Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Size: px
Start display at page:

Download "Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town"

Transcription

1 Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of smoothing. Recap: Effect of σ on derivatives σ = pixel σ = 3 pixels The apparent structures differ depending on Gaussian s scale parameter. Larger values: larger scale edges detected Smaller values: finer features detected

2 Scale Invariant Detection Scale Invariant Detection Consider regions (e.g. circles) of different sizes around a point Regions of corresponding sizes will look the same in both images The problem: how do we choose corresponding circles independently in each image? f Scale Invariant Detection Solution: Design a function on the region (circle), which is scale invariant (the same for corresponding regions, even if they are at different scales) Image scale = / f Image Scale Invariant Detection: Summary Given: two images of the same scene with a large scale difference between them Goal: find the same interest points independently in each image Solution: search for extrema of suitable functions in scale and in space (over the image) region size region size Methods:. Harris-Laplacian [Mikolajczyk, Schmid]: maximise Laplacian over scale, Harris measure of corner response over the image. SIFT [Lowe]: maximise Difference of Gaussians over scale and space Image Matching Invariant local features -Algorithm for finding points and representing their patches should produce similar results even when conditions vary -Buzzword is invariance geometric invariance: translation, rotation, scale photometric invariance: brightness, exposure, Feature Descriptors

3 Feature detection Local measure of feature uniqueness How does the window change when you shift it? Scale invariant detection Suppose you re looking for corners flat region: no change in all directions edge : no change along the edge direction corner : significant change in all directions Key idea: find scale that gives local maximum response in both position and scale: use a Laplacian approximated by difference between two Gaussian filtered images with different sigmas) Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. Gaussian Pyramid All the extra levels add very little overhead for memory or computation! Low resolution The Gaussian Pyramid G 4 ( G 3 * gaussian) G ( G * gaussian blur ) 3 blur G ( G * gaussian) blur G ( G 0 * gaussian) G 0 Image blur Source: Irani & Basri High resolution Source: Irani & Basri G 0 Gaussian Pyramid G n G G 7 The Laplacian Pyramid L G expand( G ) i i i - = - = Laplacian Pyramid Ln G n - = L Why is this useful? L L 0 Dr Source: Chris Irani Town & Basri Laplacian ~ Difference of Gaussian - = DoG = Difference of Gaussians Cheap approximation no derivatives needed. - = B. Leibe 3

4 DoG approximation to LoG We can efficiently approximate the (scale-normalised) Laplacian of a Gaussian with a difference of Gaussians: B. Leibe Scale-Space Pyramid Multiple scales must be examined to identify scale-invariant features An efficient function is to compute the Difference of Gaussian (DOG) pyramid (Burt & Adelson, 983) Resample Blur Subtract Gaussian pyramid Laplacian pyramid algorithm x G x x x x3 ( I F G x 3 3) 3 Notice that each layer shows detail at a particular scale --- these are, basically, bandpass filtered versions of the image. F G x ( I F G x ) Laplacian pyramid ( I F G x ) 4

5 Showing, at full resolution, the information captured at each level of a Gaussian (top) and Laplacian (bottom) pyramid. SIFT Scale Invariant Feature Transform From: David Lowe (004) DoG approximates scale-normalised Laplacian of a Gaussian (heat diffusion equation) Octave increment in scale of the Gaussian Pyramid followed by factor-of-two downsampling (for efficiency). To achieve better performance, each octave i is further divided into s intervals. Remember that we defined neighbouring scales as So starting with some, the next scale parameter will be, followed by etc., so that after s sublevels of the pyramid we have a complete octave with Therefore 5

6 Key point localization with DoG Detect extrema of difference-of-gaussian (DoG) in scale space Then reject points with low contrast (threshold) Eliminate edge responses Candidate keypoints: list of (x,y,σ) Example of Keypoint Detection (a) 33x89 image (b) 83 DoG extrema (c) 79 left after peak value threshold (d) 536 left after testing ratio of principle curvatures (removing edge responses) Slide credit: David Lowe Slide credit: David Lowe Feature Descriptors: SIFT Scale Invariant Feature Transform Descriptor computation: Divide patch into 4x4 sub-patches: 6 cells Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch Resulting descriptor: 4x4x8 = 8 dimensions Rotation Invariant Descriptors Find local orientation Dominant direction of gradient for the image patch Rotate patch according to this angle This puts the patches into a canonical orientation. David G. Lowe. "Distinctive image features from scale-invariant keypoints. IJCV 60 (), pp. 9-0, 004. Slide credit: Svetlana Lazebnik Slide credit: Svetlana Lazebnik, Matthew Brown 6

7 Orientation Normalisation: Computation Compute orientation histogram Select dominant orientation Normalise: rotate to fixed orientation [Lowe, SIFT, 999] Feature stability to noise Match features after random change in image scale & orientation, with differing levels of image noise Find nearest neighbor in database of 30,000 features Slide adapted from David Lowe 0 p 37 Feature stability to affine change Match features after random change in image scale & orientation, with % image noise, and affine distortion Find nearest neighbor in database of 30,000 features Distinctiveness of features Vary size of database of features, with 30 degree affine change, % image noise Measure % correct for single nearest neighbor match Working with SIFT Descriptors SIFT One image yields: n 8-dimensional descriptors: each one is a histogram of the gradient orientations within a patch [n x 8 matrix] n scale parameters specifying the size of each patch [n x vector] n orientation parameters specifying the angle of the patch [n x vector] n D points giving positions of the patches [n x matrix] Slide credit: Steve Seitz D. Lowe, 004 7

8 Feature matching Image stitching Slides from Steve Seitz and Rick Szeliski Brown, Lowe, 007 Nearest-neighbor matching Solve following problem for all feature vectors, x: Nearest-neighbour matching is the major computational bottleneck Linear search performs dn operations for n features and d dimensions No exact methods are faster than linear search for d>0 Approximate methods can be much faster, but at the cost of missing some correct matches. Failure rate gets worse for large datasets. Key idea: Approximate k-d tree matching Search k-d tree bins in order of distance from query Requires use of a priority queue K-d tree construction Simple D example K-d tree query 4 6 l 5 8 l 6 l 3 l l 0 0 l7 l 4 7 l 8 l l l 3 l 4 l 5 l 7 l l 0 8 l l l 9 l q l 5 l l 3 l l 0 0 l7 l 4 7 l 8 l l l 3 l 4 l 5 l 7 l l 0 8 l Slide credit: Anna Atramentov Slide credit: Anna Atramentov 8

9 Recognition with Local Features Image content is transformed into local features that are invariant to translation, rotation, and scale Goal: Verify if they belong to a consistent configuration Fourier transform = * Slide credit: David Lowe Local Features, e.g. SIFT 49 Fourier transform Fourier bases are global: each transform coefficient depends on all pixel locations. pixel domain image Gaussian pyramid Laplacian pyramid = * = * Gaussian pyramid pixel image Laplacian pyramid pixel image Overcomplete representation. Low-pass filters, sampled appropriately for their blur. Overcomplete representation. Transformed pixels represent bandpassed image information. Edge Fitting Edge Detection: The process of labeling the locations in the image where the gray level s rate of change is high. OUTPUT: edgels locations, direction, strength Edge Integration, Contour fitting: The process of combining local and perhaps sparse and noncontiguous edgel -data into meaningful, long edge curves (or closed contours) for segmentation OUTPUT: edges/curves consistent with the local data 9

10 Framework for snakes A higher level process or a user initialises any curve close to the object boundary. The snake then starts deforming and moving towards the desired object boundary. In the end it completely shrink-wraps around the object. courtesy Modeling The contour is defined in the (x, y) plane of an image as a parametric curve v(s)=(x(s), y(s)) Contour is said to possess an energy (E snake ) which is defined as the sum of the three energy terms. E E E E snake int ernal external constra int The energy terms are defined in a way such that the final position of the contour will have minimum energy (E min ) Therefore our problem of detecting objects reduces to an energy minimisation problem. (Diagram courtesy Snakes, shapes, gradient vector flow, Xu, Prince) A. Poonawala Internal Energy (E int ) Depends on the intrinsic properties of the curve. Sum of elastic energy and bending energy. Elastic Energy (E elastic ): The curve is treated as an elastic rubber band possessing elastic potential energy. It discourages stretching by introducing tension. E elastic ( s ) vs ds s Weight (s) allows us to control elastic energy along different parts of the contour. Considered to be constant for many applications. Responsible for shrinking of the contour. v s d v ( s ) d s Elastic force Generated by elastic potential energy of the curve. F elastic v Characteristics (refer diagram) ss A. Poonawala A. Poonawala Bending Energy (E bending ): The snake is also considered to behave like a thin metal strip giving rise to bending energy. Bending force Generated by the bending energy of the contour. Characteristics (refer diagram): It is defined as sum of squared curvature of the contour. E bending ( s ) v ss ds (s) plays a similar role to (s). Bending energy is minimum for a circle. s Total internal energy of the snake can be defined as E E E v v ) ds int Initial curve (High bending energy) Final curve deformed by bending force. (low bending energy) Thus the bending energy tries to smooth out the curve. elastic bending s ss s A. Poonawala A. Poonawala 0

11 External energy of the contour (E ext ) Image fitting Eext Eimage ( v( s)) ds For example s A. Poonawala leafmv.mpg dancemv.mpg

12 Generating Functions Since the wavelets are dilates, translates, and rotates of each other, such a transform seeks to extract image structure in a way that may be invariant to dilation, translation, and rotation of the original image or pattern. c (x,y) e x y cos u 0 x Gabor wavelets u 0 =0 U 0 =0. U 0 =0. s (x, y) e x y sin u 0 x A. Torralba A. Torralba Dilation and rotation Frequency, orientation and symmetry (phase)

13 Wavelet (QMF) transform Steerable pyramid Wavelet pyramid = * Multiple orientations at one scale = * Ortho-normal transform (like Fourier transform), but with localized basis functions. pixel image Steerable pyramid Multiple orientations at the next scale the next scale pixel image Over-complete representation, but non-aliased subbands. 3

Local invariant features

Local invariant features Local invariant features Tuesday, Oct 28 Kristen Grauman UT-Austin Today Some more Pset 2 results Pset 2 returned, pick up solutions Pset 3 is posted, due 11/11 Local invariant features Detection of interest

More information

Computer Vision for HCI. Topics of This Lecture

Computer Vision for HCI. Topics of This Lecture Computer Vision for HCI Interest Points Topics of This Lecture Local Invariant Features Motivation Requirements, Invariances Keypoint Localization Features from Accelerated Segment Test (FAST) Harris Shi-Tomasi

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

The SIFT (Scale Invariant Feature

The SIFT (Scale Invariant Feature The SIFT (Scale Invariant Feature Transform) Detector and Descriptor developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004 Review: Matt Brown s Canonical

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

CAP 5415 Computer Vision Fall 2012

CAP 5415 Computer Vision Fall 2012 CAP 5415 Computer Vision Fall 01 Dr. Mubarak Shah Univ. of Central Florida Office 47-F HEC Lecture-5 SIFT: David Lowe, UBC SIFT - Key Point Extraction Stands for scale invariant feature transform Patented

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Local features: detection and description. Local invariant features

Local features: detection and description. Local invariant features Local features: detection and description Local invariant features Detection of interest points Harris corner detection Scale invariant blob detection: LoG Description of local patches SIFT : Histograms

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Section 10 - Detectors part II Descriptors Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT Oct. 15, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Scale Invariant Feature Transform Why do we care about matching features? Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Image

More information

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Features Points Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Finding Corners Edge detectors perform poorly at corners. Corners provide repeatable points for matching, so

More information

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford Image matching Harder case by Diva Sian by Diva Sian by scgbt by swashford Even harder case Harder still? How the Afghan Girl was Identified by Her Iris Patterns Read the story NASA Mars Rover images Answer

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

Local features: detection and description May 12 th, 2015

Local features: detection and description May 12 th, 2015 Local features: detection and description May 12 th, 2015 Yong Jae Lee UC Davis Announcements PS1 grades up on SmartSite PS1 stats: Mean: 83.26 Standard Dev: 28.51 PS2 deadline extended to Saturday, 11:59

More information

Scale Invariant Feature Transform by David Lowe

Scale Invariant Feature Transform by David Lowe Scale Invariant Feature Transform by David Lowe Presented by: Jerry Chen Achal Dave Vaishaal Shankar Some slides from Jason Clemons Motivation Image Matching Correspondence Problem Desirable Feature Characteristics

More information

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale. Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe presented by, Sudheendra Invariance Intensity Scale Rotation Affine View point Introduction Introduction SIFT (Scale Invariant Feature

More information

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4

Advanced Video Content Analysis and Video Compression (5LSH0), Module 4 Advanced Video Content Analysis and Video Compression (5LSH0), Module 4 Visual feature extraction Part I: Color and texture analysis Sveta Zinger Video Coding and Architectures Research group, TU/e ( s.zinger@tue.nl

More information

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford

Harder case. Image matching. Even harder case. Harder still? by Diva Sian. by swashford Image matching Harder case by Diva Sian by Diva Sian by scgbt by swashford Even harder case Harder still? How the Afghan Girl was Identified by Her Iris Patterns Read the story NASA Mars Rover images Answer

More information

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian.

Image matching. Announcements. Harder case. Even harder case. Project 1 Out today Help session at the end of class. by Diva Sian. Announcements Project 1 Out today Help session at the end of class Image matching by Diva Sian by swashford Harder case Even harder case How the Afghan Girl was Identified by Her Iris Patterns Read the

More information

Local features and image matching. Prof. Xin Yang HUST

Local features and image matching. Prof. Xin Yang HUST Local features and image matching Prof. Xin Yang HUST Last time RANSAC for robust geometric transformation estimation Translation, Affine, Homography Image warping Given a 2D transformation T and a source

More information

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm Group 1: Mina A. Makar Stanford University mamakar@stanford.edu Abstract In this report, we investigate the application of the Scale-Invariant

More information

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

SCALE INVARIANT FEATURE TRANSFORM (SIFT) 1 SCALE INVARIANT FEATURE TRANSFORM (SIFT) OUTLINE SIFT Background SIFT Extraction Application in Content Based Image Search Conclusion 2 SIFT BACKGROUND Scale-invariant feature transform SIFT: to detect

More information

Local Feature Detectors

Local Feature Detectors Local Feature Detectors Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Slides adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial, Matthew Brown,

More information

Key properties of local features

Key properties of local features Key properties of local features Locality, robust against occlusions Must be highly distinctive, a good feature should allow for correct object identification with low probability of mismatch Easy to etract

More information

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882 Matching features Building a Panorama Computational Photography, 6.88 Prof. Bill Freeman April 11, 006 Image and shape descriptors: Harris corner detectors and SIFT features. Suggested readings: Mikolajczyk

More information

Implementing the Scale Invariant Feature Transform(SIFT) Method

Implementing the Scale Invariant Feature Transform(SIFT) Method Implementing the Scale Invariant Feature Transform(SIFT) Method YU MENG and Dr. Bernard Tiddeman(supervisor) Department of Computer Science University of St. Andrews yumeng@dcs.st-and.ac.uk Abstract The

More information

Edge and corner detection

Edge and corner detection Edge and corner detection Prof. Stricker Doz. G. Bleser Computer Vision: Object and People Tracking Goals Where is the information in an image? How is an object characterized? How can I find measurements

More information

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability Midterm Wed. Local features: detection and description Monday March 7 Prof. UT Austin Covers material up until 3/1 Solutions to practice eam handed out today Bring a 8.5 11 sheet of notes if you want Review

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1 Feature Detection Raul Queiroz Feitosa 3/30/2017 Feature Detection 1 Objetive This chapter discusses the correspondence problem and presents approaches to solve it. 3/30/2017 Feature Detection 2 Outline

More information

School of Computing University of Utah

School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 4 Main paper to be discussed David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, IJCV, 2004. How to find useful keypoints?

More information

Image Features. Work on project 1. All is Vanity, by C. Allan Gilbert,

Image Features. Work on project 1. All is Vanity, by C. Allan Gilbert, Image Features Work on project 1 All is Vanity, by C. Allan Gilbert, 1873-1929 Feature extrac*on: Corners and blobs c Mo*va*on: Automa*c panoramas Credit: Ma9 Brown Why extract features? Mo*va*on: panorama

More information

SIFT - scale-invariant feature transform Konrad Schindler

SIFT - scale-invariant feature transform Konrad Schindler SIFT - scale-invariant feature transform Konrad Schindler Institute of Geodesy and Photogrammetry Invariant interest points Goal match points between images with very different scale, orientation, projective

More information

Motion illusion, rotating snakes

Motion illusion, rotating snakes Motion illusion, rotating snakes Local features: main components 1) Detection: Find a set of distinctive key points. 2) Description: Extract feature descriptor around each interest point as vector. x 1

More information

Lecture 6: Finding Features (part 1/2)

Lecture 6: Finding Features (part 1/2) Lecture 6: Finding Features (part 1/2) Dr. Juan Carlos Niebles Stanford AI Lab Professor Stanford Vision Lab 1 What we will learn today? Local invariant features MoOvaOon Requirements, invariances Keypoint

More information

Feature descriptors and matching

Feature descriptors and matching Feature descriptors and matching Detections at multiple scales Invariance of MOPS Intensity Scale Rotation Color and Lighting Out-of-plane rotation Out-of-plane rotation Better representation than color:

More information

Obtaining Feature Correspondences

Obtaining Feature Correspondences Obtaining Feature Correspondences Neill Campbell May 9, 2008 A state-of-the-art system for finding objects in images has recently been developed by David Lowe. The algorithm is termed the Scale-Invariant

More information

Bias-Variance Trade-off (cont d) + Image Representations

Bias-Variance Trade-off (cont d) + Image Representations CS 275: Machine Learning Bias-Variance Trade-off (cont d) + Image Representations Prof. Adriana Kovashka University of Pittsburgh January 2, 26 Announcement Homework now due Feb. Generalization Training

More information

Local Features Tutorial: Nov. 8, 04

Local Features Tutorial: Nov. 8, 04 Local Features Tutorial: Nov. 8, 04 Local Features Tutorial References: Matlab SIFT tutorial (from course webpage) Lowe, David G. Distinctive Image Features from Scale Invariant Features, International

More information

Implementation and Comparison of Feature Detection Methods in Image Mosaicing

Implementation and Comparison of Feature Detection Methods in Image Mosaicing IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 07-11 www.iosrjournals.org Implementation and Comparison of Feature Detection Methods in Image

More information

CS 558: Computer Vision 4 th Set of Notes

CS 558: Computer Vision 4 th Set of Notes 1 CS 558: Computer Vision 4 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Keypoint matching Hessian

More information

2D Image Processing Feature Descriptors

2D Image Processing Feature Descriptors 2D Image Processing Feature Descriptors Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Overview

More information

Lecture: RANSAC and feature detectors

Lecture: RANSAC and feature detectors Lecture: RANSAC and feature detectors Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 What we will learn today? A model fitting method for edge detection RANSAC Local invariant

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 4: Harris corner detection Szeliski: 4.1 Reading Announcements Project 1 (Hybrid Images) code due next Wednesday, Feb 14, by 11:59pm Artifacts due Friday, Feb

More information

Feature Matching and RANSAC

Feature Matching and RANSAC Feature Matching and RANSAC Recognising Panoramas. [M. Brown and D. Lowe,ICCV 2003] [Brown, Szeliski, Winder, CVPR 2005] with a lot of slides stolen from Steve Seitz, Rick Szeliski, A. Efros Introduction

More information

Local Image Features

Local Image Features Local Image Features Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial This section: correspondence and alignment

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Visual Registration and Recognition Announcements Homework 6 is out, due 4/5 4/7 Installing

More information

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University

Edge and Texture. CS 554 Computer Vision Pinar Duygulu Bilkent University Edge and Texture CS 554 Computer Vision Pinar Duygulu Bilkent University Filters for features Previously, thinking of filtering as a way to remove or reduce noise Now, consider how filters will allow us

More information

Ulas Bagci

Ulas Bagci CAP5415- Computer Vision Lecture 5 and 6- Finding Features, Affine Invariance, SIFT Ulas Bagci bagci@ucf.edu 1 Outline Concept of Scale Pyramids Scale- space approaches briefly Scale invariant region selecqon

More information

Corner Detection. GV12/3072 Image Processing.

Corner Detection. GV12/3072 Image Processing. Corner Detection 1 Last Week 2 Outline Corners and point features Moravec operator Image structure tensor Harris corner detector Sub-pixel accuracy SUSAN FAST Example descriptor: SIFT 3 Point Features

More information

Click to edit title style

Click to edit title style Class 2: Low-level Representation Liangliang Cao, Jan 31, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Visual Recognition

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

Patch-based Object Recognition. Basic Idea

Patch-based Object Recognition. Basic Idea Patch-based Object Recognition 1! Basic Idea Determine interest points in image Determine local image properties around interest points Use local image properties for object classification Example: Interest

More information

Evaluation and comparison of interest points/regions

Evaluation and comparison of interest points/regions Introduction Evaluation and comparison of interest points/regions Quantitative evaluation of interest point/region detectors points / regions at the same relative location and area Repeatability rate :

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Robotica Anno accademico 6/7 Davide Migliore migliore@elet.polimi.it Today What is a feature? Some useful information The world of features: Detectors Edges detection Corners/Points detection Descriptors?!?!?

More information

A Comparison of SIFT, PCA-SIFT and SURF

A Comparison of SIFT, PCA-SIFT and SURF A Comparison of SIFT, PCA-SIFT and SURF Luo Juan Computer Graphics Lab, Chonbuk National University, Jeonju 561-756, South Korea qiuhehappy@hotmail.com Oubong Gwun Computer Graphics Lab, Chonbuk National

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Local Image Features

Local Image Features Local Image Features Ali Borji UWM Many slides from James Hayes, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Overview of Keypoint Matching 1. Find a set of distinctive key- points A 1 A 2 A 3 B 3

More information

Distinctive Image Features from Scale-Invariant Keypoints

Distinctive Image Features from Scale-Invariant Keypoints Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe Computer Science Department University of British Columbia Vancouver, B.C., Canada lowe@cs.ubc.ca January 5, 2004 Abstract This paper

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 6: Feature matching and alignment Szeliski: Chapter 6.1 Reading Last time: Corners and blobs Scale-space blob detector: Example Feature descriptors We know

More information

Local Patch Descriptors

Local Patch Descriptors Local Patch Descriptors Slides courtesy of Steve Seitz and Larry Zitnick CSE 803 1 How do we describe an image patch? How do we describe an image patch? Patches with similar content should have similar

More information

Automatic Image Alignment

Automatic Image Alignment Automatic Image Alignment Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2010 Live Homography DEMO Check out panoramio.com

More information

Local Image Features

Local Image Features Local Image Features Computer Vision Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Flashed Face Distortion 2nd Place in the 8th Annual Best

More information

Local Image preprocessing (cont d)

Local Image preprocessing (cont d) Local Image preprocessing (cont d) 1 Outline - Edge detectors - Corner detectors - Reading: textbook 5.3.1-5.3.5 and 5.3.10 2 What are edges? Edges correspond to relevant features in the image. An edge

More information

Image Stitching. Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi

Image Stitching. Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi Image Stitching Slides from Rick Szeliski, Steve Seitz, Derek Hoiem, Ira Kemelmacher, Ali Farhadi Combine two or more overlapping images to make one larger image Add example Slide credit: Vaibhav Vaish

More information

Image gradients and edges April 11 th, 2017

Image gradients and edges April 11 th, 2017 4//27 Image gradients and edges April th, 27 Yong Jae Lee UC Davis PS due this Friday Announcements Questions? 2 Last time Image formation Linear filters and convolution useful for Image smoothing, removing

More information

Image gradients and edges April 10 th, 2018

Image gradients and edges April 10 th, 2018 Image gradients and edges April th, 28 Yong Jae Lee UC Davis PS due this Friday Announcements Questions? 2 Last time Image formation Linear filters and convolution useful for Image smoothing, removing

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Prof. Feng Liu. Spring /26/2017

Prof. Feng Liu. Spring /26/2017 Prof. Feng Liu Spring 2017 http://www.cs.pdx.edu/~fliu/courses/cs510/ 04/26/2017 Last Time Re-lighting HDR 2 Today Panorama Overview Feature detection Mid-term project presentation Not real mid-term 6

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

Wikipedia - Mysid

Wikipedia - Mysid Wikipedia - Mysid Erik Brynjolfsson, MIT Filtering Edges Corners Feature points Also called interest points, key points, etc. Often described as local features. Szeliski 4.1 Slides from Rick Szeliski,

More information

Lecture 10 Detectors and descriptors

Lecture 10 Detectors and descriptors Lecture 10 Detectors and descriptors Properties of detectors Edge detectors Harris DoG Properties of detectors SIFT Shape context Silvio Savarese Lecture 10-26-Feb-14 From the 3D to 2D & vice versa P =

More information

Automatic Image Alignment

Automatic Image Alignment Automatic Image Alignment with a lot of slides stolen from Steve Seitz and Rick Szeliski Mike Nese CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2018 Live Homography

More information

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999)

TA Section 7 Problem Set 3. SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) TA Section 7 Problem Set 3 SIFT (Lowe 2004) Shape Context (Belongie et al. 2002) Voxel Coloring (Seitz and Dyer 1999) Sam Corbett-Davies TA Section 7 02-13-2014 Distinctive Image Features from Scale-Invariant

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

A Novel Algorithm for Color Image matching using Wavelet-SIFT

A Novel Algorithm for Color Image matching using Wavelet-SIFT International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 A Novel Algorithm for Color Image matching using Wavelet-SIFT Mupuri Prasanth Babu *, P. Ravi Shankar **

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection COS 429: COMPUTER VISON Linear Filters and Edge Detection convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection Reading:

More information

Distinctive Image Features from Scale-Invariant Keypoints

Distinctive Image Features from Scale-Invariant Keypoints Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe Computer Science Department University of British Columbia Vancouver, B.C., Canada Draft: Submitted for publication. This version:

More information

Straight Lines and Hough

Straight Lines and Hough 09/30/11 Straight Lines and Hough Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li Project 1 A few project highlights

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM INTRODUCTION

A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM INTRODUCTION A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM Karthik Krish Stuart Heinrich Wesley E. Snyder Halil Cakir Siamak Khorram North Carolina State University Raleigh, 27695 kkrish@ncsu.edu sbheinri@ncsu.edu

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur

Solution: filter the image, then subsample F 1 F 2. subsample blur subsample. blur Pyramids Gaussian pre-filtering Solution: filter the image, then subsample blur F 0 subsample blur subsample * F 0 H F 1 F 1 * H F 2 { Gaussian pyramid blur F 0 subsample blur subsample * F 0 H F 1 F 1

More information

Feature Detection and Matching

Feature Detection and Matching and Matching CS4243 Computer Vision and Pattern Recognition Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS4243) Camera Models 1 /

More information

Performance Evaluation of Scale-Interpolated Hessian-Laplace and Haar Descriptors for Feature Matching

Performance Evaluation of Scale-Interpolated Hessian-Laplace and Haar Descriptors for Feature Matching Performance Evaluation of Scale-Interpolated Hessian-Laplace and Haar Descriptors for Feature Matching Akshay Bhatia, Robert Laganière School of Information Technology and Engineering University of Ottawa

More information

What is an edge? Paint. Depth discontinuity. Material change. Texture boundary

What is an edge? Paint. Depth discontinuity. Material change. Texture boundary EDGES AND TEXTURES The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their

More information

CS664 Lecture #21: SIFT, object recognition, dynamic programming

CS664 Lecture #21: SIFT, object recognition, dynamic programming CS664 Lecture #21: SIFT, object recognition, dynamic programming Some material taken from: Sebastian Thrun, Stanford http://cs223b.stanford.edu/ Yuri Boykov, Western Ontario David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

More information

Coarse-to-fine image registration

Coarse-to-fine image registration Today we will look at a few important topics in scale space in computer vision, in particular, coarseto-fine approaches, and the SIFT feature descriptor. I will present only the main ideas here to give

More information

Comparison of Feature Detection and Matching Approaches: SIFT and SURF

Comparison of Feature Detection and Matching Approaches: SIFT and SURF GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 4 March 2017 ISSN: 2455-5703 Comparison of Detection and Matching Approaches: SIFT and SURF Darshana Mistry PhD student

More information

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16 Review Edges and Binary Images Tuesday, Sept 6 Thought question: how could we compute a temporal gradient from video data? What filter is likely to have produced this image output? original filtered output

More information

Image Matching. AKA: Image registration, the correspondence problem, Tracking,

Image Matching. AKA: Image registration, the correspondence problem, Tracking, Image Matching AKA: Image registration, the correspondence problem, Tracking, What Corresponds to What? Daisy? Daisy From: www.amphian.com Relevant for Analysis of Image Pairs (or more) Also Relevant for

More information