Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7

Size: px
Start display at page:

Download "Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7"

Transcription

1 Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc. TEST PREPARATION PROBLEMS 1. f(x,y) = 3x 2 y +5xy 3 f x = 6xy +5y 3 f y = 3x 2 +15xy 2 f xx = 6y f xy = 6x+15y 2 f yx = 6x+15y 2 f yy = +30xy 3. f(x,y) = (x+y) 3 f x = 3(x+y) 2 f y = 3(x+y) 2 f xx = 6(x+y) f xy = 6(x+y) f yx = 6(x+y) f yy = 6(x+y) 5. f(x,y) = e 2xy f x = e 2xy 2y f y = e 2xy 2x f xx = e 2xy (2y)(2y) f xy = e 2xy (2y)(2x)+e 2xy (2) f yx = e 2xy (2x)(2y)+e 2xy (2) f yy = e 2xy (2x)(2x) 1

2 9. f(x,y) = sin(x 2 +y 2 ) f x = cos(x 2 +y 2 )2x f y = cos(x 2 +y 2 )2y f xx = sin(x 2 +y 2 )(2x)(2x) +cos(x 2 +y 2 )(2) f xy = sin(x 2 +y 2 )(2y)(2x) f yx = sin(x 2 +y 2 )(2y)(2x) f yy = sin(x 2 +y 2 )(2y)(2y) +cos(x 2 +y 2 )(2) 10. f(x,y) = 3sin(2x)cos(5y) f x = 6cos(2x)cos(5y) f y = 15sin(2x)sin(5y) f xx = 3sin(2x)(4)cos(5y) = 12sin(2x)cos(5y) f xy = 6cos(2x)( sin(5y))(5) = 30cos(2x)sin(5y) f yx = 15cos(2x)(2)sin(5y) = 30cos(2x)sin(5y) f yy = 15sin(2x)( cos(5y))(5) = 75sin(2x)cos(5y) 11. f(x,y) = (x y +1) 2 To compute the two-variable second-degree Taylor polynomial, we need all the first and second partial derivatives of f(x, y). f = (x y +1) 2 f(0,0) = 1 f x = 2(x y +1) f x (0,0) = 2 f y = 2(x y +1)( 1) f y (0,0) = 2 f xx = 2 f xx (0,0) = 2 f xy = 2 f xy (0,0) = 2 f yy = 2 f yy (0,0) = 2 Using the Taylor polynomial formula (which is an extension of our linearization/tangent plane formula), at the point (x,y) = (0,0), f(x,y) f(0,0)+f x (0,0)(x 0)+f y (0,0)(y 0) f xx(0,0)(x 0) 2 +f xy (0,0)(x 0)(y 0)+ 1 2 f yy(0,0)(y 0) 2 = 1+2x 2y x2 2xy = 1+2x 2y +x 2 2xy +y 2 2

3 Note that, because our original function was a quadratic in x and y, this Taylor approximation is exactly the same function we started with (try expanding (x y+1) 2 to see this). 15. f(x,y) = e x cos(y) f = e x cos(y) f(0,0) = 1 f x = e x cos(y) f x (0,0) = 1 f y = e x sin(y) f y (0,0) = 0 f xx = e x cos(y) f xx (0,0) = 1 f xy = e x sin(y) f xy (0,0) = 0 f yy = e x cos(y) f yy (0,0) = 1 Using the Taylor polynomial formula (which is an extension of our linearization/tangent plane formula), at the point (x,y) = (0,0), f(x,y) f(0,0)+f x (0,0)(x 0)+f y (0,0)(y 0) f xx(0,0)(x 0) 2 +f xy (0,0)(x 0)(y 0)+ 1 2 f yy(0,0)(y 0) 2 = 1+x+0y x2 0xy = 1+x+ 1 2 x2 1 2 y (a) f x (P) is positive. Moving to the right leads to higher contours. (b) f y (P) is zero. Moving upwards in y stays on the same contour. (c) f xx (P) is positive. x slope is positive (from (a)), and because the contours are getting closer, the positive slopes are getting steeper, so the slopes are increasing. (d) f yy (P) is zero. Slopes aren t changing at all in the y direction. Either the y slopes are always zero, so don t change when we increase x, or our x slopes are constant when we move in y. 3

4 (a) f x (P) is positive, since increasing x leads to higher contours. (b) f y (P) is zero (as with #19). (c) f xx (P) is negative, since the contours get further apart, so the positive slopes are getting less steep, or decreasing. (d) f yy (P) is zero (as with #19). (e) f xy (P) is zero (as with #19). 21. (a) f x (P) is negative, since increasing x leads to lower contours. (b) f y (P) is zero. (c) f xx (P) is negative. The contours are getting closer together, so negative slopes are getting more steep, so slopes are decreasing. (d) f yy (P) is zero. 22. (a) f x (P) is negative. (b) f y (P) is zero. (c) f xx (P) is positive. x slopes are negative, but getting less steep, so their numeric values are increasing. (d) f yy (P) is zero. 23. (a) f x (P) is zero. 4

5 (b) f y (P) is negative. Moving upwards in y leads to lower contours. (c) f xx (P) is zero. (d) f yy (P) is negative. Moving upwards in y gives steeper negative slopes. 24. (a) f x (P) is zero. (b) f y (P) is positive. (c) f xx (P) is zero. (d) f yy (P) is negative. Slopes are positive, but getting less steep as we move upwards in y. 25. (a) f x (P) is positive. Moving to the right leads to higher contours. (b) f y (P) is positive. Moving upwards in y leads to higher contours. (c) f xx (P) is zero. Contours are evenly spaced, so slopes aren t changing, so their rate of change is zero. (d) f yy (P) is zero. Contours are evenly spaced, so slopes aren t changing, so their rate of change is zero. Contours are evenly spaced, so slopes aren t changing, so their rate of change is zero. 26. (a) f x (P) is negative. 5

6 (b) f y (P) is negative. (c) f xx (P) is zero. Contours are evenly spaced, so slopes aren t changing. (d) f yy (P) is zero. 27. (a) f x (P) is positive. Moving right goes to higher contours. (b) f y (P) is negative. Moving upwards in y leads to lower contours. (c) f xx (P) is negative. x slopes are positive and getting flatter as we move right. (d) f yy (P) is negative. y slopes are negative and getting steeper as we move upwards. (e) f xy (P) is positive. Consider either the x slopes are positive and getting steeper as we move upwards (so the values of the slope are getting numerically larger), or the y slopes are negative and getting flatter as we move right (so going from large negative values closer to zero, or increasing). 28. (a) f x (P) is negative. (b) f y (P) is positive. (c) f xx (P) is positive. x slopes are negative and get flatter as we move to the right. (d) f yy (P) is positive. y slopes are positive and getting steeper. (e) f xy (P) is negative. Consider either x slopes, which are negative, get steeper as you move upwards, or the y slopes, which are positive, get flatter as you move to the right. 6

Limits and Continuity: section 12.2

Limits and Continuity: section 12.2 Limits and Continuity: section 1. Definition. Let f(x,y) be a function with domain D, and let (a,b) be a point in the plane. We write f (x,y) = L if for each ε > 0 there exists some δ > 0 such that if

More information

Unit #19 : Level Curves, Partial Derivatives

Unit #19 : Level Curves, Partial Derivatives Unit #19 : Level Curves, Partial Derivatives Goals: To learn how to use and interpret contour diagrams as a way of visualizing functions of two variables. To study linear functions of two variables. To

More information

y= sin( x) y= cos( x)

y= sin( x) y= cos( x) . The graphs of sin(x) and cos(x). Now I am going to define the two basic trig functions: sin(x) and cos(x). Study the diagram at the right. The circle has radius. The arm OP starts at the positive horizontal

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 016, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Unit #5 - Implicit Differentiation, Related Rates Section 3.7

Unit #5 - Implicit Differentiation, Related Rates Section 3.7 Unit #5 - Implicit Differentiation, Relate Rates Section 3.7 Some material from Calculus, Single an MultiVariable b Hughes-Hallett, Gleason, McCallum et. al. Copright 005 b John Wile & Sons, Inc. This

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

13.2 LIMITS AND CONTINUITY

13.2 LIMITS AND CONTINUITY 3.2 Limits and Continuity Contemporary Calculus 3.2 LIMITS AND CONTINUITY Our development of the properties and the calculus of functions z = f(x,y) of two (and more) variables parallels the development

More information

The Tangent Line as The Best Linear Approximation

The Tangent Line as The Best Linear Approximation The Tangent Line as The Best Linear Approximation Mark Howell Gonzaga High School Arlington, VA A tangent line to a curve, y f (x), at a point where x a has two important properties: it contains the point

More information

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore,

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore, 13.4. Curvature Curvature Let F(t) be a vector values function. We say it is regular if F (t)=0 Let F(t) be a vector valued function which is arclength parametrized, which means F t 1 for all t. Then,

More information

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes.

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes. Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) 11 February 2015 Today, We Will: Wrap-up our discussion of level curves and contour maps. Define partial derivatives of a function

More information

Partial Derivatives (Online)

Partial Derivatives (Online) 7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 1 CHAPTER 4 Partial Derivatives (Online) 4.7 Tangent Plane Approximations and Power Series It is often helpful to use a linear approximation

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 March 31, 2009 Problem 1. Let (a) f(x,y,z) = ln(z x 2 y 2 ). Evaluate f(1, 1, 2 + e). f(1, 1, 2 + e) = ln(2 + e 1 1) = lne = 1 (b) Find the domain of f. dom(f)

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Answer sheet: Second Midterm for Math 2339

Answer sheet: Second Midterm for Math 2339 Answer sheet: Second Midterm for Math 2339 October 26, 2010 Problem 1. True or false: (check one of the box, and briefly explain why) (1) If a twice differentiable f(x,y) satisfies f x (a,b) = f y (a,b)

More information

Functions Modeling Change A Preparation for Calculus Third Edition

Functions Modeling Change A Preparation for Calculus Third Edition Powerpoint slides copied from or based upon: Functions Modeling Change A Preparation for Calculus Third Edition Connally, Hughes-Hallett, Gleason, Et Al. Copyright 2007 John Wiley & Sons, Inc. 1 CHAPTER

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

Not for reproduction

Not for reproduction x=a GRAPHING CALCULATORS AND COMPUTERS (a, d ) y=d (b, d ) (a, c ) y=c (b, c) (a) _, by _, 4 x=b FIGURE 1 The viewing rectangle a, b by c, d _4 4 In this section we assume that you have access to a graphing

More information

, etc. Let s work with the last one. We can graph a few points determined by this equation.

, etc. Let s work with the last one. We can graph a few points determined by this equation. 1. Lines By a line, we simply mean a straight curve. We will always think of lines relative to the cartesian plane. Consider the equation 2x 3y 4 = 0. We can rewrite it in many different ways : 2x 3y =

More information

4.2.1 directional derivatives and the gradient in R 2

4.2.1 directional derivatives and the gradient in R 2 4.2. PARTIAL DIFFERENTIATION IN R 2 161 4.2.1 directional derivatives and the gradient in R 2 Now that we have a little experience in partial differentiation let s return to the problem of the directional

More information

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives.

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. Section 11.3 Partial Derivatives (1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. MATH 127 (Section 11.3) Partial Derivatives The University of Kansas

More information

3d plots. John Perry. Fall 2013

3d plots. John Perry. Fall 2013 MAT 305: 3d plots University of Southern Mississippi Fall 2013 Outline 1 2 3 Outline 1 2 3 The point3d() command point3d((x, y, z), options) where (x,y,z) is a 3-tuple (the location in 3 of this point)

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Green Globs And Graphing Equations

Green Globs And Graphing Equations Green Globs And Graphing Equations Green Globs and Graphing Equations has four parts to it which serve as a tool, a review or testing device, and two games. The menu choices are: Equation Plotter which

More information

Minima, Maxima, Saddle points

Minima, Maxima, Saddle points Minima, Maxima, Saddle points Levent Kandiller Industrial Engineering Department Çankaya University, Turkey Minima, Maxima, Saddle points p./9 Scalar Functions Let us remember the properties for maxima,

More information

Changing Variables in Multiple Integrals

Changing Variables in Multiple Integrals Changing Variables in Multiple Integrals 3. Examples and comments; putting in limits. If we write the change of variable formula as (x, y) (8) f(x, y)dx dy = g(u, v) dudv, (u, v) where (x, y) x u x v (9)

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Functions of Several Variables, Limits and Derivatives

Functions of Several Variables, Limits and Derivatives Functions of Several Variables, Limits and Derivatives Introduction and Goals: The main goal of this lab is to help you visualize surfaces in three dimensions. We investigate how one can use Maple to evaluate

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 2.1 Derivatives and Rates of Change In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a slope of a tangent line, or a velocity, or any instantaneous

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Chapter 1: Interval computation

Chapter 1: Interval computation Chapter 1: Interval computation July 8, 2017 Problem. Given f : R n R and a box [x] R n, prove that x [x],f (x) 0. Interval arithmetic can solve efficiently this problem. Example. Is the function f (x)

More information

Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions).

Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions). 7.2: Adding and Subtracting Rational Expressions, Simplifying Complex Fractions Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions). Adding

More information

Worksheet 2.1: Introduction to Multivariate Functions (Functions of Two or More Independent Variables)

Worksheet 2.1: Introduction to Multivariate Functions (Functions of Two or More Independent Variables) Boise State Math 275 (Ultman) Worksheet 2.1: Introduction to Multivariate Functions (Functions of Two or More Independent Variables) From the Toolbox (what you need from previous classes) Know the meaning

More information

Math 131. Implicit Differentiation Larson Section 2.5

Math 131. Implicit Differentiation Larson Section 2.5 Math 131. Implicit Differentiation Larson Section.5 So far we have ealt with ifferentiating explicitly efine functions, that is, we are given the expression efining the function, such as f(x) = 5 x. However,

More information

PreCalculus Summer Assignment

PreCalculus Summer Assignment PreCalculus Summer Assignment Welcome to PreCalculus! We are excited for a fabulous year. Your summer assignment is available digitally on the Lyman website. You are expected to print your own copy. Expectations:

More information

Math 20A lecture 10 The Gradient Vector

Math 20A lecture 10 The Gradient Vector Math 20A lecture 10 p. 1/12 Math 20A lecture 10 The Gradient Vector T.J. Barnet-Lamb tbl@brandeis.edu Brandeis University Math 20A lecture 10 p. 2/12 Announcements Homework five posted, due this Friday

More information

Math 32A Graphs and Contour Worksheet

Math 32A Graphs and Contour Worksheet Math 32 Graphs and ontour Worksheet Sections 5., 5.4 November 8, 208 This worksheet helps you practice matching graphs with its equations. Here are some general techniques and tricks that may help: (i)

More information

1.1 Functions. Cartesian Coordinate System

1.1 Functions. Cartesian Coordinate System 1.1 Functions This section deals with the topic of functions, one of the most important topics in all of mathematics. Let s discuss the idea of the Cartesian coordinate system first. Cartesian Coordinate

More information

Algebra I Notes Slope Unit 04a

Algebra I Notes Slope Unit 04a OBJECTIVE: F.IF.B.6 Interpret functions that arise in applications in terms of the context. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over

More information

Math 3 Coordinate Geometry Part 2 Graphing Solutions

Math 3 Coordinate Geometry Part 2 Graphing Solutions Math 3 Coordinate Geometry Part 2 Graphing Solutions 1 SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY The solution of two linear equations is the point where the two lines intersect. For example, in the graph

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully:

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully: Date: 16 July 2016, Saturday Time: 14:00-16:00 NAME:... STUDENT NO:... YOUR DEPARTMENT:... Math 102 Calculus II Midterm Exam II Solutions 1 2 3 4 TOTAL 25 25 25 25 100 Please do not write anything inside

More information

Section 1: Section 2: Section 3: Section 4:

Section 1: Section 2: Section 3: Section 4: Announcements Topics: In the Functions of Several Variables module: - Section 1: Introduction to Functions of Several Variables (Basic Definitions and Notation) - Section 2: Graphs, Level Curves + Contour

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

2 Unit Bridging Course Day 10

2 Unit Bridging Course Day 10 1 / 31 Unit Bridging Course Day 10 Circular Functions III The cosine function, identities and derivatives Clinton Boys / 31 The cosine function The cosine function, abbreviated to cos, is very similar

More information

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y).

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). For a function f(x,y), the gradient vector, denoted as f (pronounced grad f ) is

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011

7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011 7/14/2011 FIRST HOURLY PRACTICE IV Maths 21a, O.Knill, Summer 2011 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed,

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a)

Summer 2017 MATH Suggested Solution to Exercise Find the tangent hyperplane passing the given point P on each of the graphs: (a) Smmer 2017 MATH2010 1 Sggested Soltion to Exercise 6 1 Find the tangent hyperplane passing the given point P on each of the graphs: (a) z = x 2 y 2 ; y = z log x z P (2, 3, 5), P (1, 1, 1), (c) w = sin(x

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Functions of Several Variables module: - Section 3: Limits and Continuity - Section 4: Partial Derivatives - Section 5: Tangent Plane, Linearization, and Differentiability

More information

Natasha S. Sharma, PhD

Natasha S. Sharma, PhD Revisiting the function evaluation problem Most functions cannot be evaluated exactly: 2 x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

Math 206 First Midterm October 5, 2012

Math 206 First Midterm October 5, 2012 Math 206 First Midterm October 5, 2012 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 8 pages including this cover AND IS DOUBLE SIDED.

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

so f can now be rewritten as a product of g(x) = x 2 and the previous piecewisedefined

so f can now be rewritten as a product of g(x) = x 2 and the previous piecewisedefined Version PREVIEW HW 01 hoffman 575) 1 This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. FuncPcwise01a 001 10.0

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables)

Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables) BSU Math 275 Notes Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables) Textbook Section: 14.1 From the Toolbox (what you need from previous classes): Know the meaning

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

0.4 Family of Functions/Equations

0.4 Family of Functions/Equations 0.4 Family of Functions/Equations By a family of functions, we are referring to a function definition such as f(x) = mx + 2 for m = 2, 1, 1, 0, 1, 1, 2. 2 2 This says, work with all the functions obtained

More information

Packages in Julia. Downloading Packages A Word of Caution Sawtooth, Revisited

Packages in Julia. Downloading Packages A Word of Caution Sawtooth, Revisited Packages in Julia Downloading Packages A Word of Caution Sawtooth, Revisited Downloading Packages Because Julia is an open-source language, there are a ton of packages available online that enable such

More information

Introduction to Matlab

Introduction to Matlab Technische Universität München WT 21/11 Institut für Informatik Prof Dr H-J Bungartz Dipl-Tech Math S Schraufstetter Benjamin Peherstorfer, MSc October 22nd, 21 Introduction to Matlab Engineering Informatics

More information

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods We have seen examples of first-order differential equations which can, by one method of another, be solved

More information

Math 11 Fall Multivariable Calculus. Final Exam

Math 11 Fall Multivariable Calculus. Final Exam Math 11 Fall 2004 Multivariable Calculus for Two-Term Advanced Placement First-Year Students Final Exam Tuesday, December 7, 11:30-2:30 Murdough, Cook Auditorium Your name (please print): Instructions:

More information

NOTES Linear Equations

NOTES Linear Equations NOTES Linear Equations Linear Parent Function Linear Parent Function the equation that all other linear equations are based upon (y = x) Horizontal and Vertical Lines (HOYY VUXX) V vertical line H horizontal

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Trigonometric Equations for the Four-Point. Rectangular Data Array

Trigonometric Equations for the Four-Point. Rectangular Data Array Applied Mathematical Sciences, Vol. 6, 2012, no. 62, 3067-3071 Trigonometric Equations for the Four-Point Rectangular Data Array G. L. Silver 868 Kristi Lane Los Alamos, NM 87455, USA GaryLeeSil@aol.com

More information

Interpolation. TANA09 Lecture 7. Error analysis for linear interpolation. Linear Interpolation. Suppose we have a table x x 1 x 2...

Interpolation. TANA09 Lecture 7. Error analysis for linear interpolation. Linear Interpolation. Suppose we have a table x x 1 x 2... TANA9 Lecture 7 Interpolation Suppose we have a table x x x... x n+ Interpolation Introduction. Polynomials. Error estimates. Runge s phenomena. Application - Equation solving. Spline functions and interpolation.

More information

Linear Transformations

Linear Transformations Linear Transformations The two basic vector operations are addition and scaling From this perspective, the nicest functions are those which preserve these operations: Def: A linear transformation is a

More information

Reminder: y =f(x) mean that a function f uses a variable (an ingredient) x to make the result y.

Reminder: y =f(x) mean that a function f uses a variable (an ingredient) x to make the result y. Functions (.3) Reminder: y =f(x) mean that a function f uses a variable (an ingredient) x to make the result y.. Transformation of functions 3 We know many elementary functions like f ( x) = x + x + 3x+,

More information

SNAP Centre Workshop. Graphing Lines

SNAP Centre Workshop. Graphing Lines SNAP Centre Workshop Graphing Lines 45 Graphing a Line Using Test Values A simple way to linear equation involves finding test values, plotting the points on a coordinate plane, and connecting the points.

More information

Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points

Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points Example 1: The Gradient Vector 2 df Let f(x) x. Then 2x. This can be thought of as a vector that dx tells you the direction of

More information

1 Shapes of Power Functions

1 Shapes of Power Functions MA 1165 - Lecture 06 1 Wednesday, 1/28/09 1 Shapes of Power Functions I would like you to be familiar with the shape of the power functions, that is, the functions of the form f(x) = x n, (1) for n = 1,

More information

John Perry. Spring 2016

John Perry. Spring 2016 MAT 305: Repeating a task on a set (or list, or tuple, or...) University of Southern Mississippi Spring 2016 Outline 1 2 3 4 5 6 7 Outline 1 2 3 4 5 6 7 Differential Equations What is y in terms of x?

More information

Euler and improved Euler using SAGE

Euler and improved Euler using SAGE Euler and improved Euler using SAGE The goal is to find an approximate solution to the problem y = f(x, y), y(a) = c, (1) where f(x, y) is some given function We shall try to approximate the value of the

More information

A Mathematica Tutorial

A Mathematica Tutorial A Mathematica Tutorial -3-8 This is a brief introduction to Mathematica, the symbolic mathematics program. This tutorial is generic, in the sense that you can use it no matter what kind of computer you

More information

2.1 Quadraticsnts.notebook. September 10, 2018

2.1 Quadraticsnts.notebook. September 10, 2018 1 A quadratic function is a polynomial function of second degree. The graph of a quadratic function is called a parabola. 2 Standard Form: Intercept Form: Vertex Form: f(x) = a(x h) 2 + k vertex: (h, k)

More information

FAIRFIELD COUNTY MATH LEAGUE (FCML) )Find the arithmetic mean of the median and the mode of the numbers {13, 23, 24, 24, 15, 18, 24, 22}.

FAIRFIELD COUNTY MATH LEAGUE (FCML) )Find the arithmetic mean of the median and the mode of the numbers {13, 23, 24, 24, 15, 18, 24, 22}. FAIRFIELD COUNTY MATH LEAGUE (FCML)2015-2016 Match 4 Round 1 Arithmetic: Basic Statistics 1.) 2.25 2.) 6.) 18 1.)Find the arithmetic mean of the median and the mode of the numbers {1, 2, 24, 24, 15, 18,

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Objectives. Materials

Objectives. Materials Activity 13 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 5 JoungDong Kim Week 5: 8.1, 8.2, 8.3 Chapter 8 Functions of Several Variables Section 8.1 Functions of several Variables Definition. An equation of

More information

Maple Commands for Surfaces and Partial Derivatives

Maple Commands for Surfaces and Partial Derivatives Math 235 Lab 2 Intro Maple Commands for Surfaces and Partial Derivatives We ve seen that a curve can be written as y = f(x), or more generally in parametric form using one parameter (usually t), and the

More information