Rendering Light Reflection Models


 Sibyl Todd
 8 months ago
 Views:
Transcription
1 Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 3, 2017 Lecture #13
2 Program of Computer Graphics, Cornell University General Electric  167
3 Cornell in Perspective Film Program of Computer Graphics, Cornell University
4
5 Direct Model Illumination Camera Perspective Raster Operations Image Storage Display
6 Perspective Model Transformation Perspective transformation Clipping Culling Matrix multiplication Camera Perspective Raster Operations Image Storage Display
7 Goal of Realistic Imaging The resulting images should be physically accurate and perceptually indistinguishable from real world scenes
8 Goal of Realistic Imaging From Strobel, Photographic Materials and Processes Focal Press, 186.
9 Direct Lighting and Indirect Lighting Direct Indirect Direct
10 Direct Lighting and Indirect Lighting
11 Assumptions In Direct Lighting Light travels directly from light source to all object surfaces (no occlusion) no shadows All light sources are point light sources (no geometric area) No interreflections from any surfaces Lights maybe directional, spot or omni lights
12 Cornell Box with Cameras
13 Photograph
14 Rendering Framework 17
15 Raster Model Operations Conversion from polygons to pixels Hidden surface removal (zbuffer) Incremental shading Camera Perspective Raster Operations Image Storage Display
16 Diffuse Reflections Roy S. Berns. Billmeyer and Saltzman s Principles of Color Technology, 3 rd Ed. 2000, John Wiley & Sons, Inc. p. 12.
17 Specular Reflections Roy S. Berns. Billmeyer and Saltzman s Principles of Color Technology, 3 rd Ed. 2000, John Wiley & Sons, Inc. p. 12.
18 Glossy Reflections Roy S. Berns. Billmeyer and Saltzman s Principles of Color Technology, 3 rd Ed. 2000, John Wiley & Sons, Inc. p. 12.
19 Reflectance  Three Forms Ideal diffuse (Lambertian) Ideal specular Directional diffuse
20 Diffuse Reflections Observer I N θ Light Source L I = k d cosθ
21 How do you find the angle ββ? If you know the surface definition (it s planar equation), you can find it s normal direction NN. A unit normal in this direction is NN NN If you know the location of the light source LL, you can find the illumination direction LL. A unit normal in this direction is LL LL
22 Cosine Calculations Dot Product Definition N L = N L cosθ cosθ = N L N L = N N L L Usually, the normal and light source vector directions are given as unit normals.
23 Gouraud Flat Polygon Shading Each polygon is shaded based on a single normal. Gouraud Thesis
24 Gouraud Smooth Shading Four polygons approximating a surface in the vicinity of point A. The shading at point R is computed as two types of successive linear interpolations: across polygon edges: P between A and B, Q between A and D; across the scan line: R between P and Q. B 2 A P R Q 1 C 3 D 4 scan line Gouraud Thesis
25 Gouraud Smooth Shading Each pixel is shaded by interpolating intensities computed at each of the polygon s vertices. Gouraud Thesis
26 Steps in Gouraud Shading For each polygon Compute vertex intensities (using any illumination model) Compute slopes (linear interpolation) in spatial (image) domain (picture plane) and intensity domain (real environment) Increment by scan line For each scan line Compute slope in intensity domain (real environment) Render each pixel Note the intensity computations are based on object space data, but all interpolation is done in image space.
27 Diffuse Shading Jeremy Birn. Digital Lighting & Rendering, p. 74.
28 Phong Model Assumptions The reflection function can be represented by three components: a constant ambient term, and diffuse and specular components Isotropic (rotationally symmetric) Point or parallel light source (one vector direction) Computationally simple
29 Phong Model Specular Reflection Observer V I R β θ r N θ i Light Source L I = k s cos n β
30 How do you find the angle ββ? If you know the illumination direction LL, you can find the reflection direction RR (angle of reflection = angle of incidence) If you know the location of the observer, you can find the view direction VV The specular reflection component is a function of the angle ββ, the angle between the view direction and the reflection vector
31 Variation of cos n β
32 Phong Reflection Model I j Diffuse Specular Mirror Reflection Vector R V Diffuse = Specular = k d s ( N L) k ( R V ) n
33 Phong Goblet Bui Toung Phong Thesis
34 Phong Equation II = II aa + II dd + II ss = [kk aa +kk dd (NN LL)](oooooooooooo cccccccccc) + kk ss (RR VV) 2 (lllllllll cccccccccc) Where kk aa = constant ambient term and kk aa +kk dd + kk ss = 1
35 Phong Model with Constant Ambient Term and Variations of Specular Exponent Roy Hall
36 Phong Model with Constant Specular Exponent and Variation of Ambient Term Roy Hall
37 Reflection Geometry (BRDF) dω i θ i θ r dω r ϕ i ϕ r Bidirectional Reflection Distribution Function
38 Gonioreflectometer Spectroradiometer Mirror Light Source Mirror Sample
39 Reflection Processes First surface reflections Multiple surface reflections Subsurface reflections
40 Gaussian Distribution m = 0.2 m = 0.6 Where m=root mean square slope of the microfacets
41 Experiment Data Aluminum, σ 0 =0.28µ
42 Comparison of experiment and theory Aluminum σ 0 = 0.28µ, τ =1.77µ
43 Bidirectional Reflectance (BRDF) λ directional diffuse specular θ uniform diffuse τ σ
44 RetroReflection
45 Retroreflection
46 Reflectance of Copper Mirror
47 Light Reflected from Copper
48 Cook s Copper Spheres
49 CookTorrance Renderings
50 Copper Vase Coppercolored plastic Copper
51 Reflection from Plastic Incident Light Specular Reflection (white) Diffuse Reflection (colored) Vinyl Substrate (white) Pigment Particles (colored)
52 The geometry of scattering from a layered surface ACM Computer Graphics, SIGGRAPH 13 p. 166
53 Phong Goblet Bui Toung Phong Thesis
54 Brushed Stainless Steel
55 Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, Pat Hanrahan. A Practical Model for Subsurface Light Transport, ACM Siggraph 2001, August 2001, Los Angeles, CA, pp
56 3D Studio Max: Material Editor
57 3D Studio Max: Material Editor
58 End...
CMSC427 Shading Intro. Credit: slides from Dr. Zwicker
CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces
More informationCS5620 Intro to Computer Graphics
So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading
More informationCS 5625 Lec 2: Shading Models
CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?
More informationCSE 681 Illumination and Phong Shading
CSE 681 Illumination and Phong Shading Physics tells us What is Light? We don t see objects, we see light reflected off of objects Light is a particle and a wave The frequency of light What is Color? Our
More informationCPSC 314 LIGHTING AND SHADING
CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Pervertex attributes Vertex
More informationCSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011
CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,
More informationLighting and Shading. Slides: Tamar Shinar, Victor Zordon
Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2
More informationComp 410/510 Computer Graphics. Spring Shading
Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather
More informationIntroduction to Computer Graphics. Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces
Introduction to Computer Graphics Farhana Bandukwala, PhD Lecture 14: Light Interacting with Surfaces Outline Computational tools Reflection models Polygon shading Computation tools Surface normals Vector
More informationTopic 9: Lighting & Reflection models 9/10/2016. Spot the differences. Terminology. Two Components of Illumination. Ambient Light Source
Topic 9: Lighting & Reflection models Lighting & reflection The Phong reflection model diffuse component ambient component specular component Spot the differences Terminology Illumination The transport
More informationIllumination & Shading
Illumination & Shading Goals Introduce the types of lightmaterial interactions Build a simple reflection modelthe Phong model that can be used with real time graphics hardware Why we need Illumination
More informationRadiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)
Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in
More informationLecture 10: Shading Languages. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)
Lecture 10: Shading Languages Kayvon Fatahalian CMU 15869: Graphics and Imaging Architectures (Fall 2011) Review: role of shading languages Renderer handles surface visibility tasks  Examples: clip,
More informationLecture 4: Reflection Models
Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physicsbased models
More informationThe Traditional Graphics Pipeline
Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs
More informationIllumination and Shading
Illumination and Shading Illumination (Lighting)! Model the interaction of light with surface points to determine their final color and brightness! The illumination can be computed either at vertices or
More informationIllumination. Illumination CMSC 435/634
Illumination CMSC 435/634 Illumination Interpolation Illumination Illumination Interpolation Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel
More informationShading and Illumination
Shading and Illumination OpenGL Shading Without Shading With Shading Physics Bidirectional Reflectance Distribution Function (BRDF) f r (ω i,ω ) = dl(ω ) L(ω i )cosθ i dω i = dl(ω ) L(ω i )( ω i n)dω
More informationComputer Graphics. Illumination and Shading
() Illumination and Shading Dr. Ayman Eldeib Lighting So given a 3D triangle and a 3D viewpoint, we can set the right pixels But what color should those pixels be? If we re attempting to create a realistic
More informationLighting affects appearance
Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed
More informationIllumination and Shading
Illumination and Shading Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/14/07 1 From last time Texture mapping overview notation wrapping Perspectivecorrect interpolation Texture
More informationAnnouncement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.
Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident
More informationSurface Reflection Models
Surface Reflection Models Frank Losasso (flosasso@nvidia.com) Introduction One of the fundamental topics in lighting is how the light interacts with the environment. The academic community has researched
More informationShading, lighting, & BRDF Theory. Cliff Lindsay, PHD
Shading, lighting, & BRDF Theory Cliff Lindsay, PHD Overview of today s lecture BRDF Characteristics Lights in terms of BRDFs Classes of BRDFs Ambient light & Shadows in terms of BRDFs Decomposing Reflection
More informationrendering equation computer graphics rendering equation 2009 fabio pellacini 1
rendering equation computer graphics rendering equation 2009 fabio pellacini 1 physicallybased rendering synthesis algorithms that compute images by simulation the physical behavior of light computer
More informationLIGHTING AND SHADING
DH2323 DGI15 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION LIGHTING AND SHADING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters
More informationCEng 477 Introduction to Computer Graphics Fall
Illumination Models and SurfaceRendering Methods CEng 477 Introduction to Computer Graphics Fall 2007 2008 Illumination Models and Surface Rendering Methods In order to achieve realism in computer generated
More informationImage Formation: Light and Shading. Introduction to Computer Vision CSE 152 Lecture 3
Image Formation: Light and Shading CSE 152 Lecture 3 Announcements Homework 1 is due Apr 11, 11:59 PM Homework 2 will be assigned on Apr 11 Reading: Chapter 2: Light and Shading Geometric image formation
More informationOrthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E AddisonWesley 2015
Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather
More information2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz
Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline
More informationCMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker
CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection
More informationCENG 477 Introduction to Computer Graphics. Ray Tracing: Shading
CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays
More informationIllumination & Shading I
CS 543: Computer Graphics Illumination & Shading I Robert W. Lindeman Associate Professor Interactive Media & Game Development Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu
More informationCSE 167: Lecture #8: GLSL. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012
CSE 167: Introduction to Computer Graphics Lecture #8: GLSL Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #4 due Friday, November 2 nd Introduction:
More informationTurn on the Lights: Reflectance
Turn on the Lights: Reflectance Part 2: Shading Tuesday, October 15 2012 Lecture #14 Goal of Shading Model simple light sources Point light sources Extended light sources Ambient lighting Model lighting
More informationModels and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico
Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Learn the basic design of a graphics system Introduce
More informationLets assume each object has a defined colour. Hence our illumination model is looks unrealistic.
Shading Models There are two main types of rendering that we cover, polygon rendering ray tracing Polygon rendering is used to apply illumination models to polygons, whereas ray tracing applies to arbitrary
More informationLighting and Shading Computer Graphics I Lecture 7. Light Sources Phong Illumination Model Normal Vectors [Angel, Ch
15462 Computer Graphics I Lecture 7 Lighting and Shading February 12, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Light Sources Phong Illumination Model
More informationThreeDimensional Graphics V. Guoying Zhao 1 / 55
Computer Graphics ThreeDimensional Graphics V Guoying Zhao 1 / 55 Shading Guoying Zhao 2 / 55 Objectives Learn to shade objects so their images appear threedimensional Introduce the types of lightmaterial
More informationSEOUL NATIONAL UNIVERSITY
Fashion Technology 5. 3D Garment CAD1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Featurebased design Pattern Design 2D Parametric design 3D
More informationObjectives Shading in OpenGL. Front and Back Faces. OpenGL shading. Introduce the OpenGL shading methods. Discuss polygonal shading
Objectives Shading in OpenGL Introduce the OpenGL shading methods  per vertex shading vs per fragment shading  Where to carry out Discuss polygonal shading  Flat  Smooth  Gouraud CITS3003 Graphics
More informationPhoton Mapping. Michael Doggett Department of Computer Science Lund university
Photon Mapping Michael Doggett Department of Computer Science Lund university Outline Photon Mapping (ch. 14 in textbook) Progressive Stochastic 2011 Michael Doggett How to make light sampling faster?
More informationRendering Algorithms: Realtime indirect illumination. Spring 2010 Matthias Zwicker
Rendering Algorithms: Realtime indirect illumination Spring 2010 Matthias Zwicker Today Realtime indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant
More informationTopic 2: Reflection 1
Topic 2: Reflection 1 Topic 2b: Reflectance (Why the way you look affects what you see) http://nobaproject.com/modules/failuresofawarenessthecaseofinattentionalblindness The major points: The apparent
More informationLessons Learned from HW4. Shading. Objectives. Why we need shading. Shading. Scattering
Lessons Learned from HW Shading CS Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Only have an idle() function if something is animated Set idle function to NULL, when
More informationIllumination and Shading
Illumination and Shading Illumination and Shading z Illumination Models y Ambient y Diffuse y Attenuation y Specular Reflection z Interpolated Shading Models y Flat, Gouraud, Phong y Problems CS4451: Fall
More informationLecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19
Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line
More informationBiased Monte Carlo Ray Tracing
Biased Monte Carlo Ray Tracing Filtering, Irradiance Caching, and Photon Mapping Henrik Wann Jensen Stanford University May 23, 2002 Unbiased and Consistent Unbiased estimator: E{X} =... Consistent estimator:
More informationGlobal Illumination and Radiosity
Global Illumination and Radiosity CS434 Daniel G. Aliaga Department of Computer Science Purdue University Recall: Lighting and Shading Light sources Point light Models an omnidirectional light source (e.g.,
More informationInterpolation using scanline algorithm
Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle topdown using scanline. Compute start and end color value of each pixel
More informationA Brief Overview of. Global Illumination. Thomas Larsson, Afshin Ameri Mälardalen University
A Brief Overview of Global Illumination Thomas Larsson, Afshin Ameri Mälardalen University 1 What is Global illumination? Global illumination is a general name for realistic rendering algorithms Global
More informationLecture 22: Basic Image Formation CAP 5415
Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and
More information03 RENDERING PART TWO
03 RENDERING PART TWO WHAT WE HAVE SO FAR: GEOMETRY AFTER TRANSFORMATION AND SOME BASIC CLIPPING / CULLING TEXTURES AND MAPPING MATERIAL VISUALLY DISTINGUISHES 2 OBJECTS WITH IDENTICAL GEOMETRY FOR NOW,
More informationrendering equation computer graphics rendering equation 2009 fabio pellacini 1
rendering equation computer graphics rendering equation 2009 fabio pellacini 1 phsicallbased rendering snthesis algorithms that compute images b simulation the phsical behavior of light computer graphics
More informationComputer Graphics. Lecture 13. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura
Computer Graphics Lecture 13 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local
More informationRadiometry & BRDFs CS295, Spring 2017 Shuang Zhao
Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials
More informationGlossy Reflection. Objectives Modeling
25 Glossy Reflection 25.1 Modeling 25.2 Implementation 25.3 Results Objectives By the end of this chapter, you should: understand what glossy reflection is; understand how it can be modeled in ray tracing;
More informationDraft from Graphical Models and Image Processing, vol. 58, no. 5, September Reflectance Analysis for 3D Computer Graphics Model Generation
page 1 Draft from Graphical Models and Image Processing, vol. 58, no. 5, September 1996 Reflectance Analysis for 3D Computer Graphics Model Generation Running head: Reflectance Analysis for 3D CG Model
More informationFundamentals of Rendering  Reflectance Functions
Fundamentals of Rendering  Reflectance Functions Image Synthesis Torsten Möller Mike Phillips Reading Chapter 8 of Physically Based Rendering by Pharr&Humphreys Chapter 16 in Foley, van Dam et al. Chapter
More informationHomework #2 and #3 Due Friday, October 12 th and Friday, October 19 th
Homework #2 and #3 Due Friday, October 12 th and Friday, October 19 th 1. a. Show that the following sequences commute: i. A rotation and a uniform scaling ii. Two rotations about the same axis iii. Two
More informationØ Sampling Theory" Ø Fourier Analysis Ø Antialiasing Ø Supersampling Strategies" Ø The Hall illumination model. Ø Original ray tracing paper
CS 431/636 Advanced Rendering Techniques Ø Dr. David Breen Ø Korman 105D Ø Wednesday 6PM 8:50PM Presentation 6 5/16/12 Questions from ast Time? Ø Sampling Theory" Ø Fourier Analysis Ø Antialiasing Ø Supersampling
More informationComputer Graphics 1. Chapter 7 (June 17th, 2010, 24pm): Shading and rendering. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2010
Computer Graphics 1 Chapter 7 (June 17th, 2010, 24pm): Shading and rendering 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons
More informationReading. Texture Mapping. Nonparametric texture mapping. Texture mapping. Required. Angel, 8.6, 8.7, 8.9, 8.10,
Reading Required Angel, 8.6, 8.7, 8.9, 8.10, 9.139.13.2 Recommended Texture Mapping Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applications 6(11): 5667, November 1986. Optional
More informationRecent Advances in Monte Carlo Offline Rendering
CS29413: Special Topics Lecture #6 Advanced Computer Graphics University of California, Berkeley Monday, 21 September 2009 Recent Advances in Monte Carlo Offline Rendering Lecture #6: Monday, 21 September
More informationComputer Graphics. Hardware Pipeline. Visual Imaging in the Electronic Age Prof. Donald P. Greenberg October 13, 2016 Lecture 15
Computer Graphics Hardware Pipeline Visual Imaging in the Electronic Age Prof. Donald P. Greenberg October 13, 2016 Lecture 15 Moore s Law Chip density doubles every 18 months. Processing Power (P) in
More informationWhy we need shading?
Why we need shading? Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something like But we want Lightmaterial interactions cause each point to have a different
More informationSummary. What is Computer Graphics? IRISA 2. Coordinate systems. 4. Geometric transformations for display
Summary Basic Computer Graphics Kadi Bouatouch IRISA Email: kadi@irisa.fr 1. Introduction 2. Coordinate systems 3. Geometric transformations 4. Geometric transformations for display 5. Choosing the camera
More informationComputer Graphics Shadow Algorithms
Computer Graphics Shadow Algorithms Computer Graphics Computer Science Department University of Freiburg WS 11 Outline introduction projection shadows shadow maps shadow volumes conclusion Motivation shadows
More informationPhotorealism: Ray Tracing
Photorealism: Ray Tracing Reading Assignment: Chapter 13 Local vs. Global Illumination Local Illumination depends on local object and light sources only Global Illumination at a point can depend on any
More information6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm
6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm In this assignment, you will add an interactive preview of the scene and solid
More informationIllumination and Shading
Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour  navy blue, light green, etc. Exeriments show that there are distinct I
More informationComputer Graphics. Lecture 10. Global Illumination 1: Ray Tracing and Radiosity. Taku Komura 12/03/15
Computer Graphics Lecture 10 Global Illumination 1: Ray Tracing and Radiosity Taku Komura 1 Rendering techniques Can be classified as Local Illumination techniques Global Illumination techniques Local
More informationGlobal Illumination. COMP 575/770 Spring 2013
Global Illumination COMP 575/770 Spring 2013 Final Exam and Projects COMP 575 Final Exam Friday, May 3 4:00 pm COMP 770 (and 575 extra credit) Projects Final report due by end of day, May 1 Presentations:
More informationCouncil for Optical Radiation Measurements (CORM) 2016 Annual Technical Conference May 15 18, 2016, Gaithersburg, MD
Council for Optical Radiation Measurements (CORM) 2016 Annual Technical Conference May 15 18, 2016, Gaithersburg, MD Multispectral measurements of emissive and reflective properties of displays: Application
More information6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm
6.837 Introduction to Computer Graphics Assignment 5: OpenGL and Solid Textures Due Wednesday October 22, 2003 at 11:59pm In this assignment, you will add an interactive preview of the scene and solid
More informationLight Sources. Spotlight model
lecture 12 Light Sources sunlight (parallel) Sunny day model : "point source at infinity"  lighting  materials: diffuse, specular, ambient spotlight  shading: Flat vs. Gouraud vs Phong light bulb ambient
More informationgraphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1
graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using objectorder processing primitives processed oneatatime
More informationBasic Computer Graphics. Kadi Bouatouch IRISA
Basic Computer Graphics Kadi Bouatouch IRISA Email: kadi@irisa.fr 1 Summary 1. Introduction 2. Coordinate systems 3. Geometric transformations 4. Geometric transformations for display 5. Choosing the camera
More informationOverview: Ray Tracing & The Perspective Projection Pipeline
Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,
More informationSo far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.
11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives
More informationPhotorealistic 3D Rendering for VW in Mobile Devices
Abstract University of Arkansas CSCE Department Advanced Virtual Worlds Spring 2013 Photorealistic 3D Rendering for VW in Mobile Devices Rafael Aroxa In the past few years, the demand for high performance
More informationComputer Graphics I. Assignment 3
UNIVERSITÄT DES SAARLANDES Dr.Ing. Hendrik P.A. Lensch Max Planck Institut Informatik Art Tevs (tevs@mpiinf.mpg.de) Boris Ajdin (bajdin@mpiinf.mpg.de) Matthias Hullin (hullin@mpiinf.mpg.de) 12. November
More informationClassic Rendering Pipeline
CS580: Classic Rendering Pipeline SungEui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/gcg/ Course Objectives Understand classic rendering pipeline Just highlevel concepts, not all the
More informationFundamentals of Rendering  Reflectance Functions
Fundamentals of Rendering  Reflectance Functions CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 8 of Physically Based Rendering by Pharr&Humphreys Chapter 16 in Foley, van Dam et al. Chapter
More informationLights and Lighting. Lecture overview. Light 2/3/2013. Digital Lighting and Rendering CGT 340
Lights and Lighting Digital Lighting and Rendering CGT 340 Lighting is 5% of light setup and 95% of revisions and adjustments. Jeremy Birn Lecture overview What is light? Spectrum Typical cases Metamers
More informationMathematical Tools in Computer Graphics with C# Implementations Table of Contents
Mathematical Tools in Computer Graphics with C# Implementations by Hardy Alexandre, WilliHans Steeb, World Scientific Publishing Company, Incorporated, 2008 Table of Contents List of Figures Notation
More informationGlobal Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.
CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.413.5] March 28, 2012 Jernej Barbic University of Southern California
More informationShadow and Environment Maps
CS29413: Special Topics Lecture #8 Advanced Computer Graphics University of California, Berkeley Monday, 28 September 2009 Shadow and Environment Maps Lecture #8: Monday, 28 September 2009 Lecturer: Ravi
More informationIntroduction to Computer Vision. Introduction CMPSCI 591A/691A CMPSCI 570/670. Image Formation
Introduction CMPSCI 591A/691A CMPSCI 570/670 Image Formation Lecture Outline Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic
More informationMethodology for Lecture. Importance of Lighting. Outline. Shading Models. Brief primer on Color. Foundations of Computer Graphics (Spring 2010)
Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 11: OpenGL 3 http://inst.eecs.berkeley.edu/~cs184 Methodology for Lecture Lecture deals with lighting (teapot shaded as in HW1) Some Nate
More informationIllumination and Shading ECE 567
Illumination and Shading ECE 567 Overview Lighting Models Ambient light Diffuse light Specular light Shading Models Flat shading Gouraud shading Phong shading OpenGL 2 Introduction To add realism to drawings
More informationComputergrafik. Matthias Zwicker Universität Bern Herbst 2016
Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today More shading Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection and refraction Toon shading
More informationMotivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing
Advanced Computer Graphics (Spring 2013) CS 283, Lecture 11: Monte Carlo Path Tracing Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation General solution to rendering and global illumination
More informationD2 State of the art of Material Rendering Techniques
SIXTH FRAMEWORK PROGRAMME HORIZONTAL RESEARCH ACTIVITIES INVOLVING SMES CO OPERATIVE RESEARCH Contract for: COOPERATIVE RESEARCH PROJECT Project acronym: CADPIPE Project full title: Cad Production Pipeline
More informationIllumination and Shading
Illumination and Shading Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL computes illumination at vertices illumination Shading
More informationRendering HairLike Objects with Indirect Illumination
Rendering HairLike Objects with Indirect Illumination CEM YUKSEL and ERGUN AKLEMAN Visualization Sciences Program, Department of Architecture Texas A&M University TR0501  January 30th 2005 Our method
More informationSubtractive Shadows: A Flexible Framework for Shadow Level of Detail
jgt 2008/3/21 15:26 page 45 #1 Vol. 13, No. 1: 45 56 Subtractive Shadows: A Flexible Framework for Shadow Level of Detail Christopher DeCoro and Szymon Rusinkiewicz Princeton University Abstract. We explore
More information3D graphics, raster and colors CS312 Fall 2010
Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 19892000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates
More informationClass 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13  Measurements of Surface BRDF and Atmospheric Scattering
University of Maryland Baltimore County  UMBC Phys650  Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class
More informationINFOGR Computer Graphics. Jacco Bikker  AprilJuly Lecture 14: Grand Recap. Welcome!
TOTAL INFOGR Computer Graphics Jacco Bikker  AprilJuly 2016  Lecture 14: Grand Recap Welcome! Lecture 2: Rasters, Vectors, Colors Math: Vectors: magnitude, Pythagoras, linear (in)dependency, normalization,
More information