# MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A Pietro Guccione, PhD DEI - DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELL INFORMAZIONE POLITECNICO DI BARI Pietro Guccione Assistant Professor in Signal Processing )

2 Lecture 7 - Summary Hierarchical clustering and DBSCAN Hierarchical clustering Density Based Clustering and DBSCAN 2

3 Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram o A tree-like diagram that records the sequences of merges or splits

4 Strengths of Hierarchical Clustering No assumptions on the number of clusters o Any desired number of clusters can be obtained by cutting the dendogram at the proper level Hierarchical clusterings may correspond to meaningful taxonomies o Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

5 Hierarchical Clustering Two main types of hierarchical clustering o Agglomerative: Start with the points as individual clusters At each step, merge the closest pair of clusters until only one cluster (or k clusters) left o Divisive: Start with one, all-inclusive cluster At each step, split a cluster until each cluster contains a point (or there are k clusters) Traditional hierarchical algorithms use a similarity or distance matrix o Merge or split one cluster at a time

6 Complexity of hierarchical clustering Distance matrix is used for deciding which clusters to merge/split At least quadratic in the number of data points Not usable for large datasets

7 Agglomerative clustering algorithm Most popular hierarchical clustering technique Basic algorithm. Compute the distance matrix between the input data points 2. Let each data point be a cluster 3. Repeat 4. Merge the two closest clusters 5. Update the distance matrix 6. Until only a single cluster remains Key operation is the computation of the distance between two clusters o Different definitions of the distance between clusters lead to different algorithms

8 Input/ Initial setting Start with clusters of individual points and a distance/proximity matrix p p2 p3 p4 p5 p p2 p3 p4 p Ḋistance/Proximity Matrix... p p2 p3 p4 p9 p0 p p2

9 Intermediate State After some merging steps, we have some clusters C C2 C3 C4 C5 C3 C4 C C2 C3 C4 C C5 Distance/Proximity Matrix C2 C5... p p2 p3 p4 p9 p0 p p2

10 Intermediate State Merge the two closest clusters (C2 and C5) and update the distance matrix. C C C2 C3 C4 C5 C3 C4 C2 C3 C4 C C5 Distance/Proximity Matrix C2 C5... p p2 p3 p4 p9 p0 p p2

11 After Merging How do we update the distance matrix? C C2 U C5 C3 C4 C3 C? C4 C2 U C5???? C3? C C4? C2 U C5... p p2 p3 p4 p9 p0 p p2

12 Distance between two clusters Each cluster is a set of points How do we define distance between two sets of points o Lots of alternatives o Not an easy task

13 Distance between two clusters Single-link distance between clusters C i and C j is the minimum distance between any object in C i and any object in C j The distance is defined by the two most similar objects D sl C C min d ( x, y) x C, y C i, j x, y i j

14 Single-link clustering: example Determined by one pair of points, i.e., by one link in the proximity graph. I I2 I3 I4 I5 I I I I I

15 Single-link clustering: example Nested Clusters Dendrogram

16 Strengths of single-link clustering Original Points Two Clusters Can handle non-elliptical shapes

17 Limitations of single-link clustering Original Points Two Clusters Sensitive to noise and outliers It produces long, elongated clusters

18 Distance between two clusters Complete-link distance between clusters C i and C j is the maximum distance between any object in C i and any object in C j The distance is defined by the two most dissimilar objects D cl C C max d ( x, y) x C, y C i, j x, y i j

19 Complete-link clustering: example Distance between clusters is determined by the two most distant points in the different clusters I I2 I3 I4 I5 I I I I I

20 Complete-link clustering: example Nested Clusters Dendrogram

21 Strengths of complete-link clustering Original Points Two Clusters More balanced clusters (with equal diameter) Less susceptible to noise

22 Limitations of complete-link clustering Original Points Two Clusters Tends to break large clusters All clusters tend to have the same diameter Small clusters are merged with larger ones

23 Distance between two clusters Group average distance between clusters C i and C j is the average distance between any object in C i and any object in C j D avg C i, C j C i C j xc, y i C j d( x, y)

24 Average-link clustering: example Proximity of two clusters is the average of pairwise proximity between points in the two clusters. I I2 I3 I4 I5 I I I I I

25 Average-link clustering: example Nested Clusters Dendrogram

26 Average-link clustering: discussion Compromise between Single and Complete Link Strengths o Less susceptible to noise and outliers Limitations o Biased towards globular clusters

27 Distance between two clusters Centroid distance between clusters C i and C j is the distance between the centroid r i of C i and the centroid r j of C j D centroids C C d( r, r ) i, j i j

28 Distance between two clusters Ward s distance between clusters C i and C j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C ij D w r i : centroid of C i r j : centroid of C j r ij : centroid of C ij 2 2 C i, C j x ri x rj x rij xc i xc j xc ij 2

29 Ward s distance for clusters Similar to group average and centroid distance Less susceptible to noise and outliers Biased towards globular clusters Hierarchical analogue of k-means o Can be used to initialize k-means (at a given step of the hierarchical, we stop and check the determined clusters. The centroid of such clusters are the initial position of k-means)

30 Hierarchical Clustering: Comparison Group Average Ward s Method MIN (Single link) MAX (Complete link)

31 Hierarchical Clustering: Time and Space requirements For a dataset X consisting of n points O(n 2 ) space; it requires storing the distance matrix O(n 3 ) time in most of the cases o o There are n steps and at each step the size n 2 distance matrix must be updated and searched Complexity can be reduced to O(n 2 log(n) ) time for some approaches by using appropriate data structures

32 Divisive hierarchical clustering Start with a single cluster composed of all data points Split this into components Continue recursively Monothetic divisive methods split clusters using one variable/dimension at a time Polythetic divisive methods make splits on the basis of all variables together Any intercluster distance measure can be used Computationally intensive (they use an exhaustive search, O(2 n )), less widely used than agglomerative methods

33 Model-based clustering Assume data generated from k probability distributions Goal: find the distribution parameters Algorithm: Expectation Maximization (EM) (i.e. we do now know the parameters, nor the structure of the model fraction of data to each pdf) Output: Distribution parameters and a soft assignment of points to clusters (i.e. assigning their probability to belong to a given cluster)

34 Model-based clustering Assume k probability distributions with parameters: (θ,, θ k ) Given data X, compute (θ,, θ k ) such that Pr(X θ,, θ k ) [likelihood] or log(pr(x θ,, θ k )) [loglikelihood] is maximized. Every point xєx need not to be generated by a single distribution but it can be generated by multiple distributions with some probability [soft clustering] A remark: if we knew which observations belong to which group or class, then we could divide the data by class and then estimate the parameters of each component density separately. Not knowing the class labels means that the labels and the parameters have to be estimated at the same time

35 EM Algorithm Initialize k distribution parameters (θ,, θ k ); Each distribution parameter characterize the clusters (they may be cluster center/diameter/ ) Iterate between two steps o Expectation step: (probabilistically) assign points to clusters (i.e. to a given pdf) o Maximation step: estimate model parameters that maximize the likelihood for the given assignment of points o With those parameters, repeat the assignment (E) step

36 Mixtures of Gaussians -- notes.2 Posterior Class Probabilities labeling Secondfeature w ik K F( x j k j i F( x i k ) First feature j )

37 EM algorithm for mixture of Gaussians What is a mixture of K Gaussians? with and F(x Θ) is the Gaussian distribution with parameters Θ = {μ,σ} K k k k x F x p ) ( ) ( K k k

38 EM algorithm for mixture of Gaussians If all points xєx are mixtures of K Gaussians then p( X ) p( x ) F( x i Goal: Find π,, π k and Θ,, Θ k such that P(X) is maximized Or, ln(p(x)) is maximized: n i n K i k k i n K L( ) ln k F( x i k ) i k k )

39 Mixtures of Gaussians -- notes Every point x i is probabilistically assigned (generated) to (by) the k-th Gaussian Probability that point x i is generated by the k-th Gaussian is w ik K F( x j k j i F( x i k ) j )

40 Mixtures of Gaussians -- notes Every Gaussian (cluster) C k has an effective number of points assigned to it N k With mean And variance n N k w ik k i n Nk i w ik x i k n Nk i w ik x x x i k i i k T

41 EM for Gaussian Mixtures Initialize the means μ k, variances Σ k (Θ k =(μ k,σ k )) and mixing coefficients π k, and evaluate the initial value of the loglikelihood Expectation step: Evaluate weights w ik K F( x j k j i F( x i k ) j )

42 EM for Gaussian Mixtures Maximization step: Re-evaluate parameters new k new k new k n Nk i n Nk i N k N w w ik ik x Evaluate L(Θ new ) and stop if converged i new new x x x i k i i k T

43 Density-Based Clustering Methods Clustering based on density (local cluster criterion), such as density-connected points Major features: o Discover clusters of arbitrary shape o Handle noise o One scan o Need density parameters as termination condition Several interesting studies: o DBSCAN, o OPTICS (an algorithm for finding density-based clusters in spatial data), o others

44 Classification of points in density-based clustering Core points: Interior points of a density-based cluster. A point p is a core point if for distance Eps : N Eps (p)={q dist(p,q) <= e } MinPts [i.e.: a point p is a core point if at least minpts points are within distance ε of it] Border points: Not a core point but within the neighborhood of a core point (it can be in the neighborhoods of many core points) Noise points: Not a core or a border point

45 Core, border and noise points Eps Eps Eps

46 DBSCAN: The Algorithm Density-based spatial clustering of applications with noise Given a set of points, DBSCAN groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form a dense region (minpts). It starts with an arbitrary starting point that has not been visited. This point's ε-neighborhood is retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the point is labeled as noise. [This point might later be found in a sufficiently sized ε-environment of a different point and hence be made part of a cluster] If a point is found to be a dense part of a cluster, its ε-neighborhood is also part of that cluster. Hence, all points that are found within the ε-neighborhood are added, as is their own ε-neighborhood when they are also dense. This process continues until the density-connected cluster is completely found. Then, a new unvisited point is retrieved and processed, leading to the discovery of a further cluster or noise.

47 Time and space complexity of DBSCAN For a dataset X consisting of n points, the time complexity of DBSCAN is O(n x time to find points in the Eps-neighborhood) Worst case O(n 2 ) In low-dimensional spaces O(n log n); efficient data structures (e.g., kd-trees) allow for efficient retrieval of all points within a given distance of a specified point

48 Strengths and weaknesses of DBSCAN Resistant to noise Finds clusters of arbitrary shapes and sizes Difficulty in identifying clusters with varying densities Problems in high-dimensional spaces; notion of density unclear Can be computationally expensive when the computation of nearest neighbors is expensive

### DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm CLUSTERING What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related)

### Hierarchical Clustering

Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits 0 0 0 00

### Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Lecture No 08 Cluster Analysis Naeem Ahmed Email: naeemmahoto@gmailcom Department of Software Engineering Mehran Univeristy of Engineering and Technology Jamshoro Outline

### Clustering Part 3. Hierarchical Clustering

Clustering Part Dr Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Hierarchical Clustering Two main types: Agglomerative Start with the points

### Knowledge Discovery in Databases

Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Lecture notes Knowledge Discovery in Databases Summer Semester 2012 Lecture 8: Clustering

### CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University 09/25/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10.

### Hierarchical clustering

Hierarchical clustering Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Description Produces a set of nested clusters organized as a hierarchical tree. Can be visualized

### CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University 09/28/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10.

### Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

### Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/8/004 What

### Clustering Part 4 DBSCAN

Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

### 5/15/16. Computational Methods for Data Analysis. Massimo Poesio UNSUPERVISED LEARNING. Clustering. Unsupervised learning introduction

Computational Methods for Data Analysis Massimo Poesio UNSUPERVISED LEARNING Clustering Unsupervised learning introduction 1 Supervised learning Training set: Unsupervised learning Training set: 2 Clustering

### Unsupervised Learning. Supervised learning vs. unsupervised learning. What is Cluster Analysis? Applications of Cluster Analysis

7 Supervised learning vs unsupervised learning Unsupervised Learning Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute These patterns are then

### Clustering Lecture 4: Density-based Methods

Clustering Lecture 4: Density-based Methods Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced

### Notes. Reminder: HW2 Due Today by 11:59PM. Review session on Thursday. Midterm next Tuesday (10/10/2017)

1 Notes Reminder: HW2 Due Today by 11:59PM TA s note: Please provide a detailed ReadMe.txt file on how to run the program on the STDLINUX. If you installed/upgraded any package on STDLINUX, you should

### DS504/CS586: Big Data Analytics Big Data Clustering II

Welcome to DS504/CS586: Big Data Analytics Big Data Clustering II Prof. Yanhua Li Time: 6pm 8:50pm Thu Location: AK 232 Fall 2016 More Discussions, Limitations v Center based clustering K-means BFR algorithm

### PAM algorithm. Types of Data in Cluster Analysis. A Categorization of Major Clustering Methods. Partitioning i Methods. Hierarchical Methods

Whatis Cluster Analysis? Clustering Types of Data in Cluster Analysis Clustering part II A Categorization of Major Clustering Methods Partitioning i Methods Hierarchical Methods Partitioning i i Algorithms:

### Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining, 2 nd Edition

Data Mining Cluster Analysis: Advanced Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Outline Prototype-based Fuzzy c-means

### Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar What is Cluster Analsis? Finding groups of objects such that the

### Clustering fundamentals

Elena Baralis, Tania Cerquitelli Politecnico di Torino What is Cluster Analsis? Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from

### Finding Clusters 1 / 60

Finding Clusters Types of Clustering Approaches: Linkage Based, e.g. Hierarchical Clustering Clustering by Partitioning, e.g. k-means Density Based Clustering, e.g. DBScan Grid Based Clustering 1 / 60

### Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

### Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

### Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

### Data Mining 4. Cluster Analysis

Data Mining 4. Cluster Analysis 4.5 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction DBSCAN Algorithm OPTICS Algorithm DENCLUE Algorithm References Outline Introduction Introduction Density-based

### Clustering. Bruno Martins. 1 st Semester 2012/2013

Departamento de Engenharia Informática Instituto Superior Técnico 1 st Semester 2012/2013 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 Motivation Basic Concepts

### IBL and clustering. Relationship of IBL with CBR

IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

### DBSCAN. Presented by: Garrett Poppe

DBSCAN Presented by: Garrett Poppe A density-based algorithm for discovering clusters in large spatial databases with noise by Martin Ester, Hans-peter Kriegel, Jörg S, Xiaowei Xu Slides adapted from resources

### Clustering Algorithm (DBSCAN) VISHAL BHARTI Computer Science Dept. GC, CUNY

Clustering Algorithm (DBSCAN) VISHAL BHARTI Computer Science Dept. GC, CUNY Clustering Algorithm Clustering is an unsupervised machine learning algorithm that divides a data into meaningful sub-groups,

### University of Florida CISE department Gator Engineering. Clustering Part 5

Clustering Part 5 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville SNN Approach to Clustering Ordinary distance measures have problems Euclidean

### d(2,1) d(3,1 ) d (3,2) 0 ( n, ) ( n ,2)......

Data Mining i Topic: Clustering CSEE Department, e t, UMBC Some of the slides used in this presentation are prepared by Jiawei Han and Micheline Kamber Cluster Analysis What is Cluster Analysis? Types

### Today s lecture. Clustering and unsupervised learning. Hierarchical clustering. K-means, K-medoids, VQ

Clustering CS498 Today s lecture Clustering and unsupervised learning Hierarchical clustering K-means, K-medoids, VQ Unsupervised learning Supervised learning Use labeled data to do something smart What

### CS570: Introduction to Data Mining

CS570: Introduction to Data Mining Scalable Clustering Methods: BIRCH and Others Reading: Chapter 10.3 Han, Chapter 9.5 Tan Cengiz Gunay, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei.

### DS504/CS586: Big Data Analytics Big Data Clustering Prof. Yanhua Li

Welcome to DS504/CS586: Big Data Analytics Big Data Clustering Prof. Yanhua Li Time: 6:00pm 8:50pm Thu Location: AK 232 Fall 2016 High Dimensional Data v Given a cloud of data points we want to understand

### Clustering Techniques

Clustering Techniques Marco BOTTA Dipartimento di Informatica Università di Torino botta@di.unito.it www.di.unito.it/~botta/didattica/clustering.html Data Clustering Outline What is cluster analysis? What

### COMP 465: Data Mining Still More on Clustering

3/4/015 Exercise COMP 465: Data Mining Still More on Clustering Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed. Describe each of the following

### Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

Unsupervised Learning Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Content Motivation Introduction Applications Types of clustering Clustering criterion functions Distance functions Normalization Which

### What is Cluster Analysis? COMP 465: Data Mining Clustering Basics. Applications of Cluster Analysis. Clustering: Application Examples 3/17/2015

// What is Cluster Analysis? COMP : Data Mining Clustering Basics Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, rd ed. Cluster: A collection of data

### Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University

Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University Kinds of Clustering Sequential Fast Cost Optimization Fixed number of clusters Hierarchical

### CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling

To Appear in the IEEE Computer CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling George Karypis Eui-Hong (Sam) Han Vipin Kumar Department of Computer Science and Engineering University

### Course Content. What is Classification? Chapter 6 Objectives

Principles of Knowledge Discovery in Data Fall 007 Chapter 6: Data Clustering Dr. Osmar R. Zaïane University of Alberta Course Content Introduction to Data Mining Association Analysis Sequential Pattern

### Clustering. Lecture 6, 1/24/03 ECS289A

Clustering Lecture 6, 1/24/03 What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

### Association Rule Mining and Clustering

Association Rule Mining and Clustering Lecture Outline: Classification vs. Association Rule Mining vs. Clustering Association Rule Mining Clustering Types of Clusters Clustering Algorithms Hierarchical:

### Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

### Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 9: Data Mining (4/4) March 9, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides

### CLUSTERING. JELENA JOVANOVIĆ Web:

CLUSTERING JELENA JOVANOVIĆ Email: jeljov@gmail.com Web: http://jelenajovanovic.net OUTLINE What is clustering? Application domains K-Means clustering Understanding it through an example The K-Means algorithm

### Introduction to Computer Science

DM534 Introduction to Computer Science Clustering and Feature Spaces Richard Roettger: About Me Computer Science (Technical University of Munich and thesis at the ICSI at the University of California at

### Clustering Results. Result List Example. Clustering Results. Information Retrieval

Information Retrieval INFO 4300 / CS 4300! Presenting Results Clustering Clustering Results! Result lists often contain documents related to different aspects of the query topic! Clustering is used to

### Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

### Machine Learning 15/04/2015. Supervised learning vs. unsupervised learning. What is Cluster Analysis? Applications of Cluster Analysis

// Supervised learning vs unsupervised learning Machine Learning Unsupervised Learning Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute These

### Lecture 7 Cluster Analysis: Part A

Lecture 7 Cluster Analysis: Part A Zhou Shuigeng May 7, 2007 2007-6-23 Data Mining: Tech. & Appl. 1 Outline What is Cluster Analysis? Types of Data in Cluster Analysis A Categorization of Major Clustering

### Cluster Analysis for Microarray Data

Cluster Analysis for Microarray Data Seventh International Long Oligonucleotide Microarray Workshop Tucson, Arizona January 7-12, 2007 Dan Nettleton IOWA STATE UNIVERSITY 1 Clustering Group objects that

### Data Mining. Cluster Analysis: Basic Concepts and Algorithms

Data Mining Cluster Analsis: Basic Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is Cluster Analsis? Finding groups of objects such that the objects in a group will

### 10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2

161 Machine Learning Hierarchical clustering Reading: Bishop: 9-9.2 Second half: Overview Clustering - Hierarchical, semi-supervised learning Graphical models - Bayesian networks, HMMs, Reasoning under

### 4. Cluster Analysis. Francesc J. Ferri. Dept. d Informàtica. Universitat de València. Febrer F.J. Ferri (Univ. València) AIRF 2/ / 1

Anàlisi d Imatges i Reconeixement de Formes Image Analysis and Pattern Recognition:. Cluster Analysis Francesc J. Ferri Dept. d Informàtica. Universitat de València Febrer 8 F.J. Ferri (Univ. València)

### Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic

Clustering SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis a first intuition about the

### Hierarchical Clustering

Hierarchical Clustering Build a tree-based hierarchical taxonomy (dendrogram) from a set animal of documents. vertebrate invertebrate fish reptile amphib. mammal worm insect crustacean One approach: recursive

### Unsupervised Learning

Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo 6.873/HST.951 Medical Decision

### K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

### Chapter ML:XI (continued)

Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained

### 3. Cluster analysis Overview

Université Laval Analyse multivariable - mars-avril 2008 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

### Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

### COMPARISON OF DENSITY-BASED CLUSTERING ALGORITHMS

COMPARISON OF DENSITY-BASED CLUSTERING ALGORITHMS Mariam Rehman Lahore College for Women University Lahore, Pakistan mariam.rehman321@gmail.com Syed Atif Mehdi University of Management and Technology Lahore,

### A Survey on DBSCAN Algorithm To Detect Cluster With Varied Density.

A Survey on DBSCAN Algorithm To Detect Cluster With Varied Density. Amey K. Redkar, Prof. S.R. Todmal Abstract Density -based clustering methods are one of the important category of clustering methods

### Unsupervised Learning

Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

### Three-Dimensional Sensors Lecture 6: Point-Cloud Registration

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/ Point-Cloud Registration Methods Fuse data

### Objective of clustering

Objective of clustering Discover structures and patterns in high-dimensional data. Group data with similar patterns together. This reduces the complexity and facilitates interpretation. Expression level

### Mixture Models and EM

Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

### Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

### CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 16

CS434a/541a: Pattern Recognition Prof. Olga Veksler Lecture 16 Today Continue Clustering Last Time Flat Clustring Today Hierarchical Clustering Divisive Agglomerative Applications of Clustering Hierarchical

Market basket analysis Find joint values of the variables X = (X 1,..., X p ) that appear most frequently in the data base. It is most often applied to binary-valued data X j. In this context the observations

### Clustering Algorithms for general similarity measures

Types of general clustering methods Clustering Algorithms for general similarity measures general similarity measure: specified by object X object similarity matrix 1 constructive algorithms agglomerative

### Segmentation of Distinct Homogeneous Color Regions in Images

Segmentation of Distinct Homogeneous Color Regions in Images Daniel Mohr and Gabriel Zachmann Department of Computer Science, Clausthal University, Germany, {mohr, zach}@in.tu-clausthal.de Abstract. In

### On Clustering Validation Techniques

On Clustering Validation Techniques Maria Halkidi, Yannis Batistakis, Michalis Vazirgiannis Department of Informatics, Athens University of Economics & Business, Patision 76, 0434, Athens, Greece (Hellas)

### A Comparative Study of Various Clustering Algorithms in Data Mining

Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

### Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Lecture 7: Document Clustering May 25, 2011 Wolf-Tilo Balke and Joachim Selke Institut für Informationssysteme Technische Universität Braunschweig Homework

### Clustering Techniques

Clustering Techniques Bioinformatics: Issues and Algorithms CSE 308-408 Fall 2007 Lecture 16 Lopresti Fall 2007 Lecture 16-1 - Administrative notes Your final project / paper proposal is due on Friday,

### Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

### Keywords: hierarchical clustering, traditional similarity metrics, potential based similarity metrics.

www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 14027-14032 Potential based similarity metrics for implementing hierarchical clustering

### CS 412 Intro. to Data Mining Chapter 10. Cluster Analysis: Basic Concepts and Methods

CS 412 Intro. to Data Mining Chapter 10. Cluster Analysis: Basic Concepts and Methods Jiawei Han, Computer Science, Univ. Illinois at Urbana -Champaign, 2017 1 2 Chapter 10. Cluster Analysis: Basic Concepts

### Region-based Segmentation

Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

### Chapter 6: Cluster Analysis

Chapter 6: Cluster Analysis The major goal of cluster analysis is to separate individual observations, or items, into groups, or clusters, on the basis of the values for the q variables measured on each

### Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

### CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

### Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

### CSE 494/598 Lecture-11: Clustering & Classification

CSE 494/598 Lecture-11: Clustering & Classification LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **With permission, content adapted from last year s slides and from Intro to DM dmbook@cs.umn.edu

### CS573 Data Privacy and Security. Li Xiong

CS573 Data Privacy and Security Anonymizationmethods Li Xiong Today Clustering based anonymization(cont) Permutation based anonymization Other privacy principles Microaggregation/Clustering Two steps:

### Sequence clustering. Introduction. Clustering basics. Hierarchical clustering

Sequence clustering Introduction Data clustering is one of the key tools used in various incarnations of data-mining - trying to make sense of large datasets. It is, thus, natural to ask whether clustering

### Clustering Color/Intensity. Group together pixels of similar color/intensity.

Clustering Color/Intensity Group together pixels of similar color/intensity. Agglomerative Clustering Cluster = connected pixels with similar color. Optimal decomposition may be hard. For example, find

### Clustering (Basic concepts and Algorithms) Entscheidungsunterstützungssysteme

Clustering (Basic concepts and Algorithms) Entscheidungsunterstützungssysteme Why do we need to find similarity? Similarity underlies many data science methods and solutions to business problems. Some

### 2. Background. 2.1 Clustering

2. Background 2.1 Clustering Clustering involves the unsupervised classification of data items into different groups or clusters. Unsupervised classificaiton is basically a learning task in which learning

### Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

### A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

### Clustering Algorithms for Spatial Databases: A Survey

Clustering Algorithms for Spatial Databases: A Survey Erica Kolatch Department of Computer Science University of Maryland, College Park CMSC 725 3/25/01 kolatch@cs.umd.edu 1. Introduction Spatial Database

### Segmentation of Images

Segmentation of Images SEGMENTATION If an image has been preprocessed appropriately to remove noise and artifacts, segmentation is often the key step in interpreting the image. Image segmentation is a

### ECG782: Multidimensional Digital Signal Processing

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 10 Segmentation 14/02/27 http://www.ee.unlv.edu/~b1morris/ecg782/

### A k-means Clustering Algorithm on Numeric Data

Volume 117 No. 7 2017, 157-164 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A k-means Clustering Algorithm on Numeric Data P.Praveen 1 B.Rama 2