Deep Neural Network Hyperparameter Optimization with Genetic Algorithms

Size: px
Start display at page:

Download "Deep Neural Network Hyperparameter Optimization with Genetic Algorithms"

Transcription

1 Deep Neural Network Hyperparameter Optimization with Genetic Algorithms EvoDevo A Genetic Algorithm Framework Aaron Vose, Jacob Balma, Geert Wenes, and Rangan Sukumar Cray Inc. October 2017 Presenter Vose, A et al Slide 1

2 EvoDevo Motivation and Description Improve time-to-accuracy as well as accuracy in DNN training Take the trial-and-error out of DNN training Genetic / Evolutionary Algorithm (GA/EA) framework. Use a fitness function and crossover and migration mechanisms to evolve local, somewhat isolated pools (demes) of hyperparameters over multiple generations per training epoch Optimization of neural network hyperparameters and topology: Number of filters, kernel size of convolutional layers. Size of fully-connected layers. Dropout rate and momentum used during training. Vose, A et al Slide 2

3 EvoDevo Built into existing CNNs Support for multiple toolkits (Google s TensorFlow, Microsoft s Cognitive Toolkit, Keras and others) C wrapper provides generic interface, multi-node support via MPI. References Inspired by previous work in theoretical biology at UTK [1]. See also recent MENNDL work out of ORNL [6]. Vose, A et al Slide 3

4 Datasets MNIST: Size: 70,000 images 60,000 train and 10,000 test Resolution: greyscale pixels Classes: 10 classes one each for digits 0-9 Figure 1: Selected example images from MNIST [4]. Vose, A et al Slide 4

5 Datasets CIFAR-10: Size: 60,000 images 50,000 train and 10,000 test Resolution: color pixels Classes: 10 classes airplane, bird, cat,... Figure 2: Selected example images from CIFAR-10 [3]. Vose, A et al Slide 5

6 NN Architectures LeNet-5 in TensorFlow: Model: 7-Layer (5 hidden) LeNet [5] ToolKit: Google s TensorFlow Language: Python code calling TF API Figure 3: LeNet-5 neural network architecture. Vose, A et al Slide 6

7 NN Architectures ResNet-110 in CNTK: Model: 110-Layer ResNet [2] ToolKit: Microsoft s CNTK Language: Configuration script read by CNTK (C++) Figure 4: ResNet neural network architecture (34 layers shown for clarity). Vose, A et al Slide 7

8 Results Time to Accuracy LeNet-5, MNIST, TensorFlow: Model: 7-Layer (5 hidden) LeNet Momentum: 1e 4 1e 3 Topology: 5 32, 5 64, , 5 32, 512 c1kern c1filt, c2kern c2filt, fullconn Gain: 70% reduction in training time to validation accuracy of 99.1%. Genetic Algorithm: Fitness function: Optimization time: 5 samples of: training time to 99.1% accuracy. 24 hours Vose, A et al Slide 8

9 Results Time to Accuracy Figure 5: Validation accuracy during training. Vose, A et al Slide 9

10 Results Final Accuracy ResNet-110, CIFAR-10, CNTK: Model: 110-Layer ResNet Topology: 16, 32, 64 32, 15, 128 cstack1filt, cstack2filt, cstack3filt Error: Gain: 6.35% initial 5.91% optimized 7% reduction in final top-1 classification error Genetic Algorithm: Fitness function: Optimization time: 3 samples of: validation accuracy at 2 epochs. 24 hours Vose, A et al Slide 10

11 Results Final Accuracy Figure 6: Best individual s two-epoch validation accuracy improves over successive generations of EvoDevo s evolutionary algorithm. Vose, A et al Slide 11

12 Genetic Algorithm Life Cycle Details Typical Parameters PARAM EPOCHS = PARAM GENERATIONS = PARAM DEMES = 31 epochs 5 generations per epoch 4 demes (local populations) in 2 2 grid PARAM POPULATION SIZE = 4 demes * 25 to 85 individuals Infrastructure Results obtained on 16 Cray XC-50 nodes with NVIDIA P100s Vose, A et al Slide 12

13 Genetic Algorithm Life Cycle Details Generations and Epochs g 0 P g initial population while g < PARAM GENERATIONS: p P g : p.runtime execute( p ) p P g : p.fitness e ((p.runtime min)/(max min))2 while P (g+1) < PARAM POPULATION SIZE: p a p P g with probability p.fitness q.fitness q Pg p.fitness q.fitness q Pg p b p P g with probability c mutate( crossover( p a, p b ) ) P (g+1) P (g) {c} g g + 1 if MOD( g, PARAM GENERATIONS/PARAM EPOCHS ) == 0: migrate best population member( north, south, east, west ) Vose, A et al Slide 13

14 Genetic Algorithm Life Cycle Details Crossover Figure 7: Crossover combines the hyperparameters of two parents to create a new child. Vose, A et al Slide 14

15 Genetic Algorithm Life Cycle Details Migration Figure 8: Migration copies the best individuals to neighboring demes each epoch. Vose, A et al Slide 15

16 Conclusions Evolution of DNN Topologies and Hyperparameters with EvoDevo HPC-scalable solution for exploration of DNN topologies and hyperparameters Simultaneous evolution of hyperparameters and topology widens search space, maximizes training speed or validation accuracy Supports individuals with distributed training node-sets (via MPI), enabling large data-parallel training tasks Population size scales with machine resources Time-to-Accuracy: Shown to significantly improve training time for DNNs Selects for individuals who reach target accuracy fastest Final Accuracy: Shown to improve validation accuracy over a known best-topology on CIFAR-10 Prunes search space of topologies when a good starting topology is not known (applies to new datasets, similar to MENNDL) Vose, A et al Slide 16

17 Future Work Expand Hyperparameter Evolution: Stride of convolutional and pooling layers. Number of convolutional and fully-connected layers. Activation function (e.g., logistic, tanh, ReLU). Random seed value for better initial weights. Larger Runs: Larger data sets such as CIFAR-100 and ImageNet. Larger EvoDevo runs on more compute nodes. New Applications: Unsupervised learning with Generative Adversarial Networks (GANs). Vose, A et al Slide 17

18 References Bibliography: S. Gavrilets and A. Vose. Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences of the United States of America, 102(50): , K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages , A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images Y. LeCun. The mnist database of handwritten digits. lecun. com/exdb/mnist/. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): , T. E. Potok, C. D. Schuman, S. R. Young, R. M. Patton, F. Spedalieri, J. Liu, K.-T. Yao, G. Rose, and G. Chakma. A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. In Proceedings of the Workshop on Machine Learning in High Performance Computing Environments, pages IEEE Press, Vose, A et al Slide 18

Convolutional Neural Networks

Convolutional Neural Networks Lecturer: Barnabas Poczos Introduction to Machine Learning (Lecture Notes) Convolutional Neural Networks Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Deep Neural Networks:

Deep Neural Networks: Deep Neural Networks: Part II Convolutional Neural Network (CNN) Yuan-Kai Wang, 2016 Web site of this course: http://pattern-recognition.weebly.com source: CNN for ImageClassification, by S. Lazebnik,

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python.

Inception and Residual Networks. Hantao Zhang. Deep Learning with Python. Inception and Residual Networks Hantao Zhang Deep Learning with Python https://en.wikipedia.org/wiki/residual_neural_network Deep Neural Network Progress from Large Scale Visual Recognition Challenge (ILSVRC)

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

Study of Residual Networks for Image Recognition

Study of Residual Networks for Image Recognition Study of Residual Networks for Image Recognition Mohammad Sadegh Ebrahimi Stanford University sadegh@stanford.edu Hossein Karkeh Abadi Stanford University hosseink@stanford.edu Abstract Deep neural networks

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage

HENet: A Highly Efficient Convolutional Neural. Networks Optimized for Accuracy, Speed and Storage HENet: A Highly Efficient Convolutional Neural Networks Optimized for Accuracy, Speed and Storage Qiuyu Zhu Shanghai University zhuqiuyu@staff.shu.edu.cn Ruixin Zhang Shanghai University chriszhang96@shu.edu.cn

More information

Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / ADD-IDAR

Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / ADD-IDAR Defense Data Generation in Distributed Deep Learning System Se-Yoon Oh / 2017. 10. 31 syoh@add.re.kr Page 1/36 Overview 1. Introduction 2. Data Generation Synthesis 3. Distributed Deep Learning 4. Conclusions

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples ITAT 216 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 187 194 http://ceur-ws.org/vol-1649, Series ISSN 1613-73, c 216 P. Vidnerová, R. Neruda Vulnerability of machine learning models to adversarial

More information

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn

Intro to Deep Learning. Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Intro to Deep Learning Slides Credit: Andrej Karapathy, Derek Hoiem, Marc Aurelio, Yann LeCunn Why this class? Deep Features Have been able to harness the big data in the most efficient and effective

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA February 9, 2017 1 / 24 OUTLINE 1 Introduction Keras: Deep Learning library for Theano and TensorFlow 2 Installing Keras Installation

More information

Seminars in Artifiial Intelligenie and Robotiis

Seminars in Artifiial Intelligenie and Robotiis Seminars in Artifiial Intelligenie and Robotiis Computer Vision for Intelligent Robotiis Basiis and hints on CNNs Alberto Pretto What is a neural network? We start from the frst type of artifcal neuron,

More information

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers

Deep Learning Workshop. Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Deep Learning Workshop Nov. 20, 2015 Andrew Fishberg, Rowan Zellers Why deep learning? The ImageNet Challenge Goal: image classification with 1000 categories Top 5 error rate of 15%. Krizhevsky, Alex,

More information

Real-time convolutional networks for sonar image classification in low-power embedded systems

Real-time convolutional networks for sonar image classification in low-power embedded systems Real-time convolutional networks for sonar image classification in low-power embedded systems Matias Valdenegro-Toro Ocean Systems Laboratory - School of Engineering & Physical Sciences Heriot-Watt University,

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

POINT CLOUD DEEP LEARNING

POINT CLOUD DEEP LEARNING POINT CLOUD DEEP LEARNING Innfarn Yoo, 3/29/28 / 57 Introduction AGENDA Previous Work Method Result Conclusion 2 / 57 INTRODUCTION 3 / 57 2D OBJECT CLASSIFICATION Deep Learning for 2D Object Classification

More information

6. Convolutional Neural Networks

6. Convolutional Neural Networks 6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2017 Fuxin Li With materials from Zsolt Kira Quiz coming up Next Thursday (2/2) 20 minutes Topics: Optimization Basic neural networks No Convolutional

More information

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD.

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD. Deep Learning 861.061 Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD asan.agibetov@meduniwien.ac.at Medical University of Vienna Center for Medical Statistics,

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

Deep Learning Based Large Scale Handwritten Devanagari Character Recognition

Deep Learning Based Large Scale Handwritten Devanagari Character Recognition Deep Learning Based Large Scale Handwritten Devanagari Character Recognition Ashok Kumar Pant (M.Sc.) Institute of Science and Technology TU Kirtipur, Nepal Email: ashokpant87@gmail.com Prashnna Kumar

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

Efficient Convolutional Network Learning using Parametric Log based Dual-Tree Wavelet ScatterNet

Efficient Convolutional Network Learning using Parametric Log based Dual-Tree Wavelet ScatterNet Efficient Convolutional Network Learning using Parametric Log based Dual-Tree Wavelet ScatterNet Amarjot Singh, Nick Kingsbury Signal Processing Group, Department of Engineering, University of Cambridge,

More information

Smart Parking System using Deep Learning. Sheece Gardezi Supervised By: Anoop Cherian Peter Strazdins

Smart Parking System using Deep Learning. Sheece Gardezi Supervised By: Anoop Cherian Peter Strazdins Smart Parking System using Deep Learning Sheece Gardezi Supervised By: Anoop Cherian Peter Strazdins Content Labeling tool Neural Networks Visual Road Map Labeling tool Data set Vgg16 Resnet50 Inception_v3

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Machine Evolution. Machine Evolution. Let s look at. Machine Evolution. Machine Evolution. Machine Evolution. Machine Evolution

Machine Evolution. Machine Evolution. Let s look at. Machine Evolution. Machine Evolution. Machine Evolution. Machine Evolution Let s look at As you will see later in this course, neural networks can learn, that is, adapt to given constraints. For example, NNs can approximate a given function. In biology, such learning corresponds

More information

Weighted Convolutional Neural Network. Ensemble.

Weighted Convolutional Neural Network. Ensemble. Weighted Convolutional Neural Network Ensemble Xavier Frazão and Luís A. Alexandre Dept. of Informatics, Univ. Beira Interior and Instituto de Telecomunicações Covilhã, Portugal xavierfrazao@gmail.com

More information

CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague

CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague CNNS FROM THE BASICS TO RECENT ADVANCES Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague ducha.aiki@gmail.com OUTLINE Short review of the CNN design Architecture progress

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet

Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet 1 Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet Naimish Agarwal, IIIT-Allahabad (irm2013013@iiita.ac.in) Artus Krohn-Grimberghe, University of Paderborn (artus@aisbi.de)

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

TensorFlow and Keras-based Convolutional Neural Network in CAT Image Recognition Ang LI 1,*, Yi-xiang LI 2 and Xue-hui LI 3

TensorFlow and Keras-based Convolutional Neural Network in CAT Image Recognition Ang LI 1,*, Yi-xiang LI 2 and Xue-hui LI 3 2017 2nd International Conference on Coputational Modeling, Siulation and Applied Matheatics (CMSAM 2017) ISBN: 978-1-60595-499-8 TensorFlow and Keras-based Convolutional Neural Network in CAT Iage Recognition

More information

Channel Locality Block: A Variant of Squeeze-and-Excitation

Channel Locality Block: A Variant of Squeeze-and-Excitation Channel Locality Block: A Variant of Squeeze-and-Excitation 1 st Huayu Li Northern Arizona University Flagstaff, United State Northern Arizona University hl459@nau.edu arxiv:1901.01493v1 [cs.lg] 6 Jan

More information

Outline GF-RNN ReNet. Outline

Outline GF-RNN ReNet. Outline Outline Gated Feedback Recurrent Neural Networks. arxiv1502. Introduction: RNN & Gated RNN Gated Feedback Recurrent Neural Networks (GF-RNN) Experiments: Character-level Language Modeling & Python Program

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Deep Learning With Noise

Deep Learning With Noise Deep Learning With Noise Yixin Luo Computer Science Department Carnegie Mellon University yixinluo@cs.cmu.edu Fan Yang Department of Mathematical Sciences Carnegie Mellon University fanyang1@andrew.cmu.edu

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Jakob Verbeek 2017-2018 Biological motivation Neuron is basic computational unit of the brain about 10^11 neurons in human brain Simplified neuron model as linear threshold

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Convolutional Neural Networks for Handwritten Digit Recognition Andreas Georgopoulos CID: 01281486 Abstract Abstract At this project three different Convolutional Neural Netwroks

More information

Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets)

Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets) Deep Learning Explained Module 4: Convolution Neural Networks (CNN or Conv Nets) Sayan D. Pathak, Ph.D., Principal ML Scientist, Microsoft Roland Fernandez, Senior Researcher, Microsoft Module Outline

More information

ECE 5470 Classification, Machine Learning, and Neural Network Review

ECE 5470 Classification, Machine Learning, and Neural Network Review ECE 5470 Classification, Machine Learning, and Neural Network Review Due December 1. Solution set Instructions: These questions are to be answered on this document which should be submitted to blackboard

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

IMPROVEMENT OF DEEP LEARNING MODELS ON CLASSIFICATION TASKS USING HAAR TRANSFORM AND MODEL ENSEMBLE

IMPROVEMENT OF DEEP LEARNING MODELS ON CLASSIFICATION TASKS USING HAAR TRANSFORM AND MODEL ENSEMBLE IMPROVEMENT OF DEEP LEARNING MODELS ON CLASSIFICATION TASKS USING HAAR TRANSFORM AND MODEL ENSEMBLE Bachelor s thesis Valkeakoski, Automation Engineering Spring 2017 Tung Son Nguyen 1 ABSTRACT Automation

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Tuning the Layers of Neural Networks for Robust Generalization

Tuning the Layers of Neural Networks for Robust Generalization 208 Int'l Conf. Data Science ICDATA'18 Tuning the Layers of Neural Networks for Robust Generalization C. P. Chiu, and K. Y. Michael Wong Department of Physics Hong Kong University of Science and Technology

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

Contextual Dropout. Sam Fok. Abstract. 1. Introduction. 2. Background and Related Work

Contextual Dropout. Sam Fok. Abstract. 1. Introduction. 2. Background and Related Work Contextual Dropout Finding subnets for subtasks Sam Fok samfok@stanford.edu Abstract The feedforward networks widely used in classification are static and have no means for leveraging information about

More information

Exploring Capsules. Binghui Peng Runzhou Tao Shunyu Yao IIIS, Tsinghua University {pbh15, trz15,

Exploring Capsules. Binghui Peng Runzhou Tao Shunyu Yao IIIS, Tsinghua University {pbh15, trz15, Exploring Capsules Binghui Peng Runzhou Tao Shunyu Yao IIIS, Tsinghua University {pbh15, trz15, yao-sy15}@mails.tsinghua.edu.cn 1 Introduction Nowadays, convolutional neural networks (CNNs) have received

More information

A Quick Guide on Training a neural network using Keras.

A Quick Guide on Training a neural network using Keras. A Quick Guide on Training a neural network using Keras. TensorFlow and Keras Keras Open source High level, less flexible Easy to learn Perfect for quick implementations Starts by François Chollet from

More information

BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks

BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks Surat Teerapittayanon Harvard University Email: steerapi@seas.harvard.edu Bradley McDanel Harvard University Email: mcdanel@fas.harvard.edu

More information

arxiv: v2 [cs.cv] 30 Oct 2018

arxiv: v2 [cs.cv] 30 Oct 2018 Adversarial Noise Layer: Regularize Neural Network By Adding Noise Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, Ping Wang School of Electronics Engineering and Computer Science, Peking University

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Deep Convolutional Neural Networks and Noisy Images

Deep Convolutional Neural Networks and Noisy Images Deep Convolutional Neural Networks and Noisy Images Tiago S. Nazaré, Gabriel B. Paranhos da Costa, Welinton A. Contato, and Moacir Ponti Instituto de Ciências Matemáticas e de Computação Universidade de

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Rotation Invariance Neural Network

Rotation Invariance Neural Network Rotation Invariance Neural Network Shiyuan Li Abstract Rotation invariance and translate invariance have great values in image recognition. In this paper, we bring a new architecture in convolutional neural

More information

An Introduction to Deep Learning with RapidMiner. Philipp Schlunder - RapidMiner Research

An Introduction to Deep Learning with RapidMiner. Philipp Schlunder - RapidMiner Research An Introduction to Deep Learning with RapidMiner Philipp Schlunder - RapidMiner Research What s in store for today?. Things to know before getting started 2. What s Deep Learning anyway? 3. How to use

More information

Kaggle Data Science Bowl 2017 Technical Report

Kaggle Data Science Bowl 2017 Technical Report Kaggle Data Science Bowl 2017 Technical Report qfpxfd Team May 11, 2017 1 Team Members Table 1: Team members Name E-Mail University Jia Ding dingjia@pku.edu.cn Peking University, Beijing, China Aoxue Li

More information

Ryerson University CP8208. Soft Computing and Machine Intelligence. Naive Road-Detection using CNNS. Authors: Sarah Asiri - Domenic Curro

Ryerson University CP8208. Soft Computing and Machine Intelligence. Naive Road-Detection using CNNS. Authors: Sarah Asiri - Domenic Curro Ryerson University CP8208 Soft Computing and Machine Intelligence Naive Road-Detection using CNNS Authors: Sarah Asiri - Domenic Curro April 24 2016 Contents 1 Abstract 2 2 Introduction 2 3 Motivation

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Machine Learning Workshop

Machine Learning Workshop Machine Learning Workshop {Presenters} Feb. 20th, 2018 Theory of Neural Networks Architecture and Types of Layers: Fully Connected (FC) Convolutional Neural Network (CNN) Pooling Drop out Residual Recurrent

More information

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT Mocha.jl Deep Learning in Julia Chiyuan Zhang (@pluskid) CSAIL, MIT Deep Learning Learning with multi-layer (3~30) neural networks, on a huge training set. State-of-the-art on many AI tasks Computer Vision:

More information

arxiv: v1 [cs.cv] 26 Aug 2016

arxiv: v1 [cs.cv] 26 Aug 2016 Scalable Compression of Deep Neural Networks Xing Wang Simon Fraser University, BC, Canada AltumView Systems Inc., BC, Canada xingw@sfu.ca Jie Liang Simon Fraser University, BC, Canada AltumView Systems

More information

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9-1 Administrative A2 due Wed May 2 Midterm: In-class Tue May 8. Covers material through Lecture 10 (Thu May 3). Sample midterm released on piazza. Midterm review session: Fri May 4 discussion

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

A Further Step to Perfect Accuracy by Training CNN with Larger Data

A Further Step to Perfect Accuracy by Training CNN with Larger Data A Further Step to Perfect Accuracy by Training CNN with Larger Data Seiichi Uchida, Shota Ide, Brian Kenji Iwana, Anna Zhu ISEE-AIT, Kyushu University, Fukuoka, 819-0395, Japan {uchida, ide, brian, anna}@human.ait.kyushu-u.ac.jp

More information

A performance comparison of Deep Learning frameworks on KNL

A performance comparison of Deep Learning frameworks on KNL A performance comparison of Deep Learning frameworks on KNL R. Zanella, G. Fiameni, M. Rorro Middleware, Data Management - SCAI - CINECA IXPUG Bologna, March 5, 2018 Table of Contents 1. Problem description

More information

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager

Characterization and Benchmarking of Deep Learning. Natalia Vassilieva, PhD Sr. Research Manager Characterization and Benchmarking of Deep Learning Natalia Vassilieva, PhD Sr. Research Manager Deep learning applications Vision Speech Text Other Search & information extraction Security/Video surveillance

More information

3D Densely Convolutional Networks for Volumetric Segmentation. Toan Duc Bui, Jitae Shin, and Taesup Moon

3D Densely Convolutional Networks for Volumetric Segmentation. Toan Duc Bui, Jitae Shin, and Taesup Moon 3D Densely Convolutional Networks for Volumetric Segmentation Toan Duc Bui, Jitae Shin, and Taesup Moon School of Electronic and Electrical Engineering, Sungkyunkwan University, Republic of Korea arxiv:1709.03199v2

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

Using Capsule Networks. for Image and Speech Recognition Problems. Yan Xiong

Using Capsule Networks. for Image and Speech Recognition Problems. Yan Xiong Using Capsule Networks for Image and Speech Recognition Problems by Yan Xiong A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved November 2018 by the

More information

On the Effectiveness of Neural Networks Classifying the MNIST Dataset

On the Effectiveness of Neural Networks Classifying the MNIST Dataset On the Effectiveness of Neural Networks Classifying the MNIST Dataset Carter W. Blum March 2017 1 Abstract Convolutional Neural Networks (CNNs) are the primary driver of the explosion of computer vision.

More information

Deep Learning & Neural Networks

Deep Learning & Neural Networks Deep Learning & Neural Networks Machine Learning CSE4546 Sham Kakade University of Washington November 29, 2016 Sham Kakade 1 Announcements: HW4 posted Poster Session Thurs, Dec 8 Today: Review: EM Neural

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

Convolu'onal Neural Networks

Convolu'onal Neural Networks Convolu'onal Neural Networks Dr. Kira Radinsky CTO SalesPredict Visi8ng Professor/Scien8st Technion Slides were adapted from Fei-Fei Li & Andrej Karpathy & Jus8n Johnson A bit of history: Hubel & Wiesel,

More information

arxiv: v1 [cs.lg] 16 Jan 2013

arxiv: v1 [cs.lg] 16 Jan 2013 Stochastic Pooling for Regularization of Deep Convolutional Neural Networks arxiv:131.3557v1 [cs.lg] 16 Jan 213 Matthew D. Zeiler Department of Computer Science Courant Institute, New York University zeiler@cs.nyu.edu

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Convolutional Deep Belief Networks on CIFAR-10

Convolutional Deep Belief Networks on CIFAR-10 Convolutional Deep Belief Networks on CIFAR-10 Alex Krizhevsky kriz@cs.toronto.edu 1 Introduction We describe how to train a two-layer convolutional Deep Belief Network (DBN) on the 1.6 million tiny images

More information

A Deep Learning primer

A Deep Learning primer A Deep Learning primer Riccardo Zanella r.zanella@cineca.it SuperComputing Applications and Innovation Department 1/21 Table of Contents Deep Learning: a review Representation Learning methods DL Applications

More information

Review: The best frameworks for machine learning and deep learning

Review: The best frameworks for machine learning and deep learning Review: The best frameworks for machine learning and deep learning infoworld.com/article/3163525/analytics/review-the-best-frameworks-for-machine-learning-and-deep-learning.html By Martin Heller Over the

More information

On Fast Sample Preselection for Speeding up Convolutional Neural Network Training

On Fast Sample Preselection for Speeding up Convolutional Neural Network Training On Fast Sample Preselection for Speeding up Convolutional Neural Network Training Frédéric Rayar and Seiichi Uchida Kyushu University, Fukuoka 819-0395, Japan {rayar,uchida}@human.ait.kyushu-u.ac.jp Abstract.

More information

DEEP NEURAL NETWORKS FOR OBJECT DETECTION

DEEP NEURAL NETWORKS FOR OBJECT DETECTION DEEP NEURAL NETWORKS FOR OBJECT DETECTION Sergey Nikolenko Steklov Institute of Mathematics at St. Petersburg October 21, 2017, St. Petersburg, Russia Outline Bird s eye overview of deep learning Convolutional

More information

arxiv: v1 [cs.cv] 29 Oct 2017

arxiv: v1 [cs.cv] 29 Oct 2017 A SAAK TRANSFORM APPROACH TO EFFICIENT, SCALABLE AND ROBUST HANDWRITTEN DIGITS RECOGNITION Yueru Chen, Zhuwei Xu, Shanshan Cai, Yujian Lang and C.-C. Jay Kuo Ming Hsieh Department of Electrical Engineering

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

CS 523: Multimedia Systems

CS 523: Multimedia Systems CS 523: Multimedia Systems Angus Forbes creativecoding.evl.uic.edu/courses/cs523 Today - Convolutional Neural Networks - Work on Project 1 http://playground.tensorflow.org/ Convolutional Neural Networks

More information

Convolutional Neural Network for Facial Expression Recognition

Convolutional Neural Network for Facial Expression Recognition Convolutional Neural Network for Facial Expression Recognition Liyuan Zheng Department of Electrical Engineering University of Washington liyuanz8@uw.edu Shifeng Zhu Department of Electrical Engineering

More information

arxiv: v2 [cs.cv] 29 Nov 2017

arxiv: v2 [cs.cv] 29 Nov 2017 Improved Regularization of Convolutional Neural Networks with Terrance DeVries 1 and Graham W. Taylor 1,2 1 University of Guelph 2 Canadian Institute for Advanced Research and Vector Institute arxiv:1708.04552v2

More information

Elastic Neural Networks for Classification

Elastic Neural Networks for Classification Elastic Neural Networks for Classification Yi Zhou 1, Yue Bai 1, Shuvra S. Bhattacharyya 1, 2 and Heikki Huttunen 1 1 Tampere University of Technology, Finland, 2 University of Maryland, USA arxiv:1810.00589v3

More information

Supplementary material for Analyzing Filters Toward Efficient ConvNet

Supplementary material for Analyzing Filters Toward Efficient ConvNet Supplementary material for Analyzing Filters Toward Efficient Net Takumi Kobayashi National Institute of Advanced Industrial Science and Technology, Japan takumi.kobayashi@aist.go.jp A. Orthonormal Steerable

More information

Evaluation of Convnets for Large-Scale Scene Classification From High-Resolution Remote Sensing Images

Evaluation of Convnets for Large-Scale Scene Classification From High-Resolution Remote Sensing Images Evaluation of Convnets for Large-Scale Scene Classification From High-Resolution Remote Sensing Images Ratko Pilipović and Vladimir Risojević Faculty of Electrical Engineering University of Banja Luka

More information

Supervised Hashing for Image Retrieval via Image Representation Learning

Supervised Hashing for Image Retrieval via Image Representation Learning Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Supervised Hashing for Image Retrieval via Image Representation Learning Rongkai Xia 1, Yan Pan 1, Hanjiang Lai 1,2, Cong Liu

More information