Automatically Finding Patches Using Genetic Programming. Westley Weimer, Claire Le Goues, ThanVu Nguyen, Stephanie Forrest

Size: px
Start display at page:

Download "Automatically Finding Patches Using Genetic Programming. Westley Weimer, Claire Le Goues, ThanVu Nguyen, Stephanie Forrest"

Transcription

1 Automatically Finding Patches Using Genetic Programming Westley Weimer, Claire Le Goues, ThanVu Nguyen, Stephanie Forrest

2 Motivation Software Quality remains a key problem Over one half of 1 percent of US GDP each year Programs ship with known bugs Vista shipped with thousands of them! Software Repair via Genetic Programming Transform a program with a bug Into a program without the bug By modifying relevant parts of the program 2

3 The Cunning Plan We can automatically and efficiently repair off-the-shelf, unannotated legacy programs. Basic idea: Randomly search through the space of all programs until you find a variant that repairs the problem. Key insights: Use existing regression tests to evaluate variants. Search by randomly perturbing parts of the program likely to contain the error. (SBST'09 Best Paper, ICSE'09 Best Paper, GECCO'09,...) 3

4 Input: The Process The program source code Some regression test cases passed by the program A test case failed by the program (= the bug) Work: (State Space Exploration) Create random variants of the program Run them on the test cases Repeat if necessary Output: New program source code that passes all tests or no solution found in time 4

5 This Talk Genetic Programming Weighted Paths Example Repair Experiments Repair Quality Experiments Big Finish 5

6 Genetic Programming Genetic programming is the application of evolutionary or genetic algorithms to program source code. Genetic Algorithms: Population of variants Crossover and mutation Fitness Function 6

7 What's In A Name? If you're wary of genetic programming, you can view this as search-based software engineering. We use the regression tests to guide the search. 7

8 The Secret Sauce In a large program, not every line is equally likely to contribute to the bug. Insight: since we have the test cases, run them and collect coverage information. The bug is more likely to be found on lines visited when running the failed test case. The bug is less likely to be found on lines visited when running the passed test cases. Also: Do not try to invent new code! 8

9 The Weighted Path We define a weighted path to be a list of <statement, weight> pairs. We use this weighted path: The statements are those visited during the failed test case. The weight for a statement S is 1.0 if S is not visited on a passed test case 0.1 if S is also visited on a passed test case 9

10 Genetic Programming for Program Repair: Mutation Population of Variants: Each variant is an <AST, weighted path> pair Mutation: To mutate a variant V = <AST V, wp V >, randomly choose a statement S from wp V biased by the weights Delete S, replace S with S1, or insert S2 after S Choose S1 and S2 from the entire AST Assumes program contains the seeds of its own repair (e.g., has another null check elsewhere). 10

11 Genetic Programming for Program Repair: Fitness Compile a variant If it fails to compile, Fitness = 0 Otherwise, run it on the test cases Fitness = number of test cases passed Weighted: passing the bug test case is worth more Selection Higher fitness variants are retained into the next generation Repeat until a solution is found 11

12 Example Source Code For Zune Bug Repair Millions of Microsoft Zune media players froze up on December 31st,

13 year=1980 while (days>365) printf(... year) if (isleapyear) Abstract Syntax Tree For Zune Bug Repair if (days>366) days -= 365 year += 1 days -= 366 year += 1 (no children) 13

14 year=1980 while (days>365) printf(... year) if (isleapyear) Weighted Path For Zune Bug Repair (1/3) if (days>366) days -= 365 year += 1 days -= 366 year += 1 Visited on Negative Test (days=10593) year += 1 14

15 year=1980 while (days>365) printf(... year) if (isleapyear) Weighted Path For Zune Bug Repair (2/3) if (days>366) days -= 365 year += 1 days -= 366 year += 1 Also Visited on Positive Test (days=1000) year += 1 Visited on Negative Test but not Positive Test year += 1 15

16 year=1980 while (days>365) printf(... year) if (isleapyear) Weighted Path For Zune Bug Repair (3/3) if (days>366) days -= 365 year += 1 days -= 366 year += 1 Weighted Path = Visited on Negative Test but not Positive Test year += 1 16

17 year=1980 while (days>365) printf(... year) if (isleapyear) Mutation For Zune Bug Repair (1/2) if (days>366) days -= 365 year += 1 days -= 366 year += 1 17

18 year=1980 while (days>365) printf(... year) if (isleapyear) Mutation For Zune Bug Repair (2/2) if (days>366) days -= 365 year += 1 days -= 366 year += 1 days -=

19 year=1980 while (days>365) printf(... year) if (isleapyear) Final Repair For Zune Bug if (days>366) days -= 365 year += 1 days -= 366 year += 1 days -=

20 Evolution of Zune Repair (5 normal test cases weighing 1 each, 2 buggy test cases weighing 10 each) 20

21 Minimize The Repair Repair Patch is a diff between orig and variant Random mutations may add unneeded stmts (e.g., dead code, redundant computation) In essence: try removing each line in the diff and check if the result still passes all tests Delta Debugging finds a 1-minimal subset of the diff in O(n 2 ) time Removing any single line causes a test to fail We use a tree-structured diff algorithm (diffx) Avoids problems with balanced curly braces, etc. 21

22 Experimental Results Program LOC Path # Fitness Bug wu-ftpd Format string vulnerability php string.c Integer overflow atris local stack buffer overflow flex Segfault lighttpd fastcgi.c Remote heap buffer overflow indent Infinite loop openldap io.c Non-overflow denial of service nullhttpd Remote heap buffer overflow deroff Segfault Average repair time: 313 seconds. Average minimization time: 12 seconds. Total: 15 repaired programs, over 140,000 lines of code. 22

23 Scalability 23

24 Repair Quality Repairs are typically not what a human would have done Example: our technique adds bounds checks to one particular network read, rather than refactoring to use a safe abstract string class in multiple places Recall: any proposed repair must pass all regression test cases When POST test is omitted from nullhttpd, the generated repair eliminates POST functionality Tests ensure we do not sacrifice functionality Minimization prevents gratuitous deletions Adding more tests helps rather than hurting 24

25 Repair Quality, Self-Healing In an ecommerce/security setting, a high quality repair is one that blocks a security vulnerability without reducing transactional throughput Integrate with an anomaly detection system When ADS flags a request, treat it as the buggy test case and initiate repair Danger Will Robinson: this can be done without humans in the loop! 25

26 Experimental Setup Obtain indicative workloads Apply the workload to a vanilla server Speed up workload until server drops additional requests Send known attack packet: ADS flags it Take server down during repair, apply repair, restart server Measure throughput after applying repair 26

27 Experimental Results HTTP workload: 138k requests from 12k IPs over 14 hours; PHP workload similar Success = correct output delivered to client before client starts next request in workload 27

28 Experimental Results HTTP workload: 138k requests from 12k IPs over 14 hours; PHP workload similar Success = correct output delivered to client before client starts next request in workload 28

29 Technique Limitations Can only handle deterministic faults No multithreaded code or race conditions, etc. Long term: put scheduler constraints into the variant representation. Assumes bug test case visits different lines than normal test cases Assumes existing statements can form repair Current work: repair templates Hand-crafted and mined from CVS repositories 29

30 Conclusions We can automatically and efficiently repair off-the-shelf legacy programs. Around 15 programs totaling 140kloc in about 6 minutes each, on average We use regression tests to encode desired behavior. Normal tests encode required behavior The genetic programming search focuses attention on parts of the program visited during the bug but not visited during passed test cases. 30

31 Questions I encourage difficult questions. 31

32 Bonus Slide: Test Cases 32

Automatically Finding Patches Using Genetic Programming

Automatically Finding Patches Using Genetic Programming Automatically Finding Patches Using Genetic Programming Westley Weimer, Stephanie Forrest, Claire Le Goues, ThanVu Nguyen, Ethan Fast, Briana Satchell, Eric Schulte Motivation Software Quality remains

More information

Using Execution Paths to Evolve Software Patches

Using Execution Paths to Evolve Software Patches Using Execution Paths to Evolve Software Patches ThanhVu Nguyen*, Westley Weimer**, Claires Le Gouges**, Stephanie Forrest* * University of New Mexico ** University of Virginia Tuesday, March 31, 2009

More information

Fixing software bugs in 10 minutes or less using evolutionary computation

Fixing software bugs in 10 minutes or less using evolutionary computation Fixing software bugs in 10 minutes or less using evolutionary computation University of New Mexico Stephanie Forrest ThanhVu Nguyen University of Virginia Claire Le Goues Westley Weimer Summary of method

More information

AUTOMATIC PROGRAM REPAIR USING GENETIC PROGRAMMING

AUTOMATIC PROGRAM REPAIR USING GENETIC PROGRAMMING AUTOMATIC PROGRAM REPAIR USING GENETIC PROGRAMMING CLAIRE LE GOUES APRIL 22, 2013 http://www.clairelegoues.com 1 GENPROG STOCHASTIC SEARCH + TEST CASE GUIDANCE = AUTOMATIC, EXPRESSIVE, SCALABLE PATCH GENERATION

More information

Automated Program Repair

Automated Program Repair #1 Automated Program Repair Motivation Software maintenance is expensive Up to 90% of the cost of software [Seacord] Up to $70 Billion per year in US [Jorgensen, Sutherland] Bug repair is the majority

More information

A Systematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each

A Systematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each A Systematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each Claire Le Goues (Virginia), Michael Dewey-Vogt (Virginia), Stephanie Forrest (New Mexico), Westley Weimer (Virginia)

More information

Automatically Finding Patches Using Genetic Programming

Automatically Finding Patches Using Genetic Programming Automatically Finding Patches Using Genetic Programming Authors: Westley Weimer, ThanhVu Nguyen, Claire Le Goues, Stephanie Forrest Presented by: David DeBonis, Qi Lu, Shuang Yang Department of Computer

More information

CAREER: Scalable and Trustworthy Automatic Program Repair A fundamental challenge for computer scientists over the next decade is to produce and

CAREER: Scalable and Trustworthy Automatic Program Repair A fundamental challenge for computer scientists over the next decade is to produce and CAREER: Scalable and Trustworthy Automatic Program Repair A fundamental challenge for computer scientists over the next decade is to produce and maintain systems that have fewer defects and are more resilience

More information

Automatically Finding Patches Using Genetic Programming

Automatically Finding Patches Using Genetic Programming Automatically Finding Patches Using Genetic Programming Westley Weimer University of Virginia weimer@virginia.edu ThanhVu Nguyen University of New Mexico tnguyen@cs.unm.edu Claire Le Goues University of

More information

Automa'c, Efficient, and General Repair of So8ware Defects using Lightweight Program Analyses

Automa'c, Efficient, and General Repair of So8ware Defects using Lightweight Program Analyses Automa'c, Efficient, and General Repair of So8ware Defects using Lightweight Program Analyses Disserta'on Proposal Claire Le Goues September 22, 2010 So8ware Errors Are Expensive Everyday, almost 300 bugs

More information

Introduction to Scientific Modeling CS 365, Fall Semester, 2011 Genetic Algorithms

Introduction to Scientific Modeling CS 365, Fall Semester, 2011 Genetic Algorithms Introduction to Scientific Modeling CS 365, Fall Semester, 2011 Genetic Algorithms Stephanie Forrest http://cs.unm.edu/~forrest/classes/cs365 forrest@cs.unm.edu 505-277-7104 Genetic Algorithms" Principles

More information

Trusted Software Repair for System Resiliency. Westley Weimer, Stephanie Forrest, Miryung Kim, Claire Le Goues, Patrick Hurley

Trusted Software Repair for System Resiliency. Westley Weimer, Stephanie Forrest, Miryung Kim, Claire Le Goues, Patrick Hurley Trusted Software Repair for System Resiliency, Stephanie Forrest, Miryung Kim, Claire Le Goues, Patrick Hurley For The Next 17 Minutes Program Repair: Resilient but Untrusted Can we assess post-repair

More information

SemFix: Program Repair via Semantic Analysis. Ye Wang, PhD student Department of Computer Science Virginia Tech

SemFix: Program Repair via Semantic Analysis. Ye Wang, PhD student Department of Computer Science Virginia Tech SemFix: Program Repair via Semantic Analysis Ye Wang, PhD student Department of Computer Science Virginia Tech Problem Statement Debugging takes much time and effort Even after root cause of a bug is identified,

More information

Representations and Operators for Improving Evolutionary Software Repair

Representations and Operators for Improving Evolutionary Software Repair Representations and Operators for Improving Evolutionary Software Repair Claire Le Goues University of Virginia Charlottesville, VA 22903 legoues@cs.virginia.edu Westley Weimer University of Virginia Charlottesville,

More information

A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs for $8 Each

A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs for $8 Each A Systematic Study of Automated Program Repair: Fixing 55 out of 105 bugs for $8 Each Claire Le Goues Michael Dewey-Vogt Computer Science Department University of Virginia Charlottesville, VA Email: legoues,mkd5m@cs.virginia.edu

More information

LEVERAGING LIGHTWEIGHT ANALYSES TO AID SOFTWARE MAINTENANCE ZACHARY P. FRY PHD PROPOSAL

LEVERAGING LIGHTWEIGHT ANALYSES TO AID SOFTWARE MAINTENANCE ZACHARY P. FRY PHD PROPOSAL LEVERAGING LIGHTWEIGHT ANALYSES TO AID SOFTWARE MAINTENANCE ZACHARY P. FRY PHD PROPOSAL MAINTENANCE COSTS For persistent systems, software maintenance can account for up to 90% of the software lifecycle

More information

Repair & Refactoring

Repair & Refactoring S C I E N C E P A S S I O N T E C H N O L O G Y Repair & Refactoring Birgit Hofer Institute for Software Technology 1 u www.tugraz.at Outline Model-based Software Debugging o Traffic Light Example Repair

More information

Automatically Repairing Concurrency Bugs with ARC MUSEPAT 2013 Saint Petersburg, Russia

Automatically Repairing Concurrency Bugs with ARC MUSEPAT 2013 Saint Petersburg, Russia Automatically Repairing Concurrency Bugs with ARC MUSEPAT 2013 Saint Petersburg, Russia David Kelk, Kevin Jalbert, Jeremy S. Bradbury Faculty of Science (Computer Science) University of Ontario Institute

More information

Automated Program Repair through the Evolution of Assembly Code

Automated Program Repair through the Evolution of Assembly Code Automated Program Repair through the Evolution of Assembly Code Eric Schulte University of New Mexico 08 August 2010 1 / 26 Introduction We present a method of automated program repair through the evolution

More information

DynaMoth: Dynamic Code Synthesis for Automatic Program Repair

DynaMoth: Dynamic Code Synthesis for Automatic Program Repair DynaMoth: Dynamic Code Synthesis for Automatic Program Repair AST 2016 Thomas Durieux & Martin Monperrus March 6, 2017 Inria & University of Lille Automatic test-suite based repair DynaMoth is an automatic

More information

Program Synthesis. SWE 795, Spring 2017 Software Engineering Environments

Program Synthesis. SWE 795, Spring 2017 Software Engineering Environments Program Synthesis SWE 795, Spring 2017 Software Engineering Environments Today HW3 is due next week in class! Part 1 (Lecture)(~50 mins) Break! Part 2 (Discussion)(~60 mins) Discussion of readings Part

More information

Verification & Validation of Open Source

Verification & Validation of Open Source Verification & Validation of Open Source 2011 WORKSHOP ON SPACECRAFT FLIGHT SOFTWARE Gordon Uchenick Coverity, Inc Open Source is Ubiquitous Most commercial and proprietary software systems have some open

More information

Software Security IV: Fuzzing

Software Security IV: Fuzzing 1 Software Security IV: Fuzzing Chengyu Song Slides modified from Dawn Song 2 Administrivia Homework1 Due: Friday Oct 27 11:59pm Questions regarding reading materials Talk Security R&D in a Security Company:

More information

Genetic Programming for Julia: fast performance and parallel island model implementation

Genetic Programming for Julia: fast performance and parallel island model implementation Genetic Programming for Julia: fast performance and parallel island model implementation Morgan R. Frank November 30, 2015 Abstract I introduce a Julia implementation for genetic programming (GP), which

More information

arxiv: v1 [cs.se] 25 Mar 2014

arxiv: v1 [cs.se] 25 Mar 2014 Do the Fix Ingredients Already Exist? An Empirical Inquiry into the Redundancy Assumptions of Program Repair Approaches Matias Martinez Westley Weimer Martin Monperrus University of Lille & INRIA, France

More information

Leveraging Program Equivalence for Adaptive Program Repair: Models and First Results. Westley Weimer, UVA Zachary P. Fry, UVA Stephanie Forrest, UNM

Leveraging Program Equivalence for Adaptive Program Repair: Models and First Results. Westley Weimer, UVA Zachary P. Fry, UVA Stephanie Forrest, UNM Leveraging Program Equivalence for Adaptive Program Repair: Models and First Results Westley Weimer, UVA Zachary P. Fry, UVA Stephanie Forrest, UNM Automated Program Repair Given a program, a notion of

More information

CSCE150A. Introduction. While Loop. Compound Assignment. For Loop. Loop Design. Nested Loops. Do-While Loop. Programming Tips CSCE150A.

CSCE150A. Introduction. While Loop. Compound Assignment. For Loop. Loop Design. Nested Loops. Do-While Loop. Programming Tips CSCE150A. Chapter 5 While For 1 / 54 Computer Science & Engineering 150A Problem Solving Using Computers Lecture 05 - s Stephen Scott (Adapted from Christopher M. Bourke) Fall 2009 While For 2 / 54 5.1 Repetition

More information

Combining Bug Detection and Test Case Generation

Combining Bug Detection and Test Case Generation Combining Bug Detection and Test Case Generation Martin Kellogg University of Washington, USA kelloggm@cs.washington.edu ABSTRACT Detecting bugs in software is an important software engineering activity.

More information

Computer Science & Engineering 150A Problem Solving Using Computers. Chapter 5. Repetition in Programs. Notes. Notes. Notes. Lecture 05 - Loops

Computer Science & Engineering 150A Problem Solving Using Computers. Chapter 5. Repetition in Programs. Notes. Notes. Notes. Lecture 05 - Loops Computer Science & Engineering 150A Problem Solving Using Computers Lecture 05 - Loops Stephen Scott (Adapted from Christopher M. Bourke) 1 / 1 Fall 2009 cbourke@cse.unl.edu Chapter 5 5.1 Repetition in

More information

Differential program verification

Differential program verification Differential program verification Shuvendu K. Lahiri Research in Software Engineering (RiSE), Microsoft Research Redmond, WA Involved in building static assertion checkers HAVOC [POPL 06, 08, 09, CAV 09,

More information

WHY TEST SOFTWARE?...

WHY TEST SOFTWARE?... 2 At a glance 1 PREFACE... 3 2 AT A GLANCE... 5 3 TABLE OF CONTENTS... 9 4 INTRODUCTION... 17 5 WHY TEST SOFTWARE?... 19 5.1 WHY TEST SOFTWARE?... 19 5.2 LIMITATIONS OF TESTING... 20 5.3 ALTERNATIVE TO

More information

The Evolution of System-call Monitoring

The Evolution of System-call Monitoring The Evolution of System-call Monitoring Stephanie Forrest Steven Hofmeyr Anil Somayaji December, 2008 Outline of Talk A sense of self for Unix processes (Review) Emphasize method rather than results Evolutionary

More information

An Unsystematic Review of Genetic Improvement. David R. White University of Glasgow UCL Crest Open Workshop, Jan 2016

An Unsystematic Review of Genetic Improvement. David R. White University of Glasgow UCL Crest Open Workshop, Jan 2016 An Unsystematic Review of Genetic Improvement David R. White University of Glasgow UCL Crest Open Workshop, Jan 2016 A Systematic Study of GI is currently under preparation. Justyna Petke Mark Harman Bill

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 16: Building Secure Software Department of Computer Science and Engineering University at Buffalo 1 Review A large number of software vulnerabilities various

More information

Fuzzing. compass-security.com 1

Fuzzing. compass-security.com 1 Fuzzing compass-security.com 1 Fuzzing Finding bugs by bombarding target with nonconform data Think: Flip a few bits in a PDF, then start Acrobat with that PDF Just more automated Steps: Create input corpus

More information

Genetic-Algorithm-Based Construction of Load-Balanced CDSs in Wireless Sensor Networks

Genetic-Algorithm-Based Construction of Load-Balanced CDSs in Wireless Sensor Networks Genetic-Algorithm-Based Construction of Load-Balanced CDSs in Wireless Sensor Networks Jing He, Shouling Ji, Mingyuan Yan, Yi Pan, and Yingshu Li Department of Computer Science Georgia State University,

More information

Motivation. Overview. Scalable Dynamic Analysis for Automated Fault Location and Avoidance. Rajiv Gupta. Program Execution

Motivation. Overview. Scalable Dynamic Analysis for Automated Fault Location and Avoidance. Rajiv Gupta. Program Execution Motivation Scalable Dynamic Analysis for Automated Fault Location and Avoidance Rajiv Gupta Funded by NSF grants from CPA, CSR, & CRI programs and grants from Microsoft Research Software bugs cost the

More information

Root Cause Analysis for HTML Presentation Failures using Search-Based Techniques

Root Cause Analysis for HTML Presentation Failures using Search-Based Techniques Root Cause Analysis for HTML Presentation Failures using Search-Based Techniques Sonal Mahajan, Bailan Li, William G.J. Halfond Department of Computer Science University of Southern California What is

More information

Software Vulnerability

Software Vulnerability Software Vulnerability Refers to a weakness in a system allowing an attacker to violate the integrity, confidentiality, access control, availability, consistency or audit mechanism of the system or the

More information

REPAIRING PROGRAMS WITH SEMANTIC CODE SEARCH. Yalin Ke Kathryn T. Stolee Claire Le Goues Yuriy Brun

REPAIRING PROGRAMS WITH SEMANTIC CODE SEARCH. Yalin Ke Kathryn T. Stolee Claire Le Goues Yuriy Brun REPAIRING PROGRAMS WITH SEMANTIC CODE SEARCH Yalin Ke Kathryn T. Stolee Claire Le Goues Yuriy Brun Iowa State Iowa State Carnegie Mellon UMass Amherst 1 Input: buggy program, tests Output: fixed program

More information

Survey of Cyber Moving Targets. Presented By Sharani Sankaran

Survey of Cyber Moving Targets. Presented By Sharani Sankaran Survey of Cyber Moving Targets Presented By Sharani Sankaran Moving Target Defense A cyber moving target technique refers to any technique that attempts to defend a system and increase the complexity of

More information

Overview AEG Conclusion CS 6V Automatic Exploit Generation (AEG) Matthew Stephen. Department of Computer Science University of Texas at Dallas

Overview AEG Conclusion CS 6V Automatic Exploit Generation (AEG) Matthew Stephen. Department of Computer Science University of Texas at Dallas CS 6V81.005 Automatic Exploit Generation (AEG) Matthew Stephen Department of Computer Science University of Texas at Dallas February 20 th, 2012 Outline 1 Overview Introduction Considerations 2 AEG Challenges

More information

Fault Isolation for Device Drivers

Fault Isolation for Device Drivers Fault Isolation for Device Drivers 39 th International Conference on Dependable Systems and Networks, 30 June 2009, Estoril Lisbon, Portugal Jorrit N. Herder Vrije Universiteit Amsterdam ~26% of Windows

More information

CSC 405 Introduction to Computer Security Fuzzing

CSC 405 Introduction to Computer Security Fuzzing CSC 405 Introduction to Computer Security Fuzzing Alexandros Kapravelos akaprav@ncsu.edu Let s find some bugs (again) We have a potentially vulnerable program The program has some inputs which can be controlled

More information

ASTOR: A Program Repair Library for Java

ASTOR: A Program Repair Library for Java ASTOR: A Program Repair Library for Java Matias Martinez University of Lugano, Switzerland Martin Monperrus University of Lille & Inria, France ABSTRACT During the last years, the software engineering

More information

CS2141 Software Development using C/C++ Debugging

CS2141 Software Development using C/C++ Debugging CS2141 Software Development using C/C++ Debugging Debugging Tips Examine the most recent change Error likely in, or exposed by, code most recently added Developing code incrementally and testing along

More information

Cyber Moving Targets. Yashar Dehkan Asl

Cyber Moving Targets. Yashar Dehkan Asl Cyber Moving Targets Yashar Dehkan Asl Introduction An overview of different cyber moving target techniques, their threat models, and their technical details. Cyber moving target technique: Defend a system

More information

Overview. Concepts this lecture String constants Null-terminated array representation String library <strlib.h> String initializers Arrays of strings

Overview. Concepts this lecture String constants Null-terminated array representation String library <strlib.h> String initializers Arrays of strings CPE 101 slides based on UW course Lecture 19: Strings Overview Concepts this lecture String constants ull-terminated array representation String library String initializers Arrays of strings

More information

Secure Software Development: Theory and Practice

Secure Software Development: Theory and Practice Secure Software Development: Theory and Practice Suman Jana MW 2:40-3:55pm 415 Schapiro [SCEP] *Some slides are borrowed from Dan Boneh and John Mitchell Software Security is a major problem! Why writing

More information

"Secure" Coding Practices Nicholas Weaver

Secure Coding Practices Nicholas Weaver "Secure" Coding Practices based on David Wagner s slides from Sp 2016 1 Administrivia Computer Science 161 Fall 2016 2 3 This is a Remarkably Typical C Problem Computer Science 161 Fall 2016 if ((options

More information

EasyChair Preprint. A Study on the Use of IDE Features for Debugging

EasyChair Preprint. A Study on the Use of IDE Features for Debugging EasyChair Preprint 111 A Study on the Use of IDE Features for Debugging Afsoon Afzal and Claire Le Goues EasyChair preprints are intended for rapid dissemination of research results and are integrated

More information

Hugbúnaðarverkefni 2 - Static Analysis

Hugbúnaðarverkefni 2 - Static Analysis vulnerability/veila buffer overflow/yfirflæði biðminnis Server down? Again! Hugbúnaðarverkefni 2 - Static Analysis Fyrirlestrar 15 & 16 Buffer overflow vulnerabilities safe? safe? C code 11/02/2008 Dr

More information

Static Analysis of C++ Projects with CodeSonar

Static Analysis of C++ Projects with CodeSonar Static Analysis of C++ Projects with CodeSonar John Plaice, Senior Scientist, GrammaTech jplaice@grammatech.com 25 July 2017, Meetup C++ de Montréal Abstract Static program analysis consists of the analysis

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 15: Software Security II Department of Computer Science and Engineering University at Buffalo 1 Software Vulnerabilities Buffer overflow vulnerabilities account

More information

SoK: Eternal War in Memory

SoK: Eternal War in Memory SoK: Eternal War in Memory László Szekeres, Mathias Payer, Tao Wei, Dawn Song Presenter: Wajih 11/7/2017 Some slides are taken from original S&P presentation 1 What is SoK paper? Systematization of Knowledge

More information

Genetic Programming Prof. Thomas Bäck Nat Evur ol al ut ic o om nar put y Aling go rg it roup hms Genetic Programming 1

Genetic Programming Prof. Thomas Bäck Nat Evur ol al ut ic o om nar put y Aling go rg it roup hms Genetic Programming 1 Genetic Programming Prof. Thomas Bäck Natural Evolutionary Computing Algorithms Group Genetic Programming 1 Genetic programming The idea originated in the 1950s (e.g., Alan Turing) Popularized by J.R.

More information

ADVANCED DIGITAL IC DESIGN. Digital Verification Basic Concepts

ADVANCED DIGITAL IC DESIGN. Digital Verification Basic Concepts 1 ADVANCED DIGITAL IC DESIGN (SESSION 6) Digital Verification Basic Concepts Need for Verification 2 Exponential increase in the complexity of ASIC implies need for sophisticated verification methods to

More information

Outline. Classic races: files in /tmp. Race conditions. TOCTTOU example. TOCTTOU gaps. Vulnerabilities in OS interaction

Outline. Classic races: files in /tmp. Race conditions. TOCTTOU example. TOCTTOU gaps. Vulnerabilities in OS interaction Outline CSci 5271 Introduction to Computer Security Day 3: Low-level vulnerabilities Stephen McCamant University of Minnesota, Computer Science & Engineering Race conditions Classic races: files in /tmp

More information

Efficient Search for Inputs Causing High Floating-point Errors

Efficient Search for Inputs Causing High Floating-point Errors Efficient Search for Inputs Causing High Floating-point Errors Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamarić, and Alexey Solovyev University of Utah Presented by Yuting Chen February 22, 2015

More information

Neutral Networks of Real-World Programs and their Application to Automated Software Evolution

Neutral Networks of Real-World Programs and their Application to Automated Software Evolution University of New Mexico UNM Digital Repository Computer Science ETDs Engineering ETDs 7-1-2014 Neutral Networks of Real-World Programs and their Application to Automated Software Evolution Eric Schulte

More information

Automatically Repairing Broken Workflows for Evolving GUI Applications

Automatically Repairing Broken Workflows for Evolving GUI Applications Automatically Repairing Broken Workflows for Evolving GUI Applications Sai Zhang University of Washington Joint work with: Hao Lü, Michael D. Ernst End-user s workflow A workflow = A sequence of UI actions

More information

My other computer is YOURS!

My other computer is YOURS! Octet-based encoding example Here is a DER encoding of the following definition: Person ::= SEQUENCE { first UTF8String, last UTF8String } myself ::= Person { first "Nathanael", last "COTTIN" } Octet-based

More information

Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset

Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on the Defects4J Dataset Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, Martin Monperrus 1 Automatic Software Repair Automatic

More information

Automating Test Driven Development with Grammatical Evolution

Automating Test Driven Development with Grammatical Evolution http://excel.fit.vutbr.cz Automating Test Driven Development with Grammatical Evolution Jan Svoboda* Abstract Test driven development is a widely used process of creating software products with automated

More information

THE ROAD NOT TAKEN. Estimating Path Execution Frequency Statically. ICSE 2009 Vancouver, BC. Ray Buse Wes Weimer

THE ROAD NOT TAKEN. Estimating Path Execution Frequency Statically. ICSE 2009 Vancouver, BC. Ray Buse Wes Weimer ICSE 2009 Vancouver, BC Ray Buse Wes Weimer THE ROAD NOT TAKEN Estimating Path Execution Frequency Statically The Big Idea 2 Developers often have a expectations about common and uncommon cases in programs

More information

IntFlow: Integer Error Handling With Information Flow Tracking

IntFlow: Integer Error Handling With Information Flow Tracking mpomonis@cs.columbia.edu IntFlow Columbia University 1 / 29 IntFlow: Integer Error Handling With Information Flow Tracking Marios Pomonis Theofilos Petsios Kangkook Jee Michalis Polychronakis Angelos D.

More information

University of Oxford / Automatic Heap Layout Manipulation - Sean Heelan 1

University of Oxford   / Automatic Heap Layout Manipulation - Sean Heelan 1 Automatic Heap Layout Manipulation Sean Heelan University of Oxford https://sean.heelan.io /@seanhn / sean@vertex.re Automatic Heap Layout Manipulation - Sean Heelan 1 About Me Automatic Heap Layout Manipulation

More information

Static Analysis in Practice

Static Analysis in Practice in Practice 15-313: Foundations of Software Engineering Jonathan Aldrich 1 Outline: in Practice Case study: Analysis at ebay Case study: Analysis at Microsoft Analysis Results and Process Example: Standard

More information

arxiv: v1 [cs.se] 22 Feb 2018

arxiv: v1 [cs.se] 22 Feb 2018 Investigating the Evolvability of Web Page Load Time arxiv:1803.01683v1 [cs.se] 22 Feb 2018 Brendan Cody-Kenny 1, Umberto Manganiello 2, John Farrelly 2, Adrian Ronayne 2, Eoghan Considine 2, Thomas McGuire

More information

Mutations for Permutations

Mutations for Permutations Mutations for Permutations Insert mutation: Pick two allele values at random Move the second to follow the first, shifting the rest along to accommodate Note: this preserves most of the order and adjacency

More information

Betriebssysteme und Sicherheit Sicherheit. Buffer Overflows

Betriebssysteme und Sicherheit Sicherheit. Buffer Overflows Betriebssysteme und Sicherheit Sicherheit Buffer Overflows Software Vulnerabilities Implementation error Input validation Attacker-supplied input can lead to Corruption Code execution... Even remote exploitation

More information

Other array problems. Integer overflow. Outline. Integer overflow example. Signed and unsigned

Other array problems. Integer overflow. Outline. Integer overflow example. Signed and unsigned Other array problems CSci 5271 Introduction to Computer Security Day 4: Low-level attacks Stephen McCamant University of Minnesota, Computer Science & Engineering Missing/wrong bounds check One unsigned

More information

Genetic Improvement Programming

Genetic Improvement Programming Genetic Improvement Programming W. B. Langdon Centre for Research on Evolution, Search and Testing Computer Science, UCL, London GISMOE: Genetic Improvement of Software for Multiple Objectives 16.10.2013

More information

Undefined Behaviour in C

Undefined Behaviour in C Undefined Behaviour in C Report Field of work: Scientific Computing Field: Computer Science Faculty for Mathematics, Computer Science and Natural Sciences University of Hamburg Presented by: Dennis Sobczak

More information

Cooperative Bug Isolation

Cooperative Bug Isolation Cooperative Bug Isolation Alex Aiken Mayur Naik Stanford University Alice Zheng Michael Jordan UC Berkeley Ben Liblit University of Wisconsin Build and Monitor Alex Aiken, Cooperative Bug Isolation 2 The

More information

Software Security II: Memory Errors - Attacks & Defenses

Software Security II: Memory Errors - Attacks & Defenses 1 Software Security II: Memory Errors - Attacks & Defenses Chengyu Song Slides modified from Dawn Song 2 Administrivia Lab1 Writeup 3 Buffer overflow Out-of-bound memory writes (mostly sequential) Allow

More information

Constructing an Optimisation Phase Using Grammatical Evolution. Brad Alexander and Michael Gratton

Constructing an Optimisation Phase Using Grammatical Evolution. Brad Alexander and Michael Gratton Constructing an Optimisation Phase Using Grammatical Evolution Brad Alexander and Michael Gratton Outline Problem Experimental Aim Ingredients Experimental Setup Experimental Results Conclusions/Future

More information

Memory Safety (cont d) Software Security

Memory Safety (cont d) Software Security Memory Safety (cont d) Software Security CS 161: Computer Security Prof. Raluca Ada Popa January 17, 2016 Some slides credit to David Wagner and Nick Weaver Announcements Discussion sections and office

More information

Collaborative Intrusion Detection System : A Framework for Accurate and Efficient IDS. Outline

Collaborative Intrusion Detection System : A Framework for Accurate and Efficient IDS. Outline Collaborative Intrusion Detection System : A Framework for Accurate and Efficient IDS Yu-Sung Wu, Bingrui Foo, Yongguo Mei, Saurabh Bagchi Dependable Computing Systems Lab School of Electrical and Computer

More information

Lecture 4 September Required reading materials for this class

Lecture 4 September Required reading materials for this class EECS 261: Computer Security Fall 2007 Lecture 4 September 6 Lecturer: David Wagner Scribe: DK Moon 4.1 Required reading materials for this class Beyond Stack Smashing: Recent Advances in Exploiting Buffer

More information

N-Variant SystemsA Secretless Framework for Security through. Diversity Cox et al.

N-Variant SystemsA Secretless Framework for Security through. Diversity Cox et al. N-Variant Systems A Secretless Framework for Security through Diversity Cox et al. The problem Software homogeneity makes the process of leveraging a known exploit easy. Some solutions Address space randomization

More information

EECS 481 Software Engineering Exam #1. You have 1 hour and 20 minutes to work on the exam.

EECS 481 Software Engineering Exam #1. You have 1 hour and 20 minutes to work on the exam. EECS 481 Software Engineering Exam #1 Write your name and UM uniqname on the exam. There are ten (10) pages in this exam (including this one) and seven (7) questions, each with multiple parts. Some questions

More information

CSE 565 Computer Security Fall 2018

CSE 565 Computer Security Fall 2018 CSE 565 Computer Security Fall 2018 Lecture 14: Software Security Department of Computer Science and Engineering University at Buffalo 1 Software Security Exploiting software vulnerabilities is paramount

More information

KLEE Workshop Feeding the Fuzzers. with KLEE. Marek Zmysłowski MOBILE SECURITY TEAM R&D INSTITUTE POLAND

KLEE Workshop Feeding the Fuzzers. with KLEE. Marek Zmysłowski MOBILE SECURITY TEAM R&D INSTITUTE POLAND Feeding the Fuzzers with KLEE Marek Zmysłowski MOBILE SECURITY TEAM R&D INSTITUTE POLAND This presentation was created with help and commitment of the Samsung R&D Poland Mobile Security team. KLEE and

More information

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Tony Maciejewski, Kyle Tarplee, Ryan Friese, and Howard Jay Siegel Department of Electrical and Computer Engineering Colorado

More information

Lecture 1: Buffer Overflows

Lecture 1: Buffer Overflows CS5431 Computer Security Practicum Spring 2017 January 27, 2017 1 Conficker Lecture 1: Buffer Overflows Instructor: Eleanor Birrell In November 2008, a new piece of malware was observed in the wild. This

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 15 Testing

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 15 Testing CSE 374 Programming Concepts & Tools Hal Perkins Fall 2015 Lecture 15 Testing Where we are Some very basic software engineering topics in the midst of tools Today: testing (how, why, some terms) Later:

More information

Homework # 7 Distributed Computing due Saturday, December 13th, 2:00 PM

Homework # 7 Distributed Computing due Saturday, December 13th, 2:00 PM Homework # 7 Distributed Computing due Saturday, December 13th, 2:00 PM In this homework you will add code to permit a calendar to be served to clients, and to open a calendar on a remote server. You will

More information

An Analysis of Patch Plausibility and Correctness for Generate-And-Validate Patch Generation Systems

An Analysis of Patch Plausibility and Correctness for Generate-And-Validate Patch Generation Systems An Analysis of Patch Plausibility and Correctness for Generate-And-Validate Patch Generation Systems Zichao Qi, Fan Long, Sara Achour, and Martin Rinard MIT EECS & CSAIL {zichaoqi, fanl, sarachour, rinard}@csail.mit.edu

More information

Scaling up: How we made millions of domains happier. Tom Arnfeld, DNS Engineer Pavel Odintsov, DNS Engineer

Scaling up: How we made millions of domains happier. Tom Arnfeld, DNS Engineer Pavel Odintsov, DNS Engineer Scaling up: How we made millions of domains happier Tom Arnfeld, DNS Engineer Pavel Odintsov, DNS Engineer Cloudflare DNS Services Authoritative DNS IPv4 and IPv6 support Low latency propagation DNSSEC

More information

SourcererCC -- Scaling Code Clone Detection to Big-Code

SourcererCC -- Scaling Code Clone Detection to Big-Code SourcererCC -- Scaling Code Clone Detection to Big-Code What did this paper do? SourcererCC a token-based clone detector, that can detect both exact and near-miss clones from large inter project repositories

More information

A program execution is memory safe so long as memory access errors never occur:

A program execution is memory safe so long as memory access errors never occur: A program execution is memory safe so long as memory access errors never occur: Buffer overflows, null pointer dereference, use after free, use of uninitialized memory, illegal free Memory safety categories

More information

Evaluating Bug Finders

Evaluating Bug Finders Evaluating Bug Finders Test and Measurement of Static Code Analyzers Aurelien DELAITRE Bertrand STIVALET http://samate.nist.gov ICSE - COUFLESS 2015 May 23, 2015 Authors Aurelien DELAITRE West Virginia

More information

On-Demand Proactive Defense against Memory Vulnerabilities

On-Demand Proactive Defense against Memory Vulnerabilities On-Demand Proactive Defense against Memory Vulnerabilities Gang Chen, Hai Jin, Deqing Zou, and Weiqi Dai Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science

More information

Buffer overflow prevention, and other attacks

Buffer overflow prevention, and other attacks Buffer prevention, and other attacks Comp Sci 3600 Security Outline 1 2 Two approaches to buffer defense Aim to harden programs to resist attacks in new programs Run time Aim to detect and abort attacks

More information

Statically Detecting Likely Buffer Overflow Vulnerabilities

Statically Detecting Likely Buffer Overflow Vulnerabilities Statically Detecting Likely Buffer Overflow Vulnerabilities David Larochelle and David Evans USENIX'01 David Larochelle and David Evans IEEE Software Jan/Feb 2002 Presented by Adam Polyak 30.03.2014 Outline

More information

Simple Overflow. #include <stdio.h> int main(void){ unsigned int num = 0xffffffff;

Simple Overflow. #include <stdio.h> int main(void){ unsigned int num = 0xffffffff; Simple Overflow 1 #include int main(void){ unsigned int num = 0xffffffff; printf("num is %d bits long\n", sizeof(num) * 8); printf("num = 0x%x\n", num); printf("num + 1 = 0x%x\n", num + 1); }

More information

We will focus on Buffer overflow attacks SQL injections. See book for other examples

We will focus on Buffer overflow attacks SQL injections. See book for other examples We will focus on Buffer overflow attacks SQL injections See book for other examples Buffer overrun is another common term Buffer Overflow A condition at an interface under which more input can be placed

More information

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging

Outline. Computer programming. Debugging. What is it. Debugging. Hints. Debugging Outline Computer programming Debugging Hints Gathering evidence Common C errors "Education is a progressive discovery of our own ignorance." Will Durant T.U. Cluj-Napoca - Computer Programming - lecture

More information

Last week. Data on the stack is allocated automatically when we do a function call, and removed when we return

Last week. Data on the stack is allocated automatically when we do a function call, and removed when we return Last week Data can be allocated on the stack or on the heap (aka dynamic memory) Data on the stack is allocated automatically when we do a function call, and removed when we return f() {... int table[len];...

More information