wei Shen

Shadow Algorithms. CSE 781 Winter Han-Wei Shen Shadow Algorithms CSE 781 Winter 2010 Han-Wei Shen Why Shadows? Makes 3D Graphics more believable Provides additional cues for the shapes and relative positions of objects in 3D What is shadow? Shadow:

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications LECTURE #6 Geometric modeling for engineering applications Geometric Modelling for Engineering Applications Introduction to modeling Geometric modeling Curve representation Hermite curve Bezier curve B-spline

More information

HIGHLY PARALLEL COMPUTING IN PHYSICS-BASED RENDERING OpenCL Raytracing Based. Thibaut PRADOS OPTIS Real-Time & Virtual Reality Manager

HIGHLY PARALLEL COMPUTING IN PHYSICS-BASED RENDERING OpenCL Raytracing Based. Thibaut PRADOS OPTIS Real-Time & Virtual Reality Manager HIGHLY PARALLEL COMPUTING IN PHYSICS-BASED RENDERING OpenCL Raytracing Based Thibaut PRADOS OPTIS Real-Time & Virtual Reality Manager INTRODUCTION WHO WE ARE 3 Highly Parallel Computing in Physics-based

More information

Overview: Ray Tracing & The Perspective Projection Pipeline

Overview: Ray Tracing & The Perspective Projection Pipeline Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,

More information

Color Image Enhancement Using Optimal Linear Transform with Hue Preserving and Saturation Scaling

Color Image Enhancement Using Optimal Linear Transform with Hue Preserving and Saturation Scaling International Journal of Intelligent Engineering & Systems http://www.inass.org/ Color Image Enhancement Using Optimal Linear Transform with Hue Preserving and Saturation Scaling Xiaohua Zhang 1, Yuelan

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Introduction to Geometry. Computer Graphics CMU /15-662

Introduction to Geometry. Computer Graphics CMU /15-662 Introduction to Geometry Computer Graphics CMU 15-462/15-662 Assignment 2: 3D Modeling You will be able to create your own models (This mesh was created in Scotty3D in about 5 minutes... you can do much

More information

Polygon Meshes and Implicit Surfaces

Polygon Meshes and Implicit Surfaces CSCI 420 Computer Graphics Lecture 9 and Constructive Solid Geometry [Angel Ch. 10] Jernej Barbic University of Southern California Modeling Complex Shapes An equation for a sphere is possible, but how

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. 11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

More information

Knot Insertion and Reparametrization of Interval B-spline Curves

Knot Insertion and Reparametrization of Interval B-spline Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:14 No:05 1 Knot Insertion and Reparametrization of Interval B-spline Curves O. Ismail, Senior Member, IEEE Abstract

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017 Computer Graphics Si Lu Fall 2017 http://web.cecs.pdx.edu/~lusi/cs447/cs447_547_comp uter_graphics.htm 11/27/2017 Last time o Ray tracing 2 Today o Animation o Final Exam: 14:00-15:30, Novermber 29, 2017

More information

Visual Design and Imaging Alignment

Visual Design and Imaging Alignment Visual Design and Imaging Alignment This document contains information about four Career-Technical Articulation Numbers (CTANs) for the Visual Design and Imaging Alignment Career-Technical Assurance Guide

More information