Lighting affects appearance
|
|
- Angela Quinn
- 10 months ago
- Views:
Transcription
1 Lighting affects appearance 1
2 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed (exceptions later). 2
3 Basic fact: Light is linear Double intensity of sources, double photons reaching eye. Turn on two lights, and photons reaching eye are same as sum of number when each light is on separately. This means we can render lights separately Newton s drawing: (Wandell) 3
4 (Varshney) 4
5 Color is a function (Angelopoulou) Light Intensity Radiance (I): intensity of light emitted per unit of solid angle. l n Irradiance (E): Intensity of light striking surface per unit area. Because of foreshortening, as <l,n> decreases, the same light is spread over more and more area. In this picture, E = I*<n,l> Intensity of light also decreases with square of distance. 5
6 Why is intensity linearly related to cosine theta? Let s just take a 1D example. Imagine a distant point source. All light it emits passes through a circle a distance r from the point, with a length 2pi*r. Now, imagine a small patch of material of length 1. The light striking this patch also strikes a part of the circle. If the patch is very small, the angle between the light ray and the circle is a right angle. So if the patch is length 1, the part of the circle that the patch shadows is cos theta. The total light striking the patch is cos(theta)/2pi*r, which grows linearly with cos(theta). Light Reflection: Mirror r n l r r l 2( l 2( l n) n n) n l 6
7 Light Reflection: Lambertian Amount of light striking surface proportional to cos Angle between light direction and surface. Equal brightness in all directions Albedo is fraction of light reflected. Diffuse objects (chalk, cloth, matte paint). Brightness doesn t depend on viewpoint. Surface normal Light This surface appears to be foreshortened according to cos. So, if light striking a pixel at any angle is the same, the amount of light must increase with cos. That is, more light in direction of surface normal. Surface normal 7
8 nˆ Lambertian + Point Source ˆ ˆ l is direction of light l l l l is intensity of light i max(0, ( l nˆ) i is radiance is albedo is surface normal Note: color depends on surface. With mirror, color only depends on light. Surface normal lˆ Light Lambertian Examples Scene (Oren and Nayar) Lambertian sphere as the light moves. (Steve Seitz) 8
9 Ambient Assume Lambertian surface normal receives equal light from all directions. i a Diffuse lighting, no cast shadows. Ambient (and point) light can be colored Specular surfaces Brightness depends on viewing direction. Specularity is spread out. Mirror, smooth light all bounces same way. 2 (l n ) n Slightly rougher, direction of bounce varies. Diffuse, many bounces ( csnotes/shading/shading.html) 9
10 Empirical model (eg., hack) Phong s model reflected energy falls off as: cos n Phong s model n very big, this is like mirror. As n gets smaller, specularity more spread out. Good model for plastic Specularity color of source. (Forsyth & Ponce) Lambertian + specular Two parameters: how shiny, what kind of shiny. Many objects combine shiny and diffuse material Wood with veneer; glossy paint, plastic, greasy skin. Some fraction of light reflected as diffuse, some as specular. 10
11 Lambertian+Specular+Ambient ( More complex reflectances Physically realistic models Torrance Sparrow models roughness of surfaces and shadowing of microfacets. Specular peak can deviate from mirror direction. Can produce much greater specularity at low incident angles. Fresnel term. Specularity varies with incident angle. Glass only specular as angle approaches 90 degrees. Models built from observation. Measurement for every lighting direction and viewing direction. A function describing this is called a BRDF 4D function (can be reduced to 3D if there is rotational symmetry). 11
12 BRDF BRDF Not Always Appropriate BRDF BSSRDF (Jensen, Marschner, Levoy, Hanrahan) 12
13 Luminescence Surface shifts color of light. Can reflect more light of a color than is present in source. This is why objects can glow in black light. Transparency Some fraction of light passes through material. Varying this fraction for different colors produces colored, transparent objects. 13
14 Refraction sin Snell's Law : sin 1 2 n 2 n 1 c c 1 2 n is index of refraction c is speed of light in medium. Illumination Attenuation Light scatters from particles in the air. Fog or hazy air has more particles, more scattering. 14
Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.
Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident
CS 5625 Lec 2: Shading Models
CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?
CMSC427 Shading Intro. Credit: slides from Dr. Zwicker
CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces
CPSC 314 LIGHTING AND SHADING
CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex
CS5620 Intro to Computer Graphics
So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading
Image Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3
Image Formation: Light and Shading CSE 152 Lecture 3 Announcements Homework 1 is due Apr 11, 11:59 PM Homework 2 will be assigned on Apr 11 Reading: Chapter 2: Light and Shading Geometric image formation
CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading
CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays
Illumination and Shading
Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspective-correct interpolation Texture
Topic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source
Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport
CSE 681 Illumination and Phong Shading
CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our
Computer Graphics. Illumination and Shading
() Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3-D triangle and a 3-D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic
Illumination & Shading
Illumination & Shading Goals Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware Why we need Illumination
Lecture 22: Basic Image Formation CAP 5415
Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and
CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011
CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,
Comp 410/510 Computer Graphics. Spring Shading
Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather
Lecture 7 - Path Tracing
INFOMAGR Advanced Graphics Jacco Bikker - November 2016 - February 2017 Lecture 7 - I x, x = g(x, x ) ε x, x + S ρ x, x, x I x, x dx Welcome! Today s Agenda: Introduction Advanced Graphics 3 Introduction
Lighting and Shading. Slides: Tamar Shinar, Victor Zordon
Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2
Ø Sampling Theory" Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling Strategies" Ø The Hall illumination model. Ø Original ray tracing paper
CS 431/636 Advanced Rendering Techniques Ø Dr. David Breen Ø Korman 105D Ø Wednesday 6PM 8:50PM Presentation 6 5/16/12 Questions from ast Time? Ø Sampling Theory" Ø Fourier Analysis Ø Anti-aliasing Ø Supersampling
A Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University
A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global
Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)
Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in
Surface Reflection Models
Surface Reflection Models Frank Losasso (flosasso@nvidia.com) Introduction One of the fundamental topics in lighting is how the light interacts with the environment. The academic community has researched
Shading, lighting, & BRDF Theory. Cliff Lindsay, PHD
Shading, lighting, & BRDF Theory Cliff Lindsay, PHD Overview of today s lecture BRDF Characteristics Lights in terms of BRDFs Classes of BRDFs Ambient light & Shadows in terms of BRDFs Decomposing Reflection
Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.
CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] March 28, 2012 Jernej Barbic University of Southern California
Illumination. Illumination CMSC 435/634
Illumination CMSC 435/634 Illumination Interpolation Illumination Illumination Interpolation Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel
Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19
Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line
Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008
Color and Light CSCI 4229/5229 Computer Graphics Summer 2008 Solar Spectrum Human Trichromatic Color Perception Are A and B the same? Color perception is relative Transmission,Absorption&Reflection Light
Review for Ray-tracing Algorithm and Hardware
Review for Ray-tracing Algorithm and Hardware Reporter: 邱敬捷博士候選人 Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Summer, 2017 1 2017/7/26 Outline
Lecture 4: Reflection Models
Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physics-based models
Background: Physics and Math of Shading
Background: Physics and Math of Shading Naty Hoffman 2K Hi. Over the next 25 minutes or so I ll be going from the physics underlying shading, to the math used to describe it in the kind of shading models
Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao
Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials
rendering equation computer graphics rendering equation 2009 fabio pellacini 1
rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physically-based rendering synthesis algorithms that compute images by simulation the physical behavior of light computer
UNIT C: LIGHT AND OPTICAL SYSTEMS
1 UNIT C: LIGHT AND OPTICAL SYSTEMS Science 8 2 LIGHT BEHAVES IN PREDICTABLE WAYS. Section 2.0 1 3 LIGHT TRAVELS IN RAYS AND INTERACTS WITH MATERIALS Topic 2.1 RAY DIAGRAMS Scientists use ray diagrams
Computer Graphics. Lecture 13. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura
Computer Graphics Lecture 13 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local
specular diffuse reflection.
Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature
Computergrafik. Matthias Zwicker Universität Bern Herbst 2016
Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today More shading Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection and refraction Toon shading
CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo
CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein Lecture 23: Photometric Stereo Announcements PA3 Artifact due tonight PA3 Demos Thursday Signups close at 4:30 today No lecture on Friday Last Time:
Fundamentals of Rendering - Reflectance Functions
Fundamentals of Rendering - Reflectance Functions Image Synthesis Torsten Möller Mike Phillips Reading Chapter 8 of Physically Based Rendering by Pharr&Humphreys Chapter 16 in Foley, van Dam et al. Chapter
Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see
Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED
Ray Optics. Lecture 23. Chapter 34. Physics II. Course website:
Lecture 23 Chapter 34 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.1-3 Ray Optics Ray Optics Wave
Chapter 22. Reflection and Refraction of Light
Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics
Property of: Entrada Interactive. PBR Workflow. Working within a PBR-based environment
Property of: Entrada Interactive PBR Workflow Working within a PBR-based environment Ryan Manning 8/24/2014 MISCREATED PBR WORKFLOW CryDocs on Physically Based Shading/Rendering: http://docs.cryengine.com/display/sdkdoc4/physically+based+rendering
Understanding Visual Performance A Pacific Energy Center Factsheet
Understanding Visual Performance A Pacific Energy Center Factsheet Factors Affecting Visual Performance Our ability to perform a visual task depends on how well our eyes perceive the details of the task.
Fundamentals of Rendering - Reflectance Functions
Fundamentals of Rendering - Reflectance Functions CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 8 of Physically Based Rendering by Pharr&Humphreys Chapter 16 in Foley, van Dam et al. Chapter
Classic Rendering Pipeline
CS580: Classic Rendering Pipeline Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Course Objectives Understand classic rendering pipeline Just high-level concepts, not all the
Illumination Models and Surface-Rendering Methods. Chapter 10
Illumination Models and Surface-Rendering Methods Chapter 10 Illumination and Surface- Rendering Given scene specifications object positions, optical properties of the surface, viewer position, viewing
The Question. What are the 4 types of interactions that waves can have when they encounter an object?
The Question What are the 4 types of interactions that waves can have when they encounter an object? Waves, Wave fronts and Rays Wave Front: Crests of the waves. Rays: Lines that are perpendicular to the
Computer Graphics. Lecture 10. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura 12/03/15
Computer Graphics Lecture 10 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local
Photorealism: Ray Tracing
Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any
Illumination and Shading ECE 567
Illumination and Shading ECE 567 Overview Lighting Models Ambient light Diffuse light Specular light Shading Models Flat shading Gouraud shading Phong shading OpenGL 2 Introduction To add realism to drawings
CG Surfaces: Materials, Shading, and Texturing
CG Surfaces: Materials, Shading, and Texturing ART/CSC/FST 220 Spring 2007 From text: 3D for Beginners, Chapter 7 Art of Maya (pages 116-126, 185-194) Shading and texturing involves materials and their
Lighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch
15-462 Computer Graphics I Lecture 7 Lighting and Shading February 12, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Light Sources Phong Illumination Model
Shading and Illumination
Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω
Recall: Basic Ray Tracer
1 Recall: Ray Tracing Generate an image by backwards tracing the path of light through pixels on an image plane Simulate the interaction of light with objects Recall: Basic Ray Tracer Trace a primary ray
Lecture 14: Refraction
Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium
Indirect Illumination
Indirect Illumination Michael Kazhdan (601.457/657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Surface Illumination Calculation Multiple light source: 2 Viewer N 1 V I = I E + K A I A + K D N, + K S V, R n I Overview
Turn on the Lights: Reflectance
Turn on the Lights: Reflectance Part 2: Shading Tuesday, October 15 2012 Lecture #14 Goal of Shading Model simple light sources Point light sources Extended light sources Ambient lighting Model lighting
2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz
Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline
CS201 Computer Vision Lect 4 - Image Formation
CS201 Computer Vision Lect 4 - Image Formation John Magee 9 September, 2014 Slides courtesy of Diane H. Theriault Question of the Day: Why is Computer Vision hard? Something to think about from our view
Global Illumination. COMP 575/770 Spring 2013
Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:
Lecture 7 Notes: 07 / 11. Reflection and refraction
Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary
Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing
Advanced Computer Graphics (Spring 2013) CS 283, Lecture 11: Monte Carlo Path Tracing Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation General solution to rendering and global illumination
Introduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces
Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Outline Computational tools Reflection models Polygon shading Computation tools Surface normals Vector
Chapter 5 Mirrors and Lenses
Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines
CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker
CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection
Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker
Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant
EXPERIMENT 8 PFUND REFRACTION
EXPERIMENT 8 PFUND REFRACTION A narrow beam of light passes through the face of a glass plate, then undergoes a diffuse reflection from the rear surface of the plate. The diffused light travels back toward
The Reflection of Light
King Saud University College of Applied Studies and Community Service Department of Natural Sciences The Reflection of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Introduction
Illumination & Shading I
CS 543: Computer Graphics Illumination & Shading I Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu
LIGHTING AND SHADING
DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION LIGHTING AND SHADING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters
Reflection and Refraction
Reflection and Refraction Lecture #22 Tuesday, ovember 19, 2013 (Major Updates 12/06/13) How about Interreflections ote reflections Granite tabletop Visible on base Also on handle This is a featured picture
Lecture 10: Shading Languages. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)
Lecture 10: Shading Languages Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Review: role of shading languages Renderer handles surface visibility tasks - Examples: clip,
Announcements. Written Assignment 2 out (due March 8) Computer Graphics
Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading
The Special Effects Handbook
FREE MODELS From TurboSquid Value $298.00 USD Official Autodesk Training Guide Learning Autodesk Maya 2009 The Special Effects Handbook A hands-on introduction to key tools and techniques in Autodesk Maya
The Propagation of Light:
Lecture 8 Chapter 4 The Propagation of Light: Transmission Reflection Refraction Macroscopic manifestations of scattering and interference occurring at the atomic level Reflection Reflection Inside the
3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection
Light Key Concepts How does light reflect from smooth surfaces and rough surfaces? What happens to light when it strikes a concave mirror? Which types of mirrors can produce a virtual image? Reflection
Physics 11 Chapter 18: Ray Optics
Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.
Computer Graphics. Lecture 9 Environment mapping, Mirroring
Computer Graphics Lecture 9 Environment mapping, Mirroring Today Environment Mapping Introduction Cubic mapping Sphere mapping refractive mapping Mirroring Introduction reflection first stencil buffer
Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.
Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:
Global Illumination and Radiosity
Global Illumination and Radiosity CS434 Daniel G. Aliaga Department of Computer Science Purdue University Recall: Lighting and Shading Light sources Point light Models an omnidirectional light source (e.g.,
Light and Sound. Wave Behavior and Interactions
Light and Sound Wave Behavior and Interactions How do light/sound waves interact with matter? WORD Definition Example Picture REFLECTED REFRACTED is the change in direction of a wave when it changes speed
COM337 COMPUTER GRAPHICS Other Topics
COM337 COMPUTER GRAPHICS Other Topics Animation, Surface Details, Global Illumination Kurtuluş Küllü based on the book by Hearn, Baker, and Carithers There are some other important issues and topics that
EDAN30 Photorealistic Computer Graphics. Seminar 1, Whitted Ray Tracing (And then some!) Magnus Andersson, PhD student
EDAN30 Photorealistic Computer Graphics Seminar, 203 Whitted Ray Tracing (And then some!) Magnus Andersson, PhD student (magnusa@cs.lth.se) Today s Agenda Structure of Assignments Quick prtracer walkthrough
SAMPLING AND NOISE. Increasing the number of samples per pixel gives an anti-aliased image which better represents the actual scene.
SAMPLING AND NOISE When generating an image, Mantra must determine a color value for each pixel by examining the scene behind the image plane. Mantra achieves this by sending out a number of rays from
So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.
11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives
Name Section Date. Experiment Reflection and Refraction
Name Section Date Introduction: Experiment Reflection and Refraction The travel of light is often represented in geometric optics by a light ray, a line that is drawn to represent the straight-line movement
Wednesday, 26 January 2005, 14:OO - 17:OO h.
Delft University of Technology Faculty Electrical Engineering, Mathematics, and Computer Science Mekelweg 4, Delft TU Delft Examination for Course IN41 5 1-3D Computer Graphics and Virtual Reality Please
Light Sources. Spotlight model
lecture 12 Light Sources sunlight (parallel) Sunny day model : "point source at infinity" - lighting - materials: diffuse, specular, ambient spotlight - shading: Flat vs. Gouraud vs Phong light bulb ambient
Chapter 4- Blender Render Engines
Chapter 4- Render Engines What is a Render Engine? As you make your 3D models in, your goal will probably be to generate (render) an image or a movie as a final result. The software that determines how
The Ray model of Light. Reflection. Class 18
The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes
4) Finish the spline here. To complete the spline, double click the last point or select the spline tool again.
1) Select the line tool 3) Move the cursor along the X direction (be careful to stay on the X axis alignment so that the line is perpendicular) and click for the second point of the line. Type 0.5 for
critical theory Computer Science
Art/Science Shading, Materials, Collaboration Textures Example title Artists In the recommend real world, two the main following: factors determine the appearance of a surface: basic understanding what
Chapter 4- Materials and Textures
Chapter 4- Materials and Textures Materials and textures are what change your model from being gray to brilliant. You can add color, make things glow, become transparent like glass or make them look like
Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception
Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both
Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization
VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization Recall that I stated that we had to model light as a transverse wave so that we could use the model to explain polarization. The electric
Chapter 26 Geometrical Optics
Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray
CEng 477 Introduction to Computer Graphics Fall
Illumination Models and Surface-Rendering Methods CEng 477 Introduction to Computer Graphics Fall 2007 2008 Illumination Models and Surface Rendering Methods In order to achieve realism in computer generated
L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT
L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from
1. Final Projects 2. Radiometry 3. Color. Outline
1. Final Projects 2. Radiometry 3. Color Outline Poster presentations http://16720.courses.cs.cmu.edu/project.html ==== Availability form ==== One person from each team (at least) is required to fill out
Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis
Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Ko Nishino, Zhengyou Zhang and Katsushi Ikeuchi Dept. of Info. Science, Grad.
Why we need shading?
Why we need shading? Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like But we want Light-material interactions cause each point to have a different