A software simmulation of Hartmann-Schack patterns for real corneas

Size: px
Start display at page:

Download "A software simmulation of Hartmann-Schack patterns for real corneas"

Transcription

1 A software simmulation of Hartmann-Schack patterns for real corneas L. A. Carvalho*, Jarbas C. Castro*, P. Schor, W. Chamon *Instituto de Física de São Carlos (IFSC - USP), Brazil lavcf@ifsc.sc.usp.br Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo, Brazil We have implemented a computer simulation of Hartmann-Shack (HS) patterns for real corneas. Placido images were captured for 10 eyes (right and left eyes of 5 mails and 5 females) on a standard corneal topographer. Placido disc data was then processed for calculation of 6000 corneal elevation points. The corneal data points were attached to a Gullstrand standard model eye globe (12 mm in radius) and used to simulate HS patterns. Ray tracing starts at a CCD array towards a 15x15 array of micro-lenses and then hits the cornea, cristaline and fovea. Patterns were compared with actual HS images, and cases of high astigmatic and keratoconic eyes were analyzed. 1. Introduction Wave-front aberration measurement using the HS sensor [1] has become quite popular in the past few years [2, 3, 4, 5, 6, 7]. We believe this has happened because this technology represents the next step in eye refraction measurements. Present commercially available methods of refraction measure only a few points over the entrance pupil and therefore can calculate only the best sphere-cylinder correction [8, 9]. With the recent advances in true corneal elevation calculations [10, 11, 12, 13] and refractive surgery lasers (the eye tracking system and the Flying Spot technology), the need for a higher resolution refractor became obvious. One of the major problems in these measurements is that, for some eyes with high corneal aberrations, there is an overlapping of the small spots at the HS image plane [14]. In this work we simulate HS patterns for real and simulated corneas, based on corneal topography elevation maps. We show HS patterns for real corneas with smooth surfaces and astigmatism and a simulated keratoconic cornea. We believe that further work should be done in order to evaluate the best relation between the HS components. There should be and optimized setup for micro-lens focal distance/diameter, CCD size and distance, optical quality and material, and the irregularities of real pre and post surgical corneas, in order to minimize spot overlapping and improve precision of instruments that use the HS principle. 2. Methods

2 We have used a high precision algorithm that calculates corneal elevation from Placido images [13]. For each meridian we have corneal elevation information as a function of radial distance ( h ( ρ,θ ), see figure 1 for coordinate system). Elevation data may be expressed as a polynomial expansion. We have used Zernike polynomials [14, 15] since these have been shown to be a convenient mathematical representation for corneal elevation and aberrations [16, 17]. The corneal surface is expressed as a linear combination of N Zernike terms: N 1 i= 0 (, θ ) = ( h ρ C i Z i ρ, θ ) (1) Figure 1. Cylindrical coordinate system used to describe coorneal elevation and aberrations. Where the Zernike coefficients were calculated by the classical least-squares method, consisting of minimizing the expression

3 j i C Z i i ( ρ, θ ) h j 2 (2) Figure 2. Parameters of the Le Grand Model eye. Our model eye is a sphere of radius 12 mm with refractive the following parameters: distance between posterior surface of cornea and anterior surface of crystalline (3.05 mm), crystalline thickness (4.00 mm), distance between posterior surface of crystalline and fovea (16.53 mm), anterior radius of curvature of crystalline ( 10.2 mm), posterior radius of curvature of crystalline ( n = n = r p = 6.0 mm), index off refraction of crystalline ( c 1.42 mm), index of refraction of vitreous humor ( vh 1.336), diameter of fovea (0.01 mm). Crystalline here is considered to be accommodated and to have a constant shape. Our real corneas are positioned such that the distance between corneal posterior surface and fovea is always mm, and posterior surface of cornea is considered to have constant radius of curvature of 6.5 mm. Pupil size is 4 mm in diameter in all cases. r a =

4 since the cornea contributes to approximately 75% of all refraction of the eye, we have used a standard model eye with a crystalline of anterior radius of curvature of 10.2 mm and posterior of 6 mm with constant index of refraction of 1.42 (see other eye parameters in figure 2). Ten different adult eyes with pathologies that ranged from almost spherical, astigmatism and high astigmatism, were measured and elevation data was processed and saved. This data was then plugged into the model eye and a backward ray tracing was implemented (see figure 3 for details of the ray tracing path). Several thousand light rays for each micro-lens were ray traced paraxial from HS lenslet into the eye. From the expression for the corneal surface (equation 1) we calculated the normal vectors at each ray intersection h h nˆ ( θ, ρ ) = ˆ ρ + ˆ θ kˆ (3) ρ θ where kˆ is the unit vector pointing towards the elevation axis ( h ). The refraction at all interfaces was calculated using Snell s Law, where the angles of incidence are given by ( ˆ. v) θ = arccos n r (4) where v r are the normalized vectors of ray direction. Those rays that hit the fovea (a 10 µ m spot) were considered good rays and those that didn t were considered bad rays (see figure 3). In this way a simulated HS pattern was obtained. Our HS sensor has 15x15 micro-lenses (each lens 1 mm in diameter) with 170 mm focal distance.

5 Figure 3. Ray-tracing diagram for generating the HS image pattern. We start by sampling pixels at the CCD array (480x640) and back-word ray trace from CCD plane towards the cornea. V1, V2 and V3 represent vectors at each refraction stage. Rays refract at micro-lens then at cornea and finally hits the retina. If it falls inside the fovea (a 10 µ m disc) it is said to be a good ray, otherwise it is a bad ray. When a ray falls inside the retina we save the Cartesian coordinates ( x, y ) of it s original starting pixel. The closer it falls to center of the fovea the brighter it is painted in a 255 gray-scale. If it falls off the fovea it is a black pixel. The corneal elevation data is attached to the model eye such that the apex is always mm away from the fovea. 3. Results Illustration of simulated HS patterns obtained for three interesting cases are shown in figure 4. In general we notice that for eyes with little corneal irregularities ( smooth corneas) the spots have a quite well behaved distribution; on the other hand for eyes with high astigmatism, keratocone or other severe corneal irregularities (such as post RK), there is a superposition of the HS spots. Our HS patterns are in agreement with the corneal elevation data and for most cases of regular ( smooth ) corneas, small and medium astigmatisms, there was no spot overlap (see figure 4). But for cases of severe keratocone (simulated), we observed overlapping (see figure 5). Other types of irregularities should be investigated, such as post-cataract, post-rk, and post-keratoplasty. We believe there will be overlapping for these types of irregular corneas.

6 Figure 4. Examples of HS simulations for a regular (top) and astigmatic (bottom) corneas. (Top-Left) Hartmann Shack pattern simulation for regular cornea; notice uniform distribution of spots; (top-middle) semi-meridian cut of regular cornea elevation; notice that curve is smooth and there is no local irregularities; (bottom-left) HS pattern for astigmatic eye; notice that spots are closer where corneal curvature is more intense and are further away for less curved region; (bottom-middle) Blue curve represents flatter meridian and red curve represents meridian with higher curvature; (bottomright) curvature map of astigmatic eye, showing the hour glass shape in agreement with HS pattern and meridian cuts; On figure 5 we may see examples of HS patterns obtained for artificial corneas generated using ellipsoids and spheres of different sizes and parameters. It is important to notice how the HS pattern varies with small changes in parameters such as radius of curvature, entrance pupil, HS image plane distance, number and size of micro-lenses, CCD resolution and scaling, and so on. Our objective here is to show a qualitative view of how these parameters affect the HS patterns. Further work should be done in order to quantify these factors, and possibly suggest HS sensor setups that will generate less superposition in cases of highly distorted corneas.

7 Figure 5. HS patterns generated for simulated corneas. (a) Sphere of radius 8.0 mm, (c) Discentered Keratocone (to the left) with 5 mm local radius over a highly astigmatic ellipsoid (a:=7 mm, b:=5 mm, c:=8 mm), showing the superposition (to the left) case when the surface is off axis; (c) Highly astigmatic ellipsoid (a:=8 mm, b:=5 mm, c:=7.5 mm), showing high distortion of HS patterns. 4. Discussion We have found that the actual HS sensor systems used for ocular aberration measurements may generate spot superposition in certain cases of high corneal irregularities. This happens because the corneal slopes at some points vary rapidly, causing refraction at certain regions to differ considerably from neighbor regions. Once this happens the image processing technique for recovering centroide information becomes challenging. Our finding suggests that further research is necessary in the HS apparatus, it s optical components, associated distances and dimensions, in order to obtain the best optical design for such a device. This study should simulate different optical materials and optical diagrams in order to account for very irregular corneas. The results of such a study will allow manufactures and laboratories to build better wave-front measuring devices for the eye. This in turn will certainly contribute to more accurate refractive surgeries, since corneal ablation algorithms use data from such measurements [18, 19]. Acknowledgements We would like to thank Professor Stanley Klein, Ph.D, from the Vision Science Department of the University of California at Berkeley, for his help and explanations of the algorithm used in this work; we would also like to thank the following institution for financial support: FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo Brazil.

8 References 1. Shack RV, Platt BC, Production and use of a lenticular Hartmann screen, Optical Sciences Center, University of Arizona, Tucson, Spring Meeting, Optical Society of America, 1971: Liang, J., Grimm, B., Goelz, S., Bille, J. F., (1994). Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am., Vol. 14, No. 11/ July, pp Liang, J., Williams, D. R., (1997b). Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am., Vol. 14, No. 11/ November, Liang, J., Williams, D. R., Miller, D. T., (1997a). Supernormal vision and highresolution retinal imaging through adaptive optics, J. Opt. Soc. Am., Vol. 14, No. 11/ November, Liang, J., Williams, D. R., (1997b). Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am., Vol. 14, No. 11/ November, Moreno-Barriuso, E., Navarro, R., Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye, J. Opt. Soc. Am., Vol. 17, No. 6/ June 2000, Salmon, T. O., Thibos, L. N., Bradley, A., Comparison of the eye s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor, J. Opt. Soc. Am. Vol. 15, No. 9/ September 1998, Shikawa Y.Y., Eye refractive power measuring apparatus, US Pattent Ventura, L., Souza, S. J. F., Castro, J. C., Detection system for ocular refractive error measurement, Phys. Med. Biol. Vol. 43, 1998: Mandell, R. B., The Enigma of the Corneal Contour, CLAO J, 1992;18: Halstead, M. A.,Barsky, Brian A., Klein, Stanley A., Mandell, R. B.,Geometric Modeling of the Cornea Using Videokeratography, Mathematical Methods for Curves and Surfaces,1995;

9 12. Halstead, Mark A.,Barsky, Brian A., Klein, Stanley A., Mandell, R. B. A Spline Surface Algorithm for Reconstruction of Corneal Topography from a Videokeratographic Reflection Pattern. Optometry and Vision Science. 1995;72: Klein, S. A., (1997). Corneal topography algorithm that avoids the skew ray ambiguity and the skew ray error, Optometry and Vision Science, vol. 74, 11: Born, M., Principles of Optics, Pergamon Press,1975: Williams, C. S., Becklund, O. A., Introduction to the optical transfer function, Wiley- Interscience Publication, New York, Haman, H., A direct technique for calculating the profile of aberration of the eye measured by a modified Hartamann-Shack apparatus, Optics Communications, Vol. 173, 2000: Guirrao A., Artal P., Corneal wave aberration from videokeratography: accuracy and limitations of the procedure, J. Opt. Soc. Am. A/ Vol. 17, No. 6, June 2000, Klein, S. A., (1998). Optimal corneal ablation for eyes with arbitrary Hartmann-Shack aberrations, J. Opt. Soc. Am. Vol. 15, No. 9/ September, Schwiegerling J., Snyder R. W., Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration, J. Opt. Soc. Am. A/ Vol. 15, No. 9, September 1998,

Optimal corneal ablation for eyes with arbitrary Hartmann Shack aberrations

Optimal corneal ablation for eyes with arbitrary Hartmann Shack aberrations 2580 J. Opt. Soc. Am. A/Vol. 15, No. 9/September 1998 Stanley A. Klein Optimal corneal ablation for eyes with arbitrary Hartmann Shack aberrations Stanley A. Klein School of Optometry, University of California,

More information

CWhatUC : A Visual Acuity Simulator Daniel D. Garcia a, Brian A. Barsky a,b, Stanley A. Klein b

CWhatUC : A Visual Acuity Simulator Daniel D. Garcia a, Brian A. Barsky a,b, Stanley A. Klein b CWhatUC : A Visual Acuity Simulator Daniel D. Garcia a, Brian A. Barsky a,b, Stanley A. Klein b a University of California, EECS Computer Science Division, 387 Soda Hall # 1776, Berkeley CA 94720-1776

More information

Imaging of the Cornea. Arun Brahma

Imaging of the Cornea. Arun Brahma Imaging of the Cornea Arun Brahma 1 In the last 30 years we have advanced rapidly in relation to corneal imaging due to Refractive Surgery Keratometer 1880-1990 was the Gold standard. Placido topography-

More information

Extracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation

Extracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation Etracting Wavefront Error From Shack-Hartmann Images Using Spatial Demodulation Edwin J. Sarver, PhD; Jim Schwiegerling, PhD; Raymond A. Applegate, OD, PhD ABSTRACT PURPOSE: To determine whether the spatial

More information

Damped least-squares approach for point-source corneal topography

Damped least-squares approach for point-source corneal topography Ophthal. Physiol. Opt. 2009 29: 330 337 Damped least-squares approach for point-source corneal topography Vyacheslav Sokurenko 1 and Vasyl Molebny 1,2 1 National Technical University of Ukraine, Kiev,

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Wavefront (Center) 502. EMPOWER YOUR PRACTICE WITH comprehensive complete anterior segment analysis

Wavefront (Center) 502. EMPOWER YOUR PRACTICE WITH comprehensive complete anterior segment analysis Wavefront 584 547 494 493 (Center) 502 496 507 520 529 559 EMPOWER YOUR PRACTICE WITH comprehensive complete anterior segment analysis Narrow Angles Cataracts Glaucoma Risk THE POWER OF THREE The VX130

More information

Methods for Measuring Ocular Wavefront Error

Methods for Measuring Ocular Wavefront Error 8 th Wavefront Congress, Santa Fe, Feb. 2007 Methods for Measuring Ocular Wavefront Error Larry N. Thibos School of Optometry, Indiana University Vision Research at http://www.opt.indiana.edu Aberrometry

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Chapter 34. Thin Lenses

Chapter 34. Thin Lenses Chapter 34 Thin Lenses Thin Lenses Mirrors Lenses Optical Instruments MFMcGraw-PHY 2426 Chap34a-Lenses-Revised: 7/13/2013 2 Inversion A right-handed coordinate system becomes a left-handed coordinate system

More information

Refraction at a single curved spherical surface

Refraction at a single curved spherical surface Refraction at a single curved spherical surface This is the beginning of a sequence of classes which will introduce simple and complex lens systems We will start with some terminology which will become

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Object surface for applying a modified Hartmann test to measure corneal topography

Object surface for applying a modified Hartmann test to measure corneal topography Object surface for applying a modified Hartmann test to measure corneal topography Yobani Mejía-Barbosa and Daniel Malacara-Hernández A modified Hartmann test is proposed for measuring corneal topography.

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

William J. Donnelly III, PhD. Jon A. Herlocker, PhD. - Sr. Optical Engineer. - Sr. Optical Scientist

William J. Donnelly III, PhD. Jon A. Herlocker, PhD. - Sr. Optical Engineer. - Sr. Optical Scientist Applications of Non-sequential Ray Tracing to Investigate Lenslet Image Point Spread Function Uniformity Under Geometrical & Physical Optical Coherent & Incoherent Source Modeling 2-23-07 William J. Donnelly

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

Updated Protocol to Provide Best Vision after CXL in Keratoconus

Updated Protocol to Provide Best Vision after CXL in Keratoconus Updated Protocol to Provide Best Vision after CXL in Keratoconus Mohamed Shafik Shaheen MD, PhD Professor of Ophthalmology, University of Alexandria, Horus Vision Correction Center, Egypt What is after

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-27 Herbert Gross Summer term 205 www.iap.uni-jena.de 2 Preliminary Schedule 3.04. Basics 2 20.04. Properties of optical systems I 3 27.05.

More information

(Goal 3) (Goal 3) (Goals 4 and 5) (Goals 4 and 5)

(Goal 3)  (Goal 3) (Goals 4 and 5) (Goals 4 and 5) 10 This thesis addresses the measurement of geometrical properties (surface geometry, tilt and decentration) of the crystalline lens in normal eyes, and their changes with accommodation. In addition, it

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Introduction. Misconceptions

Introduction. Misconceptions ix Even today, corneal topography remains one of the most misunderstood diagnostic tools for the clinician, despite its apparent simplicity, due to unrecognized complexities and oversimplification of formulas.

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

Optics of Vision. MATERIAL TO READ Web: 1.

Optics of Vision. MATERIAL TO READ Web: 1. Optics of Vision MATERIAL TO READ Web: 1. www.physics.uoguelph.ca/phys1070/webst.html Text: Chap. 3, pp. 1-39 (NB: pg. 3-37 missing) Chap. 5 pp.1-17 Handbook: 1. study guide 3 2. lab 3 Optics of the eye

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

City Research Online. Permanent City Research Online URL:

City Research Online. Permanent City Research Online URL: Gruppetta, S, Koechlin, L, Lacombe, F & Puget, P (0015). Curvature sensor for the measurement of the static corneal topography and the dynamic tear film topography in the human eye.. Opt Lett, 30(20),

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

TECHNICAL REPORT. Corneal Topographer Based on the Hartmann Test. Yobani Mejía* and Janneth C. Galeano

TECHNICAL REPORT. Corneal Topographer Based on the Hartmann Test. Yobani Mejía* and Janneth C. Galeano 1040-5488/09/8604-0370/0 VOL. 86, NO. 4, PP. 370 381 OPTOMETRY AND VISION SCIENCE Copyright 2009 American Academy of Optometry TECHNICAL REPORT Corneal Topographer Based on the Hartmann Test Yobani Mejía*

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Wavefront Diagnostic. One-Touch COMPREHENSIVE VISUAL ASSESSMENT IN UNDER 90 SECONDS.

Wavefront Diagnostic. One-Touch COMPREHENSIVE VISUAL ASSESSMENT IN UNDER 90 SECONDS. Wavefront Diagnostic One-Touch COMPREHENSIVE VISUAL ASSESSMENT IN UNDER 90 SECONDS. VX120 A GAME CHANGING WAVEFRONT DIAGNOSTIC DEVICE FOR COMPREHENSIVE VISUAL ASSESSMENT REFRACTION AND VISUAL PERFORMANCE

More information

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law

Geometrical Optics. Chapter General Comments. 1.2 Snell s Law Chapter 1 Geometrical Optics 1.1 General Comments A light wave is an electromagnetic wave, and the wavelength that optics studies ranges from the ultraviolet (0.2 mm) to the middle infrared (10 mm). The

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

SCHWIND Diagnostic Devices Experience a new Level of Convenience

SCHWIND Diagnostic Devices Experience a new Level of Convenience SCHWIND Diagnostic Devices Experience a new Level of Convenience DIAGNOSTIC DEVICES 2 DIAGNOSTIC DEVICES SCHWIND Diagnostic Devices High-precision, multifunctional, user-friendly SCHWIND Diagnostic Devices

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Instruction sheet 06/18 ALF Laser Optics Demonstration Set Laser Optics Supplement Set Page 1 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14

More information

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term Lens Design I Lecture 4: Properties of optical systems III 018-05-03 Herbert Gross Summer term 018 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 018 1 1.04. Basics 19.04. Properties of optical

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Aberration Theory. Lens. Optical systems convert the shapes of wavefronts

Aberration Theory. Lens. Optical systems convert the shapes of wavefronts Aberration Theory Lens Optical systems convert the shapes of wavefronts Aberrations A perfectly spherical wave will converge to a point. Any deviation from the ideal spherical shape is said to be an aberration.

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Testing spherical surfaces: a fast, quasi-absolute technique

Testing spherical surfaces: a fast, quasi-absolute technique Testing spherical surfaces: a fast, quasi-absolute technique Katherine Creath and James C. Wyant A technique for measuring the quality of spherical surfaces that provides a quasi-absolute result is presented.

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Lens Design I. Lecture 1: Basics Herbert Gross. Summer term

Lens Design I. Lecture 1: Basics Herbert Gross. Summer term Lens Design I Lecture 1: Basics 2015-04-04 Herbert Gross Summer term 2016 www.iap.uni-jena.de 2 Preliminary Schedule 1 04.04. Basics 2 11.04. Properties of optical systems I 3 18.04. 4 25.04. Properties

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus (RODS+) USER S GUIDE

Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus (RODS+) USER S GUIDE Ray Optics Demonstration Set (RODS) and Ray Optics Demonstration Set Plus USER S GUIDE 1 NO. OF EXP. Table of contents TITLE OF EXPERIMENT SET TO USE Introduction Tables of the set elements E1 Reflection

More information

Essential Physics I. Lecture 13:

Essential Physics I. Lecture 13: Essential Physics I E I Lecture 13: 11-07-16 Reminders No lecture: Monday 18th July (holiday) Essay due: Monday 25th July, 4:30 pm 2 weeks!! Exam: Monday 1st August, 4:30 pm Announcements 250 word essay

More information

Detection of Keratoconus by Semi-Supervised Learning

Detection of Keratoconus by Semi-Supervised Learning Keywords: Semi Supervised Learning, Manifold Learning, Multi Dimensional Scaling, IsoMap Abstract Keratoconus, is a non-inflammatory disorder of the eye in which structural changes within the cornea cause

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

IOVS - IOVS R2. Total corneal power estimation: Ray tracing method vs. Gaussian optics formula

IOVS - IOVS R2. Total corneal power estimation: Ray tracing method vs. Gaussian optics formula IOVS - IOVS-0-.R Total corneal power estimation: Ray tracing method vs. Gaussian optics formula Journal: Investigative Ophthalmology & Visual Science Manuscript ID: IOVS-0-.R Manuscript Type: Article Date

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Monteiro, P.M.L. & Hull, C.C. (2007). The effect of videokeratoscope faceplate design on radius of curvature maps. OPHTHALMIC

More information

Optimal cornea shape design problem for corneal refractive surgery

Optimal cornea shape design problem for corneal refractive surgery 10 th World Congress on Structural and Multidisciplinary Optimization May 19-4, 013, Orlando, Florida, USA Optimal cornea shape design problem for corneal refractive surgery Takaki Nakayama, Hisashi Naito,

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

EE119 Homework 3. Due Monday, February 16, 2009

EE119 Homework 3. Due Monday, February 16, 2009 EE9 Homework 3 Professor: Jeff Bokor GSI: Julia Zaks Due Monday, February 6, 2009. In class we have discussed that the behavior of an optical system changes when immersed in a liquid. Show that the longitudinal

More information

ENGR142 PHYS 115 Geometrical Optics and Lenses

ENGR142 PHYS 115 Geometrical Optics and Lenses ENGR142 PHYS 115 Geometrical Optics and Lenses Part A: Rays of Light Part B: Lenses: Objects, Images, Aberration References Pre-lab reading Serway and Jewett, Chapters 35 and 36. Introduction Optics play

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

Detection of Keratoconus by Semi-Supervised Learning

Detection of Keratoconus by Semi-Supervised Learning Deepthi Cheboli Indian Institute of Technology Madras, India Balaraman Ravindran Indian Institute of Technology Madras, India keepthi@cse.iitm.ac.in ravi@cse.iitm.ac.in Keywords: Semi Supervised Learning,

More information

Generalization of the Coddington Equations to Include Hybrid Diffractive Surfaces

Generalization of the Coddington Equations to Include Hybrid Diffractive Surfaces Generalization of the oddington Equations to Include Hybrid Diffractive Surfaces hunyu Zhao* and James H. Burge ollege of Optical Sciences University of Arizona Tucson, AZ USA 857 ABSTRAT oddington Equations

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

x 2 + y 2 + z 2 = 1 = ˆr ŷ = ±y cosθ z (a) The half angle of the cones (inside the material) is just given by the critical angle sinθ c n = 3.

x 2 + y 2 + z 2 = 1 = ˆr ŷ = ±y cosθ z (a) The half angle of the cones (inside the material) is just given by the critical angle sinθ c n = 3. Exercise.-6 The results of this problem are somewhat general and apply to any rectangular parallelepiped with source located at any position inside. One can see this as follows. The direction of an arbitrary

More information

PSC20 - Properties of Waves 3

PSC20 - Properties of Waves 3 PSC20 - Properties of Waves 3 The speed of light is in a vacuum. it travels 299 972 458 m/s. (rounded to m/s). Speed of light is given the symbol comes from the word meaning. How far do you think light

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Exercise 12 Geometrical and Technical Optics WS 2013/2014

Exercise 12 Geometrical and Technical Optics WS 2013/2014 Exercise 12 Geometrical and Technical Optics WS 213/214 Slide projector and Köhler illumination In this exercise a simplified slide projector (or LCD projector) will be designed and simulated with ray

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

Reflections. I feel pretty, oh so pretty

Reflections. I feel pretty, oh so pretty Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

More information

Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing

Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing Journal of Biomedical Optics 10(2), 024003 (March/April 2005) Refractive correction method for digital charge-coupled device-recorded Scheimpflug photographs by means of ray tracing Wolfgang Fink University

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

arxiv: v1 [physics.class-ph] 11 Feb 2012

arxiv: v1 [physics.class-ph] 11 Feb 2012 arxiv:202.2404v [physics.class-ph] Feb 202 Refractive index of a transparent liquid measured with a concave mirror Introduction Amitabh Joshi and Juan D Serna 2 Department of Physics, Eastern Illinois

More information

El- T O O K H Y, Omar

El- T O O K H Y, Omar Global Veterinary Summit August 31-September 2, 2015 Florida, USA C A I R O U N I V E R S I T Y E G Y P T El- T O O K H Y, Omar 欧玛尔 Points to be Discussed 1 2 3 4 5 6 7 8 Eye vs Schematic eye, models of

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1 Announcement on HW 8 HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am Physics 102: Lecture 16, Slide 1 Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture

More information

Efficient wave-optical calculation of 'bad systems'

Efficient wave-optical calculation of 'bad systems' 1 Efficient wave-optical calculation of 'bad systems' Norman G. Worku, 2 Prof. Herbert Gross 1,2 25.11.2016 (1) Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany (2)

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Correction of refraction. volume deformation measurements

Correction of refraction. volume deformation measurements Loughborough University Institutional Repository Correction of refraction induced distortion in optical coherence tomography corneal reconstructions for volume deformation measurements This item was submitted

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

ORBSCAN Corneal Imaging M.Nejabat

ORBSCAN Corneal Imaging M.Nejabat ORBSCAN Corneal Imaging M.Nejabat Shiraz University of medical sciences Topographic technologies Placido disk based topography AstraMax : ( three-dimensional topography ) Elevation-based topography: Slit-scanning

More information

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ = Radiometry (From Intro to Optics, Pedrotti -4) Radiometry is measurement of Emag radiation (light) Consider a small spherical source Total energy radiating from the body over some time is Q total Radiant

More information

History of Light. 5 th Century B.C.

History of Light. 5 th Century B.C. History of Light 5 th Century B.C. Philosophers thought light was made up of streamers emitted by the eye making contact with an object Others thought that light was made of particles that traveled from

More information

Reflection and Image Formation by Mirrors

Reflection and Image Formation by Mirrors Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

More information

ISO Ophthalmic instruments Corneal topographers. Instruments ophtalmiques Topographes de la cornée. Second edition

ISO Ophthalmic instruments Corneal topographers. Instruments ophtalmiques Topographes de la cornée. Second edition INTERNATIONAL STANDARD ISO 19980 Second edition 01-04-01 Ophthalmic instruments Corneal topographers Instruments ophtalmiques Topographes de la cornée Reference number ISO 19980:01(E) ISO 01 ISO 19980:01(E)

More information

Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27

Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27 Field Guide to Lens Design Julie Bentley Craig Olson SPIE Field Guides Volume FG27 John E. Greivenkamp, Series Editor SPIE PRESS Bellingham,Washington USA vii Glossary of Symbols and Acronyms xi Fundamentals

More information

Lab 10 - GEOMETRICAL OPTICS

Lab 10 - GEOMETRICAL OPTICS L10-1 Name Date Partners OBJECTIVES OVERVIEW Lab 10 - GEOMETRICAL OPTICS To examine Snell s Law. To observe total internal reflection. To understand and use the lens equations. To find the focal length

More information

P H Y L A B 1 : G E O M E T R I C O P T I C S

P H Y L A B 1 : G E O M E T R I C O P T I C S P H Y 1 4 3 L A B 1 : G E O M E T R I C O P T I C S Introduction Optics is the study of the way light interacts with other objects. This behavior can be extremely complicated. However, if the objects in

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information