Application of Terrestrial Laser Scanning Methodology in Geometric Tolerances Analysis of Tunnel Structures

Size: px
Start display at page:

Download "Application of Terrestrial Laser Scanning Methodology in Geometric Tolerances Analysis of Tunnel Structures"

Transcription

1 Application of Terrestrial Laser Scanning Methodology in Geometric Tolerances Analysis of Tunnel Structures Steve Y. W. Lam Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China ABSTRACT With the point-clouds from a terrestrial laser scanner, surveying of all types of geometric tolerance has never been easier in controlling all aspects of tunnel shape and providing displacement vectors of the finished components in the construction. This paper describes how to select a suitable laser scanner, the calibration method, the procedures for acquiring survey data by the instrument in the field, and the computational algorithms of computer software needed for registration, fusion and error analysis of multimodality and range images so that the point clouds obtained by the instrument can be applied effectively in assessing the various geometric tolerances of tunnel structures in the as-built surveying. 1. INTRODUCTION Current advancement of terrestrial or ground-based laser scanning technologies has enabled surveyors to map complex surface and objects in digital format and create 3D electronic model for engineering applications in construction, shipbuilding and other production industries. The laser scanning methodology, an effective method of acquiring vast amount of precision 3-D data, has the advantages of high speed, high resolution, non-intrusive and non-contact sensing. It is particularly useful under the condition of hazardous environment where human intervention would be impossible. Different laser scanning systems are now available for tunnel surveying, for examples, Optech s LIRIS-3D long-range system and Callidus s medium-range system. These laser scanners are chosen by surveyors based on: (a) the system s ease of use; (b) laser range and accuracy; (c) adjustable scanning speed, scan density and field of view; (d) type and class of laser; (e) weight and size of the instrument, tripod and battery; and (f) special features such as internal camera/video, weather proofing, computer hardware and software. Unlike conventional total stations, it is not necessary to set up on a known control point. It can be mounted on a small vehicle or carriage on rails for rapid surveying of tunnel geometry. Some laser scanners also support standard surveying procedures like levelling and centring over a known point, height-of-scanner measurement, line-of-sight orientation, and setup with GPS receiver. A laser scanner for land surveying and mapping combines data from a non-contact distance meter, angle sensors and tilt sensors to measure 3D coordinates of points on an object surface. Nearly all surveying scanners are designed based on Light Detection and Ranging (LIDAR) technology and determine distance by measuring the time-of-flight (TOF) between an outgoing pulse and its return signal reflected by the object or reflector. The amplitude of the return signal is also recorded for computing the reflectivity of the object s surface and to expedite image registration. Accuracy of the range measurement is affected by: (a) precision of the instrument s mechatronic components, (b) reflectivity and material properties of the object, (c) target s perpendicularity or angle of repose, (d) temperature and temperature variations, (e) atmospheric pressure and humidity, (f) dust and vapour, and (g) background noise and radiation. 1

2 Among the survey operations and methodology for tunnel construction (e.g., Chrzanowski, 1981; Lam and Tang, 2001, 2003), 3D laser-scanning systems are often employed in: 1. Detail mapping of ground surface and underground features for subsequent operations of realignment design, structural analysis or construction simulation. 2. Acquisition of amorphous data (e.g., progress of tunnel excavation) for monitoring the project s status. 3. As-built surveying to determine the geometric tolerances of structural components (e.g., tunnel liners, portal beams and shafts) in accordance with the allowable tolerances, specifications and standards of the construction. 4. Monitoring of ground displacements and structural deformation under the combined geodetic, geotechnical and finite-element-analysis (FEA) model. Although the accuracy of laser scanning can not reach the accuracy of geodetic instruments, the scanning system and reflective targets have recently been improved so that high resolution of the scan data is now sufficient to detect millimetre displacement vectors in deformation monitoring surveys. This paper describes the survey methodology and computational algorithms for use with terrestrial laser scanners focussing as-built surveying of tunnel structures as well as analysing their geometric tolerances. Main advantages of using laser scanners in the as-built surveying are: 1. Laser scanner is able to capture data without the need to set up on any control point inside the confines of a tunnel. 2. Comparing with conventional tunnel profiler and reflector-less total station, point clouds on the object are captured by the instrument within a short period of time (e.g., over 2000 range points per second). 3. Validation of design model by the as-built geometry from the scanner. 4. Fast fit-up simulation for wriggle surveying or realignment of cross-sections, longitudinal profiles and tunnel alignments. 5. Incorporation of as-built data (e.g., existing structural components and installations) in new designs, reverse engineering and facilities management. 2. DATA ACQUISITION AND REGISTRATION OF 3D SHAPES Under the ISO 9001 in construction practice, all surveying instruments including laser scanners must be calibrated before using them in the field. One calibration method is to establish a calibration frame of say 9 survey targets on a flat reference surface which can be tilted vertically and horizontally. At different tilted positions, the 3D coordinates (x, y, z) of the target points are obtained by both the laser scanner and bearing-bearing intersections from two fixed geodetic-theodolite stations. The 3D coordinates measured by the scanner at different ranges are then transformed to the 3D-reference coordinates by applying Helmert s seven-parameter model from which the scale factor and the rootmean-square (RMS) value of the differences between the corresponding coordinates are found and checked against the manufacturer s specifications (Santala and Joala 2003; Rietdorf et al., 2004). As shown in Figure 1, the various stages of acquisition, post-processing and registration of 3-D shapes using the laser scanner are: Stage 1: Range images and camera (colour) images covering the surface of the entire object are captured by the scanner from different view points. Each range point comprising of a 3-D range (x, y, z), brightness and colour (red, green, blue) data is stored in an indexed element of the two-dimensional array of computer memory inside the scanner. The coordinates of (x, y) are represented by the row and column indices of the memory array while z-coordinate is the laser-range value. Thereafter, surface model of each scan is formed by Delaunay triangulation in post-processing. Stage 2: Images having overlapping area are aligned pair-wise to a common co-ordinate frame by applying iterative-closest-point (ICP) registration algorithms. Steps of a standard ICP algorithm (e.g., Besl and McKay, 1992) are to: (a) determine the nearest point in the second cloud of points with respect to a given point in the first cloud of points, (b) compute the 2

3 Euclidean motion (rotation and translation) by quaternions and eigenvector analysis minimising the least-squared distance between the corresponding points, and (c) apply the transformation to the first point-set. These three steps are iterated until the coupling error is smaller than a specified threshold or the maximum number of iterations is reached. Since minimum three identifiable points or survey targets are surveyed for the overlapping area, the ICP algorithm converges very fast and produces high accuracy result after a rough registration through the initial transformation matrices. Thereafter, unwanted images or data in the scene (e.g., construction workers and vehicles passing through the scanner s line of sight) are deleted. Measures of registration accuracy are presented in terms of ground-truth transformation error with respect to ground control points. Or, in terms of non-ground-truth measures by computing the normalised least-square error (LSE), root-mean-squared error (RMSE), average residual error (ARE) and maximum residual error (MRE) from individual residual distances between each range point and its corresponding closest model point. However, non-ground-truth measures do not guarantee good registration accuracy because they are more sensitive to noise in the data. Techniques to improve searching for closest point, outlier rejection and pose transformation are summarised in (e.g., Rodrigues and Liu, 2002, Table 1; Matabosch et al. 2004, Table 1). Among these techniques, colour and reflectance components (i.e., texture mapping) are utilised successfully by Sagawa et al. (2005), Beinat and Crosilla (2001), and Johnson and Kang (1997) to simultaneously register multiple images into the final geometric and photometric model. Stage 3: All image pairs are sequentially merged into a single geometric and photometric model and geo-referenced into real-world coordinates using minimum three known target points on the entire model or three known scanner stations. Automatic hole filling, edge and corner reconstruction, and surface smoothing are also incorporated in the merging process of the software system. Conversion from triangulated mesh to grid representation may be needed while maintaining the required level of accuracy and mapping details. The purpose is to reduce the number of data points to a size and format (e.g., DXF, DWG, DGN, IGES and STEP) acceptable and manageable by downstream engineering software and geographic information systems (GIS). The resulting model is then segmented into regions or structural components for construction assessment, computing actual quantities of earthwork and materials, geometric tolerances analysis by comparing the design with the as-built data, and other engineering applications. Multiple images of object captured by Terrestrial Laser Scanner Range points Colour pixels Registration of images pair-wise into common coordinate frame by geometric ICP algorithm Registration of colours and textures by colour ICP algorithm Merging of all image pairs into a single geometric, photometric and geo-referenced model Unified 3D model with object recognition Figure 1: Geometric and Photometric Modelling by Terrestrial Laser Scanner 3

4 3. ASSESSMENT OF GEOMETRIC TOLERANCES IN TUNNEL CONSTRUCTION There are three main categories of tolerance in modern construction practice, namely conventional tolerances, statistical tolerances and geometric tolerances. Conventional tolerances are dimensional or coordinate tolerances and specified as plus or minus deviation from the lengths, angles and coordinates. During the course of the construction, discrete points at changes of geometry on the object surface are surveyed with respect to one coordinate reference datum or the dimensions given in construction drawings. The surveyed coordinates or dimensions are then checked against their allowable tolerances. This is the traditional practice of checking the tolerances of finished structures. Statistical tolerances specify a statistical distribution of tolerances for a dimension together with the property of distribution and values of mean or variance, which allows one to determine the probability that certain dimension or size of the product is unacceptable. In modern construction practice, the checking of dimensional and coordinate tolerances has been replaced by the rigorous approach of analysing the geometric tolerances of the finished structures. Under ISO 1101 or its equivalent, the ANSI Y14.5M, all types of geometric tolerance, namely form tolerance, orientation tolerance, location tolerance, runout tolerance and profile tolerance (Table 1) can be found by using laser scanner and analysed geometrically. These standards are originally designed for the manufacturing industry but being adopted for assessing the geometric tolerances of both concrete and steel structures in tunnel construction. As shown in Figure 2, tolerances of tunnel structures are surveyed and analysed geometrically with respected to two or three local datum planes or axes which help to define the local orientation and/or location of the tolerance zone. The checking of tunnel profile, surface form and column eccentricity is shown in Figure 3 in which tolerances of positions or dimensions are extracted from the point-clouds and checked against the allowable tolerances given in (e.g., British Tunnelling Society, 1997, Table 4). Report on profile tolerance is illustrated in Figure 3(a). In Figure 3(b), two nominally parallel surfaces are designed to determine the form deviation of an as-built surface with respect to a tertiary datum or a median plane. In Figure 3(c), straightness tolerance of a column axis is defined by a cylindrical zone along the whole length of the column. The as-built axis of the column is computed by least-squares estimate so that the effect of eccentricity from its designed position can be assessed by the structural engineer. Depending on the requirements of the construction, lower tolerance (i.e., higher accuracy) may be required in the assessment. If the surveyed tolerance exceeds the allowable tolerance or exceeds the maximum displacement given by the FEA, remedial work and/or realignment design will be implemented. Table 1: Types and characteristics of geometric tolerances (ISO 1101, 1983) Feature Type Type of Tolerance Characteristic Individual features Form Straightness, flatness, cylindricity Related features Orientation Location Runout Angularity, perpendicularity, parallelism Position, concentricity Circular runout, total runout Undetermined features Profile Line profile, surface profile Tertiary Datum Axes for assessment of profiles in slicing Secondary Datum Axes for assessment of vertical alignment 4 Primary Datum Axes for assessment of horizontal alignment

5 Figure 2: Establishment of primary, secondary and tertiary datum axes for assessing geometric tolerances of tunnels Y Overcut Designed Profile/Envelope Undercut X (a) Profile Tolerance of Tunnel Cross-section Tertiary Datum Plane Tertiary Datum Form Tolerance As-built Surface Deviations from Median Designed position of the Column Axis (Tertiary Datum) Axis surveyed Column Axis computed by Least Squares Model to determine its eccentricity Tolerance Zone of Axis (b) Form Tolerance of Surface Figure 3: Assessment of Geometric Tolerances 4. CONCLUSIONS AND FUTURE DEVELOPMENTS (c) Straightness Tolerance of Column Axis 5

6 This paper has presented the surveying techniques and computational algorithms needed for applying terrestrial laser scanning system in determining the various geometric tolerances of tunnel construction. The evolution of laser scanning technologies has no doubt improved the capabilities of tunnel surveyors and other professionals. It is anticipated that, by applying the laser scanning system, new automated systems and construction methods will be developed to facilitate the construction surveying, computer-aided design and planning, and FEA of different kinds of tunnels and their associated structures. REFERENCES ASME, ANSI Standard Y14.5M Dimensioning and Tolerancing. American Society of Mechanical Engineers. Besl, P. and McKay, N., A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp Beinat, A. and Crosilla, F., A Direct Method for the Simultaneous and Optimal Multidimensional Models Registration, Proceedings, IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 8-9 Nov., 2001, pp British Tunnelling Society of Institution of Civil Engineers, Model Specification for Tunnelling, London: Thomas Telford. Chrzanowski, A., Optimisation of breakthrough accuracy in tunnelling surveys, Canadian Surveyor, Vol. 35, pp ISO 1101, Geometrical Tolerances. Geneva: International Organization for Standardization. ISO 9001, Quality Management Systems Requirements. Geneva: International Organization for Standardization. Johnson, A. and Kang, S., Registration and Integration of Textured 3-D Data, Proceedings, International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa. Lam, S. and Tang, C., An Overview of Surveying Techniques for the Construction of Highway Tunnels in Hong Kong, Geomatica, Vol. 55, No. 3, pp Lam, S. and Tang, C., Geometric Modeling Systems for Construction Surveying of Highway Tunnels, ASCE Journal of Surveying Engineering, Vol. 129, No. 4, pp Matabosch, C., Salvi, J., Pinsach, X. and Garcia, R., Surface Registration from Range Image Fusion, Proceedings, pp , IEEE International Conference on Robotics and Automation, New Orleans, USA. Rietdorf, A., Gielsdorf, F. and Gruendig, L., A Concept for the Calibration of Terrestrial Laser Scanners, Proceedings, INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying, Slovakia, November 11-13, Rodrigues, M. and Liu, Y., On the Representation of Rigid Body Transformations for Accurate Registration of Free-form Shapes, Robotics and Autonomous Systems, Vol. 39, pp Sagawa, R., Nishino, K. and Ikeuchi, K., Adaptively merging Larger-Scale Range Data with Reflectance Properties, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3, pp

Intensity Augmented ICP for Registration of Laser Scanner Point Clouds

Intensity Augmented ICP for Registration of Laser Scanner Point Clouds Intensity Augmented ICP for Registration of Laser Scanner Point Clouds Bharat Lohani* and Sandeep Sashidharan *Department of Civil Engineering, IIT Kanpur Email: blohani@iitk.ac.in. Abstract While using

More information

Integrating the Generations, FIG Working Week 2008,Stockholm, Sweden June 2008

Integrating the Generations, FIG Working Week 2008,Stockholm, Sweden June 2008 H. Murat Yilmaz, Aksaray University,Turkey Omer Mutluoglu, Selçuk University, Turkey Murat Yakar, Selçuk University,Turkey Cutting and filling volume calculation are important issues in many engineering

More information

TERRESTRIAL LASER SCANNER DATA PROCESSING

TERRESTRIAL LASER SCANNER DATA PROCESSING TERRESTRIAL LASER SCANNER DATA PROCESSING L. Bornaz (*), F. Rinaudo (*) (*) Politecnico di Torino - Dipartimento di Georisorse e Territorio C.so Duca degli Abruzzi, 24 10129 Torino Tel. +39.011.564.7687

More information

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES Jie Shao a, Wuming Zhang a, Yaqiao Zhu b, Aojie Shen a a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

3GSM GmbH. Plüddemanngasse 77 A-8010 Graz, Austria Tel Fax:

3GSM GmbH. Plüddemanngasse 77 A-8010 Graz, Austria Tel Fax: White Paper Graz, April 2014 3GSM GmbH Plüddemanngasse 77 A-8010 Graz, Austria Tel. +43-316-464744 Fax: +43-316-464744-11 office@3gsm.at www.3gsm.at Measurement and assessment of rock and terrain surfaces

More information

3D-2D Laser Range Finder calibration using a conic based geometry shape

3D-2D Laser Range Finder calibration using a conic based geometry shape 3D-2D Laser Range Finder calibration using a conic based geometry shape Miguel Almeida 1, Paulo Dias 1, Miguel Oliveira 2, Vítor Santos 2 1 Dept. of Electronics, Telecom. and Informatics, IEETA, University

More information

3D Modeling of Objects Using Laser Scanning

3D Modeling of Objects Using Laser Scanning 1 3D Modeling of Objects Using Laser Scanning D. Jaya Deepu, LPU University, Punjab, India Email: Jaideepudadi@gmail.com Abstract: In the last few decades, constructing accurate three-dimensional models

More information

Recent Advances of Engineering Survey Operations for Tunnel Construction in Hong Kong

Recent Advances of Engineering Survey Operations for Tunnel Construction in Hong Kong Recent Advances of Engineering Survey Operations for Tunnel Construction in Hong Kong Steve Y. W. LAM, People s Republic of China Key words: Engineering surveying, tunnel, construction SUMMARY This paper

More information

Rigid ICP registration with Kinect

Rigid ICP registration with Kinect Rigid ICP registration with Kinect Students: Yoni Choukroun, Elie Semmel Advisor: Yonathan Aflalo 1 Overview.p.3 Development of the project..p.3 Papers p.4 Project algorithm..p.6 Result of the whole body.p.7

More information

Ch 22 Inspection Technologies

Ch 22 Inspection Technologies Ch 22 Inspection Technologies Sections: 1. Inspection Metrology 2. Contact vs. Noncontact Inspection Techniques 3. Conventional Measuring and Gaging Techniques 4. Coordinate Measuring Machines 5. Surface

More information

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning 1 ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning Petri Rönnholm Aalto University 2 Learning objectives To recognize applications of laser scanning To understand principles

More information

TERRESTRIAL LASER SYSTEM TESTING USING REFERENCE BODIES

TERRESTRIAL LASER SYSTEM TESTING USING REFERENCE BODIES TERRESTRIAL LASER SYSTEM TESTING USING REFERENCE BODIES Miriam Zámečníková and Alojz Kopáčik Department of Surveying, Faculty of Civil Engineering Slovak University of Technology Email: miriam.zamecnikova@stuba.sk

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO June 20 th, 2014 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point clouds.

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

DEVELOPMENT OF POSITION MEASUREMENT SYSTEM FOR CONSTRUCTION PILE USING LASER RANGE FINDER

DEVELOPMENT OF POSITION MEASUREMENT SYSTEM FOR CONSTRUCTION PILE USING LASER RANGE FINDER S17- DEVELOPMENT OF POSITION MEASUREMENT SYSTEM FOR CONSTRUCTION PILE USING LASER RANGE FINDER Fumihiro Inoue 1 *, Takeshi Sasaki, Xiangqi Huang 3, and Hideki Hashimoto 4 1 Technica Research Institute,

More information

Three-Dimensional Laser Scanner. Field Evaluation Specifications

Three-Dimensional Laser Scanner. Field Evaluation Specifications Stanford University June 27, 2004 Stanford Linear Accelerator Center P.O. Box 20450 Stanford, California 94309, USA Three-Dimensional Laser Scanner Field Evaluation Specifications Metrology Department

More information

AUTOMATIC ORIENTATION AND MERGING OF LASER SCANNER ACQUISITIONS THROUGH VOLUMETRIC TARGETS: PROCEDURE DESCRIPTION AND TEST RESULTS

AUTOMATIC ORIENTATION AND MERGING OF LASER SCANNER ACQUISITIONS THROUGH VOLUMETRIC TARGETS: PROCEDURE DESCRIPTION AND TEST RESULTS AUTOMATIC ORIENTATION AND MERGING OF LASER SCANNER ACQUISITIONS THROUGH VOLUMETRIC TARGETS: PROCEDURE DESCRIPTION AND TEST RESULTS G.Artese a, V.Achilli b, G.Salemi b, A.Trecroci a a Dept. of Land Planning,

More information

HEURISTIC FILTERING AND 3D FEATURE EXTRACTION FROM LIDAR DATA

HEURISTIC FILTERING AND 3D FEATURE EXTRACTION FROM LIDAR DATA HEURISTIC FILTERING AND 3D FEATURE EXTRACTION FROM LIDAR DATA Abdullatif Alharthy, James Bethel School of Civil Engineering, Purdue University, 1284 Civil Engineering Building, West Lafayette, IN 47907

More information

A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS

A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS Robert Pâquet School of Engineering, University of Newcastle Callaghan, NSW 238, Australia (rpaquet@mail.newcastle.edu.au)

More information

Virtually Real: Terrestrial Laser Scanning

Virtually Real: Terrestrial Laser Scanning Check. They re Chartered. Geomatics Client Guides Virtually Real: Terrestrial Laser Scanning Understanding an evolving survey technology Summary This guide gives you an overview of the technique, some

More information

The Determination of Telescope and Antenna Invariant Point (IVP)

The Determination of Telescope and Antenna Invariant Point (IVP) The Determination of Telescope and Antenna Invariant Point (IVP) John Dawson, Gary Johnston, and Bob Twilley Minerals and Geohazards Division, Geoscience Australia, Cnr Jerrabomberra Ave and Hindmarsh

More information

TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION

TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION TERRESTRIAL 3D-LASER SCANNER ZLS07 DEVELOPED AT ETH ZURICH: AN OVERVIEW OF ITS CONFIGURATION, PERFORMANCE AND APPLICATION Hans-Martin Zogg and Hilmar Ingensand Institute of Geodesy and Photogrammetry,

More information

3D BUILDINGS MODELLING BASED ON A COMBINATION OF TECHNIQUES AND METHODOLOGIES

3D BUILDINGS MODELLING BASED ON A COMBINATION OF TECHNIQUES AND METHODOLOGIES 3D BUILDINGS MODELLING BASED ON A COMBINATION OF TECHNIQUES AND METHODOLOGIES Georgeta Pop (Manea), Alexander Bucksch, Ben Gorte Delft Technical University, Department of Earth Observation and Space Systems,

More information

GEODETIC MEASURING METHODS AND SHAPE ESTIMATION OF CONCRETE THIN SHELL SURFACE

GEODETIC MEASURING METHODS AND SHAPE ESTIMATION OF CONCRETE THIN SHELL SURFACE GEODETIC MEASURING METHODS AND SHAPE ESTIMATION OF CONCRETE THIN SHELL SURFACE M. Woźniak, K. Woźniak Warsaw University of Technology ABSTRACT The geodetic measurements of surface geometry can be performed

More information

Registration of Moving Surfaces by Means of One-Shot Laser Projection

Registration of Moving Surfaces by Means of One-Shot Laser Projection Registration of Moving Surfaces by Means of One-Shot Laser Projection Carles Matabosch 1,DavidFofi 2, Joaquim Salvi 1, and Josep Forest 1 1 University of Girona, Institut d Informatica i Aplicacions, Girona,

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Aerial and Mobile LiDAR Data Fusion

Aerial and Mobile LiDAR Data Fusion Creating Value Delivering Solutions Aerial and Mobile LiDAR Data Fusion Dr. Srini Dharmapuri, CP, PMP What You Will Learn About LiDAR Fusion Mobile and Aerial LiDAR Technology Components & Parameters Project

More information

Comparison of point clouds captured with terrestrial laser scanners with different technical characteristic

Comparison of point clouds captured with terrestrial laser scanners with different technical characteristic Comparison of point clouds captured with terrestrial laser scanners with different technical characteristic Janina Zaczek-Peplinska, Maria Elżbieta Kowalska Warsaw University of Technology, Faculty of

More information

Algorithm research of 3D point cloud registration based on iterative closest point 1

Algorithm research of 3D point cloud registration based on iterative closest point 1 Acta Technica 62, No. 3B/2017, 189 196 c 2017 Institute of Thermomechanics CAS, v.v.i. Algorithm research of 3D point cloud registration based on iterative closest point 1 Qian Gao 2, Yujian Wang 2,3,

More information

SURVEY AND ALIGNMENT OVERVIEW: FERMILAB MAIN INJECTOR RING

SURVEY AND ALIGNMENT OVERVIEW: FERMILAB MAIN INJECTOR RING I/101 SURVEY AND ALIGNMENT OVERVIEW: FERMILAB MAIN INJECTOR RING Virgil Bocean, Babatunde O Sheg Oshinowo, Terry M. Sager Fermi National Accelerator Laboratory, Batavia, Illinois, USA 1. INTRODUCTION The

More information

MODELING AND ANALYSIS OF LATTICE TOWERS WITH MORE ACCURATE MODELS

MODELING AND ANALYSIS OF LATTICE TOWERS WITH MORE ACCURATE MODELS Advanced Steel Construction Vol. 3, No. 2, pp. 565-582 (2007) 565 MODELING AND ANALYSIS OF LATTICE TOWERS WITH MORE ACCURATE MODELS Wenjiang Kang 1, F. Albermani 2, S. Kitipornchai 1 and Heung-Fai Lam

More information

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds 1 Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds Takeru Niwa 1 and Hiroshi Masuda 2 1 The University of Electro-Communications, takeru.niwa@uec.ac.jp 2 The University

More information

Matthew TAIT, Ryan FOX and William F. TESKEY, Canada. Key words: Error Budget Assessment, Laser Scanning, Photogrammetry, CAD Modelling

Matthew TAIT, Ryan FOX and William F. TESKEY, Canada. Key words: Error Budget Assessment, Laser Scanning, Photogrammetry, CAD Modelling A Comparison and Full Error Budget Analysis for Close Range Photogrammetry and 3D Terrestrial Laser Scanning with Rigorous Ground Control in an Industrial Setting Matthew TAIT, Ryan FOX and William F.

More information

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring

Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Critical Aspects when using Total Stations and Laser Scanners for Geotechnical Monitoring Lienhart, W. Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria Abstract

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

RAILWAY PROJECT Geodetic Reference System, Geodetic Control Network and Rail Construction Measurements

RAILWAY PROJECT Geodetic Reference System, Geodetic Control Network and Rail Construction Measurements RAILWAY PROJECT Geodetic Reference System, Geodetic Control Network and Rail Construction Measurements Railway Project 2 / 8 INDEX 1 Introduction... 3 2 Reference System... 3 2.1 Reference system... 3

More information

Measurement of Deformations by MEMS Arrays, Verified at Sub-millimetre Level Using Robotic Total Stations

Measurement of Deformations by MEMS Arrays, Verified at Sub-millimetre Level Using Robotic Total Stations 163 Measurement of Deformations by MEMS Arrays, Verified at Sub-millimetre Level Using Robotic Total Stations Beran, T. 1, Danisch, L. 1, Chrzanowski, A. 2 and Bazanowski, M. 2 1 Measurand Inc., 2111 Hanwell

More information

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration JAMIE YOUNG Senior Manager LiDAR Solutions Topics Terrestrial GPS reference Planning and Collection Considerations

More information

Generating 3D Meshes from Range Data

Generating 3D Meshes from Range Data Princeton University COS598B Lectures on 3D Modeling Generating 3D Meshes from Range Data Robert Kalnins Robert Osada Overview Range Images Optical Scanners Error sources and solutions Range Surfaces Mesh

More information

Study on Gear Chamfering Method based on Vision Measurement

Study on Gear Chamfering Method based on Vision Measurement International Conference on Informatization in Education, Management and Business (IEMB 2015) Study on Gear Chamfering Method based on Vision Measurement Jun Sun College of Civil Engineering and Architecture,

More information

Measurements using three-dimensional product imaging

Measurements using three-dimensional product imaging ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Special Issue 3/2010 41 46 7/3 Measurements using

More information

REGISTRATION OF AIRBORNE LASER DATA TO SURFACES GENERATED BY PHOTOGRAMMETRIC MEANS. Y. Postolov, A. Krupnik, K. McIntosh

REGISTRATION OF AIRBORNE LASER DATA TO SURFACES GENERATED BY PHOTOGRAMMETRIC MEANS. Y. Postolov, A. Krupnik, K. McIntosh REGISTRATION OF AIRBORNE LASER DATA TO SURFACES GENERATED BY PHOTOGRAMMETRIC MEANS Y. Postolov, A. Krupnik, K. McIntosh Department of Civil Engineering, Technion Israel Institute of Technology, Haifa,

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4

TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4 TERRESTRIAL AND NUMERICAL PHOTOGRAMMETRY 1. MID -TERM EXAM Question 4 23 November 2001 Two-camera stations are located at the ends of a base, which are 191.46m long, measured horizontally. Photographs

More information

The Most User-Friendly 3D scanner

The Most User-Friendly 3D scanner The Most User-Friendly 3D scanner The Solutionix C500 is optimized for scanning small- to medium-sized objects. With dual 5.0MP cameras, the C500 provides excellent data quality at a high resolution. In

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Using terrestrial laser scan to monitor the upstream face of a rockfill weight dam

Using terrestrial laser scan to monitor the upstream face of a rockfill weight dam Using terrestrial laser scan to monitor the upstream face of a rockfill weight dam NEGRILĂ Aurel Department of Topography and Cadastre Technical University of Civil Engineering Bucharest Lacul Tei Bvd

More information

Abstract. Introduction

Abstract. Introduction The efficient calculation of the Cartesian geometry of non-cartesian structures J.M. Freeman and D.G. Ford Engineering Control and Metrology Research Group, The School of Engineering, University of Huddersfield.

More information

Level 6 Graduate Diploma in Engineering Engineering surveying

Level 6 Graduate Diploma in Engineering Engineering surveying 9210-104 Level 6 Graduate Diploma in Engineering Engineering surveying Sample Paper You should have the following for this examination answer booklets non-programmable calculator pens, pencils, drawing

More information

Real Time 3D Environment Modeling for a Mobile Robot by Aligning Range Image Sequences

Real Time 3D Environment Modeling for a Mobile Robot by Aligning Range Image Sequences Real Time 3D Environment Modeling for a Mobile Robot by Aligning Range Image Sequences Ryusuke Sagawa, Nanaho Osawa, Tomio Echigo and Yasushi Yagi Institute of Scientific and Industrial Research, Osaka

More information

Cover Page. Abstract ID Paper Title. Automated extraction of linear features from vehicle-borne laser data

Cover Page. Abstract ID Paper Title. Automated extraction of linear features from vehicle-borne laser data Cover Page Abstract ID 8181 Paper Title Automated extraction of linear features from vehicle-borne laser data Contact Author Email Dinesh Manandhar (author1) dinesh@skl.iis.u-tokyo.ac.jp Phone +81-3-5452-6417

More information

IGTF 2016 Fort Worth, TX, April 11-15, 2016 Submission 149

IGTF 2016 Fort Worth, TX, April 11-15, 2016 Submission 149 IGTF 26 Fort Worth, TX, April -5, 26 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 Light weighted and Portable LiDAR, VLP-6 Registration Yushin Ahn (yahn@mtu.edu), Kyung In Huh (khuh@cpp.edu), Sudhagar Nagarajan

More information

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z620

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z620 Holder for GPS antenna, detachable, for Nikon D200 / D90 / D300(s) / D700 Part-No. HW-ZXX-06-000-00 High Resolution Digital Camera with accessories (for details see camera configuration) High-Precision

More information

A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces.

A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces. A new geodetic methodology for the accurate Documentation and Monitoring of inaccessible surfaces. Ε. Lambrou, G. Pantazis Lecturers at NTUA School of Rural and Surveying Engineering National Technical

More information

Calibration of a rotating multi-beam Lidar

Calibration of a rotating multi-beam Lidar The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Calibration of a rotating multi-beam Lidar Naveed Muhammad 1,2 and Simon Lacroix 1,2 Abstract

More information

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion 007 IEEE International Conference on Robotics and Automation Roma, Italy, 0-4 April 007 FrE5. Accurate Motion Estimation and High-Precision D Reconstruction by Sensor Fusion Yunsu Bok, Youngbae Hwang,

More information

Three-dimensional nondestructive evaluation of cylindrical objects (pipe) using an infrared camera coupled to a 3D scanner

Three-dimensional nondestructive evaluation of cylindrical objects (pipe) using an infrared camera coupled to a 3D scanner Three-dimensional nondestructive evaluation of cylindrical objects (pipe) using an infrared camera coupled to a 3D scanner F. B. Djupkep Dizeu, S. Hesabi, D. Laurendeau, A. Bendada Computer Vision and

More information

HIGH PRECISION SURVEY AND ALIGNMENT OF LARGE LINEAR COLLIDERS - HORIZONTAL ALIGNMENT -

HIGH PRECISION SURVEY AND ALIGNMENT OF LARGE LINEAR COLLIDERS - HORIZONTAL ALIGNMENT - HIGH PRECISION SURVEY AND ALIGNMENT OF LARGE LINEAR COLLIDERS - HORIZONTAL ALIGNMENT - A. Herty, J. Albert 1 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany with international partners * 1. INTRODUCTION

More information

Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory

Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory Wojciech Jaśkowski 1,*, Tomasz Lipecki 1, Wojciech Matwij 1, Mateusz Jabłoński 1 1 AGH University of Science and

More information

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z420i

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z420i Holder for GPS antenna, detachable, for Nikon D200 / D90 / D300(s) / D700 and for Canon EOS 20D camera mount Part-No. HW-ZXX-06-000-00 or for Canon EOS 1Ds Mark II camera mount Part-No. HW-ZXX-06-001-00

More information

3D Laser Scanner VS1000 User Manual

3D Laser Scanner VS1000 User Manual 3D Laser Scanner VS1000 User Manual 1 VS1000 Introduction SMART MAX GEOSYSTEMS CO., LTD VS1000 3D Laser Scanner based on pulses ranging principle, could quick acquire massive point cloud data from the

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z620

RIEGL SYSTEM CONFIGURATION 3D TERRESTRIAL SCANNER LMS-Z620 Holder for GPS antenna, detachable, for Nikon D70s / D100 / D200 / D300 and for Canon EOS 20D camera mount Part-No. 02RA09-00-011-02 or for Canon EOS 1Ds Mark II camera mount Part-No. 02RA09-00-011-00

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

CLASSIFICATION FOR ROADSIDE OBJECTS BASED ON SIMULATED LASER SCANNING

CLASSIFICATION FOR ROADSIDE OBJECTS BASED ON SIMULATED LASER SCANNING CLASSIFICATION FOR ROADSIDE OBJECTS BASED ON SIMULATED LASER SCANNING Kenta Fukano 1, and Hiroshi Masuda 2 1) Graduate student, Department of Intelligence Mechanical Engineering, The University of Electro-Communications,

More information

MULTIPLE-SENSOR INTEGRATION FOR EFFICIENT REVERSE ENGINEERING OF GEOMETRY

MULTIPLE-SENSOR INTEGRATION FOR EFFICIENT REVERSE ENGINEERING OF GEOMETRY Proceedings of the 11 th International Conference on Manufacturing Research (ICMR2013) MULTIPLE-SENSOR INTEGRATION FOR EFFICIENT REVERSE ENGINEERING OF GEOMETRY Feng Li, Andrew Longstaff, Simon Fletcher,

More information

QUALITY CONTROL OF CONSTRUCTED MODELS USING 3D POINT CLOUD

QUALITY CONTROL OF CONSTRUCTED MODELS USING 3D POINT CLOUD 20 th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering K. Gürlebeck and T. Lahmer (eds.) Weimar, Germany, 20-22 July 2015 QUALITY CONTROL

More information

Leica Cyclone 5.4 Technical Specifications

Leica Cyclone 5.4 Technical Specifications Leica Cyclone 5.4 Technical Specifications HDS Scanner control and operation Scan Scan Scan Register Model Survey Viewer Acquire and display image Acquire image at specified resolution (high, medium, low)

More information

STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION

STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION STRAIGHT LINE REFERENCE SYSTEM STATUS REPORT ON POISSON SYSTEM CALIBRATION C. Schwalm, DESY, Hamburg, Germany Abstract For the Alignment of the European XFEL, a Straight Line Reference System will be used

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Comparing Aerial Photogrammetry and 3D Laser Scanning Methods for Creating 3D Models of Complex Objects

Comparing Aerial Photogrammetry and 3D Laser Scanning Methods for Creating 3D Models of Complex Objects Comparing Aerial Photogrammetry and 3D Laser Scanning Methods for Creating 3D Models of Complex Objects A Bentley Systems White Paper Cyril Novel Senior Software Engineer, Bentley Systems Renaud Keriven

More information

REPRESENTATION REQUIREMENTS OF AS-IS BUILDING INFORMATION MODELS GENERATED FROM LASER SCANNED POINT CLOUD DATA

REPRESENTATION REQUIREMENTS OF AS-IS BUILDING INFORMATION MODELS GENERATED FROM LASER SCANNED POINT CLOUD DATA REPRESENTATION REQUIREMENTS OF AS-IS BUILDING INFORMATION MODELS GENERATED FROM LASER SCANNED POINT CLOUD DATA Engin Burak Anil 1 *, Burcu Akinci 1, and Daniel Huber 2 1 Department of Civil and Environmental

More information

USING A LASER SCANNER FOR THE CONTROL OF ACCELERATOR INFRASTRUCTURE DURING THE MACHINE INTEGRATION

USING A LASER SCANNER FOR THE CONTROL OF ACCELERATOR INFRASTRUCTURE DURING THE MACHINE INTEGRATION IWAA2004, CERN, Geneva, 4-7 October 2004 USING A LASER SCANNER FOR THE CONTROL OF ACCELERATOR INFRASTRUCTURE DURING THE MACHINE INTEGRATION Tobias Dobers, Mark Jones, Yvon Muttoni, CERN, 1211 Geneva 23,

More information

3D SPATIAL DATA ACQUISITION AND MODELING OF ANGHEL SALIGNY MONUMENT USING TERRESTRIAL LASER SCANNING

3D SPATIAL DATA ACQUISITION AND MODELING OF ANGHEL SALIGNY MONUMENT USING TERRESTRIAL LASER SCANNING JOURNAL OF APPLIED ENGINEERING SCIENCES VOL. 2(15), issue 2_2012 ISSN 2247-3769 ISSN-L 2247-3769 (Print) / e-issn:2284-7197 3D SPATIAL DATA ACQUISITION AND MODELING OF ANGHEL SALIGNY MONUMENT USING TERRESTRIAL

More information

GABRIELE GUIDI, PHD POLITECNICO DI MILANO, ITALY VISITING SCHOLAR AT INDIANA UNIVERSITY NOV OCT D IMAGE FUSION

GABRIELE GUIDI, PHD POLITECNICO DI MILANO, ITALY VISITING SCHOLAR AT INDIANA UNIVERSITY NOV OCT D IMAGE FUSION GABRIELE GUIDI, PHD POLITECNICO DI MILANO, ITALY VISITING SCHOLAR AT INDIANA UNIVERSITY NOV 2017 - OCT 2018 3D IMAGE FUSION 3D IMAGE FUSION WHAT A 3D IMAGE IS? A cloud of 3D points collected from a 3D

More information

Automating Data Alignment from Multiple Collects Author: David Janssen Optech Incorporated,Senior Technical Engineer

Automating Data Alignment from Multiple Collects Author: David Janssen Optech Incorporated,Senior Technical Engineer Automating Data Alignment from Multiple Collects Author: David Janssen Optech Incorporated,Senior Technical Engineer Stand in Presenter: David Collison Optech Incorporated, Regional Sales Manager Introduction

More information

Insertion Device Alignment for the Diamond Light Source

Insertion Device Alignment for the Diamond Light Source Insertion Device Alignment for the Diamond Light Source A. Mariani Diamond Light Source, Chilton, Didcot, Oxon. OX11 0DE, UK This paper covers the survey and alignment techniques selected for the build

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Section G. POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02

Section G. POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02 Section G POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02 1. INTRODUCTION Modern surveying standards use the concept of positional accuracy instead of error of closure. Although the concepts

More information

Photogrammetry: A Modern Tool for Crash Scene Mapping

Photogrammetry: A Modern Tool for Crash Scene Mapping Photogrammetry: A Modern Tool for Crash Scene Mapping Background A police accident investigator (AI) has many tasks when arriving at a crash scene. The officer s highest priority is public safety; the

More information

MOBILE INSPECTION SYSTEM FOR HIGH-RESOLUTION ASSESSMENT OF TUNNELS

MOBILE INSPECTION SYSTEM FOR HIGH-RESOLUTION ASSESSMENT OF TUNNELS MOBILE INSPECTION SYSTEM FOR HIGH-RESOLUTION ASSESSMENT OF TUNNELS M. Gavilán*, F. Sánchez, J.A. Ramos and O. Marcos EUROCONSULT GROUP Avenida Montes de Oca 9-11, 28703, Madrid, Spain *Corresponding author:

More information

#65 MONITORING AND PREDICTING PEDESTRIAN BEHAVIOR AT TRAFFIC INTERSECTIONS

#65 MONITORING AND PREDICTING PEDESTRIAN BEHAVIOR AT TRAFFIC INTERSECTIONS #65 MONITORING AND PREDICTING PEDESTRIAN BEHAVIOR AT TRAFFIC INTERSECTIONS Final Research Report Luis E. Navarro-Serment, Ph.D. The Robotics Institute Carnegie Mellon University Disclaimer The contents

More information

Reconstruction of complete 3D object model from multi-view range images.

Reconstruction of complete 3D object model from multi-view range images. Header for SPIE use Reconstruction of complete 3D object model from multi-view range images. Yi-Ping Hung *, Chu-Song Chen, Ing-Bor Hsieh, Chiou-Shann Fuh Institute of Information Science, Academia Sinica,

More information

THREE DIMENSIONAL CURVE HALL RECONSTRUCTION USING SEMI-AUTOMATIC UAV

THREE DIMENSIONAL CURVE HALL RECONSTRUCTION USING SEMI-AUTOMATIC UAV THREE DIMENSIONAL CURVE HALL RECONSTRUCTION USING SEMI-AUTOMATIC UAV Muhammad Norazam Zulgafli 1 and Khairul Nizam Tahar 1,2 1 Centre of Studies for Surveying Science and Geomatics, Faculty of Architecture

More information

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors

Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors 33 rd International Symposium on Automation and Robotics in Construction (ISARC 2016) Construction Progress Management and Interior Work Analysis Using Kinect 3D Image Sensors Kosei Ishida 1 1 School of

More information

Leica High-Definition Surveying Systems. Leica HDS3000. The Industry Standard for High-Definition Surveying

Leica High-Definition Surveying Systems. Leica HDS3000. The Industry Standard for High-Definition Surveying Leica High-Definition Surveying Systems Leica HDS3000 The Industry Standard for High-Definition Surveying HDS High-Definition Surveying TM : Laser Scanning Redefined High-Definition Surveying, or HDS,

More information

The Leica HDS Family. The Right Tool for the Job HDS3000 HDS2500 HDS4500. Cyclone & CloudWorx. Press the QuickScan button to define the field-of-view.

The Leica HDS Family. The Right Tool for the Job HDS3000 HDS2500 HDS4500. Cyclone & CloudWorx. Press the QuickScan button to define the field-of-view. HDS2500 High accuracy scanner, ideal for fixed or raised installations when leveled tripod mounting is not practical, or areas with less stringent field-of-view requirements. The Leica HDS Family Time-of-flight

More information

Gregory Walsh, Ph.D. San Ramon, CA January 25, 2011

Gregory Walsh, Ph.D. San Ramon, CA January 25, 2011 Leica ScanStation:: Calibration and QA Gregory Walsh, Ph.D. San Ramon, CA January 25, 2011 1. Summary Leica Geosystems, in creating the Leica Scanstation family of products, has designed and conducted

More information

AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS J. Tao *, G. Palubinskas, P. Reinartz German Aerospace Center DLR, 82234 Oberpfaffenhofen,

More information

LaserFleX New Generation of High Performance Infrastructure Measurement System

LaserFleX New Generation of High Performance Infrastructure Measurement System Balfour Beatty Rail LaserFleX New Generation of High Performance Infrastructure Measurement System LaserFleX TM Introduction LaserFleX TM is the modular railway infrastructure and track measurement system

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, October 20 th, 2017 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE. Matthew P. Tait

POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE. Matthew P. Tait POINT CLOUD REGISTRATION: CURRENT STATE OF THE SCIENCE Matthew P. Tait Content 1. Quality control: Analyzing the true errors in Terrestrial Laser Scanning (TLS) 2. The prospects for automatic cloud registration

More information

REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES

REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES T. Yamakawa a, K. Fukano a,r. Onodera a, H. Masuda a, * a Dept. of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications,

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

Surface Registration from Range Image Fusion

Surface Registration from Range Image Fusion Surface Registration from Range Image Fusion Carles Matabosch, Joaquim Salvi, Xavier Pinsach and Rafael Garcia Institut d informàtica i Aplicacions Universitat de Girona 17071 Girona, Spain Email: (cmatabos,qsalvi,xpinsach,rafa)@eia.udg.es

More information

3D Data Acquisition in Tunnels Optimizing Track Time Using Terrestrial Mobile LiDAR. Scanning. Michael R. Frecks, PLS.

3D Data Acquisition in Tunnels Optimizing Track Time Using Terrestrial Mobile LiDAR. Scanning. Michael R. Frecks, PLS. 3D Data Acquisition in Tunnels Optimizing Track Time Using Terrestrial Mobile LiDAR Scanning Michael R. Frecks, PLS President/CEO AREMA 2013 1207 Understanding mobile 3D LiDAR? light detection and ranging

More information

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X

The 2017 InSAR package also provides support for the generation of interferograms for: PALSAR-2, TanDEM-X Technical Specifications InSAR The Interferometric SAR (InSAR) package can be used to generate topographic products to characterize digital surface models (DSMs) or deformation products which identify

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

TLS Parameters, Workflows and Field Methods

TLS Parameters, Workflows and Field Methods TLS Parameters, Workflows and Field Methods Marianne Okal, UNAVCO GSA, September 23 rd, 2016 How a Lidar instrument works (Recap) Transmits laser signals and measures the reflected light to create 3D point

More information

3D Terrestrial Laser Scanner Innovative Applications for 3D Documentation

3D Terrestrial Laser Scanner Innovative Applications for 3D Documentation 3D Terrestrial Laser Scanner Innovative Applications for 3D Documentation Rodney Chaffee Head of Sales, FARO Asia Pacific 3D Laser Scaning Market 2017 2.3 Billion $ 2012 1.3 Billion $ CAGR : > 12% Source:

More information