# Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization

Save this PDF as:

Size: px
Start display at page:

Download "Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization"

## Transcription

1 Introduction to Linear Programming Algorithmic and Geometric Foundations of Optimization

2 Optimization and Linear Programming Mathematical programming is a class of methods for solving problems which ask you to optimize: to maximize, minimize, to find the best, the worst, the most, the least, the fastest, the shortest, etc. Linear programming is the simplest form, suitable only for problems with linear objective functions and constraints. Two of the Basic Linear Programming Problems: -The Product Mix Problem What quantities of products should be produced to maximize profit? In economics, this is the optimal allocation of scarce resources. -The Blending Problem What combination of ingredients minimizes cost? For example, creating industrial chemical compounds.

3 Some Optimization Basics Unconstrained: Easy: Unconstrained: max x max x f ä ã x ë í = x f ä ã x ë í = x ä ã 1 x ë í Still easy: df ä ã x ë í dx = 1 2 x = 0 à x í = 1 2 In general, what are we doing? -Set the derivative to zero and solve. -Why?

4 Necessary and Sufficient Conditions for an optimum over single-peaked functions: Maximum Minimum Necessity Sufficiency df ä ã x ë í dx = 0 d 2 f ä ã x ë í < 0 dx df ä ã x ë í dx = 0 d 2 f ä dx ã x ë í > 0 f '(x) = 0 f "(x) < 0 f '(x) = 0 f "(x) > 0

5 Some Complications What about more complicated functions? max x, y, z f ä ã x, y, z ë í = x ä ã 1 y ë í + y ä ã 1 x ë í + z ä ã 1 x y ë í Calculus still works, but is cumbersome to do by hand. We turn to computers and automate the process instead. What about constraints? max x f ä ã x ë í = x ä ã 1 x ë í, subject to x # 1 3 Again, calculus works (use the Lagrangian) for small problems, but needs automation for larger problems.

6 More Complications f(x) Multiple Optima f(x) Discontinuous Functions Uncertainty f(x) f(x) x Integer Restrictions x x x

7 The Need for Algorithmic Methods How can we automate searching for optima? Linear programming (LP) is one such method. LP is easy and fast, but it has some important limitations: Limitations/Requirements (1) Decisions are made under certainty (1) (2) Objective function and constraints must be linear (2) Alternatives Sometimes expectations can be used, but generally stochastic programming is required NLP (tough!). No guaranteed global optimizer other than enumeration! GA, GP, SA, heuristic search, tabu, adaptive grid refinement, active sets (3) Additivity (3) NLP (4) Complete Independence (4) NLP (5) Infinite Divisibility (5) Integer programming, branch & bound

8 LP Structure Assuming the requirements for LP have been met, what does a LP look like? Decision Variables -Quantities to be allocated -Number of units to be produced -Time intervals, unit quantities, proportions... Objective Function -What is being maximized or minimized? -Thought: How do we reduce the world to a set of linear equations? Constraints -(In)equalities specifying limits on the unbounded optimization of a function. -If Π = P H Q, why not just set Q to?

9 Setting up a LP Problem: Product Mix Fischbeck Electronics makes two models of television sets, A and B. Fischbeck Electronics profit, A, on A is \$300 per set and its profit on B, B, is \$250 per set. Thus, the problem facing Fischbeck Electronics is: max Π = Π A + Π B x B, x B Notice that unconstrained optimization would cause them to produce only A! But, Fischbeck Electronics faces several constraints: (1) A Labor Constraint: They can t use more than 40 hours of labor per day (5 employees working regular shifts). (2) A Manufacturing Constraint: They only have 45 hours of machine time available (9 machines available for 5 hours each). (3) A Marketing Constraint: They can t sell more than 12 units of set A per day.

10 Decision Variables Identifying the Problem Variables -What can we vary? and x B are the only variables we have direct control over. The Objective Function -What are we maximizing (minimizing)? Profit! (Cost!) Thought: Max Profit = Min Cost = Max Cost =... -How is it determined? Π = Π A + Π B x B, but we know that Π A = 300 and Π B = 250. So, the objective function is Π = x B.

11 Identifying the Constraints 3 primary constraints plus feasibility (x i \$ 0 ú i ): (1) Labor: A needs 2 hours of labor. B needs only 1 hour. Total labor is equal to the number of units produced times the labor required per unit. 2 + x B # 40 (2) Manufacturing: A needs 1 hour of machine time. B needs 3 hours. + 3 x B # 45 (3) Marketing: Can t see more than 12 units of A per day. # 12

12 The Entire LP and Possible Implications max Π = x B, x B such that: 2 + x B # x B # 45 # 12 \$ 0 x B \$ 0 What if or x B = ? What does it mean to produce TV sets? Can people be employed?

13 Solving Linear Programming Problems Often, setting up LPs is the hardest part. This is because the actual solving is usually done by computer. How do computers do it? -We will use a graphical technique to illustrate the intuition behind the algorithmic methods used in optimization software packages. For any LP, there exists an infinite number of possible solutions. Problem spaces may be vast. Many models have tens of thousands of variables and constraints. How can we search? How can we limit the number of possibilities we have to try?

14 Algorithmic Solutions The Simplelgorithm (and variants) -Created by George Dantzig in 1947 for the Air Force Office of Scientific Research - If the LP problem has an optimal solution, it will be found in a finite number of iterations. (Note: this isn t always very comforting) -The simplex algorithm finds the solution by making iterated improvements from an initial position (solution). The Ellipsoid Algorithms -The best known example is Karmarkar s Algorithm (created at AT&T Bell Labs) -Runs in linear time -Faster than simplex for very large problems -We won t worry about Karmarkar...

15 What about the Solver? Do not use Excel or Solver as a black box! Know what s going on underneath the surface. Remember: you will always get an answer back from Solver. However, knowing whether or not that answer is relevant requires understanding what Solver is doing. Know its limitations! Linear programs: Standard simplex Quadratic programs: Modified simplex (QP is technically NLP, but results specific to quadratic forms can be exploited to allow for significant simplification. Nonlinear Programs: Generalized Reduced Gradient Method. NOTE: Unless you check Assume linear model, it will automatically use GRG2. GRG2 may have difficulty with some LP or QP problems that could have more easily been solved by another method. Beware the black box! Integer programs: Branch and Bound

16 Solution Method Intuition All of the solution methods just mentioned tend to have very intuitive explanations. We will talk about how the simplex method works by graphically solving a small (two variable) linear program. Again, our problem: max Π = x B, x B such that: 2 + x B # x B # 45 # 12 \$ 0 x B \$ 0

17 Graphical Solutions Limited to either 2 constraints/variables. The objective function: max Π = x B, x B The solution is contained somewhere in real-valued space. That s a big area. Fortunately, we can narrow it down immediately to the first quadrant because of the feasibility constraints: \$ 0 and x B \$ 0. x(b) x(a)

18 Step One: Graphing the Constraints Consider Constraint #1: 2 + x B # 40 When = 0, x B # 40. To anchor the line, note that when x B = 0, # 20. x(b) x(A) + x(b) = 40 2x(A) + x(b) < 40 x(a) 20

19 Constraint #2: + 3 x B # 45 When = 0, then x B # 15. Anchoring the line, when x B = 0, then # 45. x(b) x(a) + 3x(B) = x(a) + 3x(B) < 45 x(a)

20 Constraint #3: x A # 12 x(a) This constraint requires no solving for. x(b)

21 Combining the Constraints: The Feasible Set The intersection of all constraint-feasible sets represents the set of feasible solutions (if a solution exists). Keep in mind that this is the feasible set - it says nothing about the optimal set! x(b) x(a) Feasible Set (Profit)

22 Identifying the Optimal Points Within the Feasible Set Method #1: Corner-Point Enumeration (Close-Up) 15 (0,15) (?,?) (12,0) (0,0) 0 12 The mystery point is the intersection of the two lines. Two equations, two unknowns: = 12 and + 3 x B = 45. Therefore x B = 45 à x B = 11. Thus, the coordinates of the fourth corner are (12, 11).

23 Choosing a Corner-Point Each of the corner-points represents a possible optimal solution. To identify the optimal one, substitute them into the objective function and see which one maximizes the function. Trial Objective Function Profit 1 300(0) + 250(0) \$ (0) + 250(15) \$3, (12) + 250(0) \$3, (12) + 250(11) \$6,350 But why limit ourselves to corner-points? Why shouldn t we choose a point in the interior of the feasible set?

24 Isoprofit (Isocost) Curves and x B can take many values. To identify the optimal values, substitute arbitrary values in as the objective function and then change them to push the frontier out towards the boundary of the feasible set. To start, pick a value for the objective function - say, \$1,500. This becomes an isoprofit curve: x B = When = 0, x B = 6 and when x B = 0, = 5. x(b) 300x(A) + 250x(B)= x(a) 5

25 Adding Constraints to the Isoprofit Curves x(b) 300(12) + 250(11) = 6, x(a) 12 Any further advancement of the isoprofit curve would cause it to leave the feasible set. Thus, (1) optimal solutions exist only on boundaries, and (2) if only one exists, the optimal solution must always occur at a vertex.

26 A Quick Review LPs are good for optimization problems involving maximizing profits and minimizing costs. LP = Decision Variables, Objective Function, and Constraints Decision Variables are the quantities of resource being allocated The Objective Function is what s being optimized. Constraints are resource limitations or requirements Advantages of Linear Programming: -Relatively quick -Guaranteed to find optimal solution -Provides natural sensitivity analysis (shadow prices)

27 Disadvantages of Linear Programming Absence of risk (does expectation adequately capture risk?) Restriction to linear objective functions -No correlation among variables -No positive or negative synergies -Nonlinear programming is very difficult Fractional solutions often have no meaning Reducing the world to a set of linear equations is usually very difficult

28 The Simplex Method: Solution Methods (1) Pick a trial solution point (2) Move out from that point along the edges, looking for vertices. (3) Keep moving along the positive gradient until no further improvements can be made. The Graphical Analogue to the Simplex: (1) Draw the constraints (2) Push the isoquant as far in the optimal direction as possible. (3) Pick the last vertex exiting the feasible set. For more graphing help, see The Geometry of Linear Programming at

### Chapter 7. Linear Programming Models: Graphical and Computer Methods

Chapter 7 Linear Programming Models: Graphical and Computer Methods To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian

### 16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making Lecture 16: Mathematical Programming I Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 8, 2010 E. Frazzoli

### Applications of Linear Programming

Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

### Introduction. Chapter 15. Optimization Modeling: Applications. Integer Programming. Manufacturing Example. Three Types of ILP Models

Chapter 5 Optimization Modeling: Applications Integer Programming Introduction When one or more variables in an LP problem must assume an integer value we have an Integer Linear Programming (ILP) problem.

### Introduction to Linear Programming

Introduction to Linear Programming Eric Feron (updated Sommer Gentry) (updated by Paul Robertson) 16.410/16.413 Historical aspects Examples of Linear programs Historical contributor: G. Dantzig, late 1940

### Operations Research and Optimization: A Primer

Operations Research and Optimization: A Primer Ron Rardin, PhD NSF Program Director, Operations Research and Service Enterprise Engineering also Professor of Industrial Engineering, Purdue University Introduction

### Using Linear Programming for Management Decisions

Using Linear Programming for Management Decisions By Tim Wright Linear programming creates mathematical models from real-world business problems to maximize profits, reduce costs and allocate resources.

### 16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

### Chapter 3: Towards the Simplex Method for Efficient Solution of Linear Programs

Chapter 3: Towards the Simplex Method for Efficient Solution of Linear Programs The simplex method, invented by George Dantzig in 1947, is the basic workhorse for solving linear programs, even today. While

### A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

### Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

### Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood

PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8719-E October 1998 \$2.50 Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood A key problem faced by managers is how to

### Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

### MLR Institute of Technology

Course Name : Engineering Optimization Course Code : 56021 Class : III Year Branch : Aeronautical Engineering Year : 2014-15 Course Faculty : Mr Vamsi Krishna Chowduru, Assistant Professor Course Objective

### Introduction to Linear Programming

Introduction to Linear Programming Linear Programming Applied mathematics is all about applying mathematical techniques to understand or do something practical. Optimization is all about making things

### Chapter 4: The Mechanics of the Simplex Method

Chapter 4: The Mechanics of the Simplex Method The simplex method is a remarkably simple and elegant algorithmic engine for solving linear programs. In this chapter we will examine the internal mechanics

### Algorithmic Game Theory and Applications. Lecture 6: The Simplex Algorithm

Algorithmic Game Theory and Applications Lecture 6: The Simplex Algorithm Kousha Etessami Recall our example 1 x + y

### BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

### Convex Optimization CMU-10725

Convex Optimization CMU-10725 2. Linear Programs Barnabás Póczos & Ryan Tibshirani Please ask questions! Administrivia Lecture = 40 minutes part 1-5 minutes break 35 minutes part 2 Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/

### Introduction to ANSYS DesignXplorer

Lecture 5 Goal Driven Optimization 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 Goal Driven Optimization (GDO) Goal Driven Optimization (GDO) is a multi objective

### COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

### 9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9).

9-1 GCSE Maths GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). In each tier, there are three exams taken at the end of Year 11. Any topic may be assessed on each of

### 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

### 3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

### Alaska Mathematics Standards Vocabulary Word List Grade 7

1 estimate proportion proportional relationship rate ratio rational coefficient rational number scale Ratios and Proportional Relationships To find a number close to an exact amount; an estimate tells

### Chapter 4. Linear Programming

Chapter 4 Linear Programming For All Practical Purposes: Effective Teaching Occasionally during the semester remind students about your office hours. Some students can perceive that they are bothering

### Linear Programming & Graphic Solution. Dr. Monther Tarawneh

Linear Programming & Graphic Solution Dr. Monther Tarawneh In this Lecture This topic concentrates on model formulation and computations in linear programming (LP). To illustrate the use of LP, real world

### Convex Optimization CMU-10725

Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

### Setup and graphical solution of Linear Programming Problems [2-variables] Mathematical Programming Characteristics

Setup and graphical solution of Linear Programming Problems [2-variables] Mathematical Programming Characteristics Decisions must be made on the levels of a two or more activities. The levels are represented

### Review for Mastery Using Graphs and Tables to Solve Linear Systems

3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

### Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

### Maths Year 11 Mock Revision list

Maths Year 11 Mock Revision list F = Foundation Tier = Foundation and igher Tier = igher Tier Number Tier Topic know and use the word integer and the equality and inequality symbols use fractions, decimals

### Introduction to Linear Programming. Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr. Hurley s AGB 328 Course

Introduction to Linear Programming Chapter 3: Hillier and Lieberman Chapter 3: Decision Tools for Agribusiness Dr Hurley s AGB 328 Course Terms to Know Simplex Method, Feasible Region, Slope- Intercept

### Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1 Module 8 Lecture Notes 2 Multi-objective Optimization Introduction In a real world problem it is very unlikely that

### Linear Programming: A Geometric Approach

Chapter 3 Linear Programming: A Geometric Approach 3.1 Graphing Systems of Linear Inequalities in Two Variables The general form for a line is ax + by + c =0. The general form for a linear inequality is

### Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 \$3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

### MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

### Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

### Linear Programming: Model Formulation and Graphical Solution

Linear Programming: Model Formulation and Graphical Solution Chapter 2 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model

### Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch.

Iterative Improvement Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change the current feasible

### (67686) Mathematical Foundations of AI July 30, Lecture 11

(67686) Mathematical Foundations of AI July 30, 2008 Lecturer: Ariel D. Procaccia Lecture 11 Scribe: Michael Zuckerman and Na ama Zohary 1 Cooperative Games N = {1,...,n} is the set of players (agents).

### / Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

### Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

### Optimal Control Techniques for Dynamic Walking

Optimal Control Techniques for Dynamic Walking Optimization in Robotics & Biomechanics IWR, University of Heidelberg Presentation partly based on slides by Sebastian Sager, Moritz Diehl and Peter Riede

### GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI Outline Review the column generation in Generalized Assignment Problem (GAP) GAP Examples in Branch and Price 2 Assignment Problem The assignment

### Question 2: How do you solve a linear programming problem with a graph?

Question : How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

### Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems]

1 of 9 25/04/2016 13:15 Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] [Notes] [Practice Calculus III - Notes

### Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE

Optimization Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE What We ll Cover Today Introduction Frontline Systems Session Ι beta training program goals Overview of Analytic Solver Platform

### OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

### Matija Gubec International School Zagreb MYP 0. Mathematics

Matija Gubec International School Zagreb MYP 0 Mathematics 1 MYP0: Mathematics Unit 1: Natural numbers Through the activities students will do their own research on history of Natural numbers. Students

### Lesson 17. Geometry and Algebra of Corner Points

SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

### CSE 40/60236 Sam Bailey

CSE 40/60236 Sam Bailey Solution: any point in the variable space (both feasible and infeasible) Cornerpoint solution: anywhere two or more constraints intersect; could be feasible or infeasible Feasible

### Chapter 5. Radicals. Lesson 1: More Exponent Practice. Lesson 2: Square Root Functions. Lesson 3: Solving Radical Equations

Chapter 5 Radicals Lesson 1: More Exponent Practice Lesson 2: Square Root Functions Lesson 3: Solving Radical Equations Lesson 4: Simplifying Radicals Lesson 5: Simplifying Cube Roots This assignment is

### Computational Methods. Constrained Optimization

Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

### An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s.

Using Monte Carlo to Estimate π using Buffon s Needle Problem An interesting related problem is Buffon s Needle which was first proposed in the mid-1700 s. Here s the problem (in a simplified form). Suppose

### Pearls of Algorithms

Part 3: Randomized Algorithms and Probabilistic Analysis Prof. Dr. Institut für Informatik Winter 2013/14 Efficient Algorithms When is an algorithm considered efficient? Efficient Algorithms When is an

### Introduction to Linear Programing Problems

Paper: Linear Programming and Theory of Games Lesson: Introduction to Linear Programing Problems Lesson Developers: DR. MANOJ KUMAR VARSHNEY, College/Department: Department of Statistics, Hindu College,

### Constrained Optimization with Calculus. Background Three Big Problems Setup and Vocabulary

Constrained Optimization with Calculus Background Three Big Problems Setup and Vocabulary Background Information In unit 3, you learned about linear programming, in which all constraints and the objective

### Carnegie Learning Math Series Course 2, A Florida Standards Program

to the students previous understanding of equivalent ratios Introduction to. Ratios and Rates Ratios, Rates,. and Mixture Problems.3.4.5.6 Rates and Tables to Solve Problems to Solve Problems Unit Rates

### GCSE Higher Revision List

GCSE Higher Revision List Level 8/9 Topics I can work with exponential growth and decay on the calculator. I can convert a recurring decimal to a fraction. I can simplify expressions involving powers or

### Curriculum Plan Overview

Curriculum Plan Overview Subject: Maths Year group: 10 Term Title of unit/ Topic Learning Autumn Term 1 Fractions Collecting and Analysing Data Equations Find and use equivalent fractions, simplify fractions,

### Linear Programming: Basic Concepts. Chapter 2: Hillier and Hillier

Linear Programming: Basic Concepts Chapter 2: Hillier and Hillier Agenda Define Linear Programming The Case of the Wyndor Glass Co. A Maximization Problem Developing a Mathematical Representation of Wyndor

### Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

### These notes are in two parts: this part has topics 1-3 above.

IEEM 0: Linear Programming and Its Applications Outline of this series of lectures:. How can we model a problem so that it can be solved to give the required solution 2. Motivation: eamples of typical

### Core Mathematics 3 Functions

http://kumarmaths.weebly.com/ Core Mathematics 3 Functions Core Maths 3 Functions Page 1 Functions C3 The specifications suggest that you should be able to do the following: Understand the definition of

### Mathematics. Year 7. Autumn Term

Mathematics Year 7 Autumn Term Decimals o Use place value with decimals o Add and subtract, multiply and divide decimal numbers Basic Arithmetic o Multiply by a two or three digit number o Divide by a

### 30. Constrained Optimization

30. Constrained Optimization The graph of z = f(x, y) is represented by a surface in R 3. Normally, x and y are chosen independently of one another so that one may roam over the entire surface of f (within

### Lecture 25 Nonlinear Programming. November 9, 2009

Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

### NUMBER. Edexcel Maths Linear Topic list FOUNDATION. Add, subtract, multiply, divide

Edexcel GCSE Maths Linear Exam Topic List - FOUNDATION NUMBER Add, subtract, multiply, divide Order numbers Factors, multiples and primes Write numbers in words Write numbers from words Add, subtract,

### 1-2 9 Measures and accuracy

Year Term Week Chapter Ref Lesson 9.1 Estimation and approximation Year 2 m Autumn Term 1-2 9 Measures and accuracy 3-4 (Number) 9.2 Calculator methods 9.3 Measures and accuracy Assessment 9 10.1 Solving

### Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division

Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division This appendix sets out some examples of formal written methods for all four operations

### Algebra I Notes Linear Functions & Inequalities Part I Unit 5 UNIT 5 LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES

UNIT LINEAR FUNCTIONS AND LINEAR INEQUALITIES IN TWO VARIABLES PREREQUISITE SKILLS: students must know how to graph points on the coordinate plane students must understand ratios, rates and unit rate VOCABULARY:

### MATHEMATICS Scope and sequence P 6

Number and algebra Number and place value Establish understanding of the language and processes of counting by naming numbers in sequences, initially to and from 20, moving from any starting point Develop

### Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

### Linear Programming. Slides by Carl Kingsford. Apr. 14, 2014

Linear Programming Slides by Carl Kingsford Apr. 14, 2014 Linear Programming Suppose you are given: A matrix A with m rows and n columns. A vector b of length m. A vector c of length n. Find a length-n

### Mathematics. Foundation, term by term schedule Year 7 E1 E2 E3 Year 8 E4 I1 I2 Year 9 I3 I4 A1

Mathematics KS3 at Brighouse High School Year 7 and 8 Foundation Curriculum Overview Foundation, term by term schedule Year 7 E1 E2 E3 Year 8 E4 I1 I2 Year 9 I3 I4 A1 E1.1 Multiply and divide by 10, 100

### THS Step By Step Calculus Chapter 3

Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

### we wish to minimize this function; to make life easier, we may minimize

Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

### PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

### Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

### 3. Decision variables are represented in both the objective function and the constraints while formulating a linear program.

Supplement E Supplement E Linear Programming Linear Programming TRUE/FALSE 1. Linear programming is useful for allocating scarce resources among competing demands. Answer: True Reference: Introduction

### Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by

Course of study- Algebra 1-2 1. Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by students in Grades 9 and 10, but since all students must

### Richard Lander School Maths Key Stage 3

Richard Lander School Maths Key Stage 3 Richard Lander School is a maintained school which follows the National Curriculum at both Key Stage 3 and Key Stage 4. Purpose of study Mathematics is a creative

### Projection-Based Methods in Optimization

Projection-Based Methods in Optimization Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA

### LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

### Convex Hulls in Three Dimensions. Polyhedra

Convex Hulls in Three Dimensions Polyhedra Polyhedron 1.A polyhedron is the generalization of a 2- D polygon to 3-D A finite number of flat polygonal faces The boundary or surface of a polyhedron - Zero-dimensional

### Illinois Math Assessment Framework, Grade 7. correlated to

Illinois Math Assessment Framework, Grade 7 correlated to Grade 7 correlated to Chapter 1 Variables, Expressions, and Integers (pp. 1 61) Lesson 1.1 (pp. 5 9) Expressions and Variables Evaluate and write

### Inverse and Implicit functions

CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

### f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

### Mathematics LV 5 (with QuickTables)

Mathematics LV 5 (with QuickTables) This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence

### J Linear Programming Algorithms

Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers simple words, because the language of Truth is itself simple.]

### Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition

Stochastic Separable Mixed-Integer Nonlinear Programming via Nonconvex Generalized Benders Decomposition Xiang Li Process Systems Engineering Laboratory Department of Chemical Engineering Massachusetts

### Origins of Operations Research: World War II

ESD.83 Historical Roots Assignment METHODOLOGICAL LINKS BETWEEN OPERATIONS RESEARCH AND STOCHASTIC OPTIMIZATION Chaiwoo Lee Jennifer Morris 11/10/2010 Origins of Operations Research: World War II Need

### The Islamic University of Gaza Faculty of Commerce Quantitative Analysis - Dr. Samir Safi Midterm #2-28/4/2014

The Islamic University of Gaza Faculty of Commerce Quantitative Analysis - Dr. Samir Safi Midterm #2-28/4/2014 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1)

### Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

### Reading Assignment. Symbolic Evaluation/Execution. Move from Dynamic Analysis to Static Analysis. Move from Dynamic Analysis to Static Analysis

Reading Assignment Symbolic Evaluation/Execution *R.W. Floyd, "Assigning Meaning to Programs, Symposium on Applied Mathematics, 1967, pp. 19-32 (Appeared as volume 19 of Mathematical Aspects of Computer

### Route Map (Start September 2012) Year 9

Route Map (Start September 2012) Year 9 3 th 7 th Sept 10 th -14 th Sept 17 th 21 st Sept 24 th 28 th Sept 1 st -5 th Oct 8 th -12 th Oct 15 th 19 th Oct 22 nd -26 th Oct 29 th Oct-2 nd Nov 5 th -9 th

### aqa GCSE MATHS EXAMINATIoN BoARd CoVERAGE

aqa GCSE MATHS EXAMINATIoN BoARd CoVERAGE TIER ToPIC HEAdING SuB HEAdING Number Integers Ordering numbers y Number Integers Rounding numbers y Number Integers Adding and subtracting whole numbers y y Number